Models of Computation

8: Decision problems, undecidability

Encoding objects into strings

- If O is some object (e.g., automaton, TM, polynomial, graph, etc.), we write <O> to be an encoding of O into a string.
- If $O_1, O_2,...,O_k$ is a list of objects then we write $<O_1, O_2,...,O_k>$ to be an encoding of them together into a single string.
- Notation for writing Turing machines
- We will use English descriptions of algorithms when we describe TMs, knowing that we could (in principle) convert those descriptions into states, transition function, etc.
- M = "On input w:
- [English description of the algorithm]"

Example

- TM M recognizing $L = \{a^k b^k c^k : k \ge 0\}$.
- M = "On input w
 - 1) Check if, $w \in a*b*c*$, reject if not.
 - 2) Count the number of a's, b's, and c's in w.
 - 3) Accept if all counts are equal; reject if not."

- High-level description is ok.
- We do not need to manage tapes, states, etc...

Encoding of TMs

- Assumed that $\Sigma = \{0,1\}$.
- The **code** of a TM M (denoted < M >) is the following:
- Let $M = (Q, \{0,1\}, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where
 - $Q = \{p_1,...,p_k\}, \Gamma = \{X_1,...,X_m\}, D_1 = R, D_2 = S, D_3 = L,$
 - $k \ge 3$, $p_1 = q_0$, $p_{k-1} = q_{accept}$, $p_k = q_{reject}$,
 - $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = __.$
 - The code of a transition $\delta(p_i, X_j) = (p_r, X_s, D_t)$ is $0^i 10^j 10^r 10^s 10^t$.
 - <*M*> is list of transition codes separated by 11.
- Note: <M> starts and ends with 0, does not contain the substring 111.
- < M, w > := < M > 111w

Existence of non-Turing-recognizable languages

- For all $i \ge 1$, let w_i be the i-th element of the set $\{0,1\}^*$ ordered by length and lexicograpically, i.e. $\{\epsilon,0,1,00,01,10,11,000,001,...\}$.
- Let M_i denote the TM encoded by w_i (if w_i does not encode a TM, then M_i is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.

- Two different languages cannot be recognized by the same TM.
- The number of TMs is countably infinite (the encoding of TMs is an injection into {0,1}*, whose cardinality is countably infinite).
- The set of languages over $\{0,1\}$ (i.e. $\{L \subseteq \{0,1\}^*\}$) is uncountable (cardinality of continuum).

A non-Turing-recognizable language

Theorem: Let $L_d = \{w_i : w_i \notin L(M_i)\}$. L_d is not Turing-recognizable, i.e. $L_d \notin RE$.

Proof: Georg Cantor's diagonalization method.

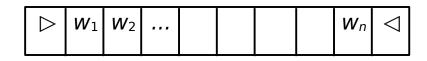
- Consider the bit table T, for which $T(i,j) = 1 \Leftrightarrow w_i \in L(M_i) \ (i,j \ge 1)$.
- Let z be an infinitely long bit string in the diagonal of T and z̄ be the bitwise complement of z.
- For all $i \ge 1$, the i-th row of T is the characteristic vector of language $L(M_i)$.
- \bar{z} is the characteristic vector of L_d .
- If L_d could be recognized by a TM D, the characteristic vector of D would be a row in T.
- \bar{z} differs from every row of T, so L_d differs from all languages in RE . \square

T	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	•••	$\langle D \rangle$	•••
M_1	<u>1</u>	0	1		1	
M_2	0	<u>1</u>	1	•••	0	•••
M_3	1	0	<u>0</u>		1	
•		:		٠.		
D	1	0	1		<u>?</u>	
:		:				٠.

$$\bar{z} = 001...$$

Recursive (Turing-deciable) languages R and L_1 languages

 A linear bounded automaton (LBA) is a nondeterministic TM, whose



- input alphabet Σ contains two special symbols \triangleright (left endmarker) and \triangleleft (right endmarker).
- The inputs are in the form $\triangleright(\Sigma \setminus \{\triangleright, \triangleleft\})^* \triangleleft$,
- b and < cannot be overwritten
- The head cannot stand to the left of ⊳
 or to the right of <.
- The starting position of the head is the right neighbor of the cell containing ▷.
- An LBA is an NTM that has a limited working area.
- Named after an equivalent model in which the available storage is bounded by a constant multiple of the length of the input.

Theorem:

- (1) For every type-1 grammar G, a LBA A can be given, s.t. L(A) = L(G).
- (2) For every LBA A, a type-1 grammar G can be specified, s.t. L(G) = L(A).

- (1) In the previous lecture, we saw that all type-0 grammar G an NTM can be constructed recognizing L(G).
- The construction simulates a derivation in *G* non-deterministically on tape 3. At the end of the iterations the NTM checks if the sentence on tape 3 is equal to the input word *w* on tape 1.
- If G is a type-1 grammar, the length of strings during the derivation are non-decreasing. Therefore, the length of the string on tape 2 never exceeds |w|, so this NTM is an LBA.

Proof (cont.):

- (2) For every LBA A, a type-1 grammar G can be specified, s.t. L(G) = L(A).
- We sightly modify the construction of the last lecture.
- Let $\Gamma' := \Gamma \setminus \{ \triangleright, \triangleleft \}$ and $G = ((\Gamma \setminus \Sigma) \cup Q \times \Gamma' \cup \{S,A\}, \Sigma, P, S)$.

1)
$$S \to \triangleright A(q_{accept}, a)A \lhd | \triangleright A(q_{accept}, a) \lhd | \triangleright (q_{accept}, a)A \lhd | \triangleright (q_{accept}, a) \lhd | \lor (\forall a \in \Gamma')$$

2)
$$A \rightarrow aA \mid a$$
 ($\forall a \in \Gamma'$)

3)
$$b(q',c) \rightarrow (q,a)c$$
 if $(q',b,R) \in \delta(q,a)$ $(\forall c \in \Gamma')$

- 4) $(q',b) \rightarrow (q,a)$ if $(q',b,S) \in \delta(q,a)$
- 5) $(q',c)b \rightarrow c(q,a)$ if $(q',b,L) \in \delta(q,a)$ $(\forall c \in \Gamma')$
- $(\forall a \in \Gamma')$
- 1-2. we generate an arbitrary accepting configuration. Since A is an LBA, for accepting a word u, it is enough to generate a configuration of length of at most |u|. After this the length of sentence is fixed.
- 3-5. configuration transitions are simulated in reverse order in the grammar.

Proof (cont.):

```
1) S \rightarrow \triangleright A(q_{accept}, a)A \triangleleft | \triangleright A(q_{accept}, a) \triangleleft | \triangleright (q_{accept}, a)A \triangleleft | \triangleright (q_{accept}, a) \triangleleft | \triangleright (q_{accept}, a)A \triangleleft | \triangleright (q_{accept}
```

- 6. Since the grammar does not decrease the length, technically we need symbols from $Q \times \Gamma'$. Until the last step, the sentence contains exactly one of that symbols.
- For all $a \in \Sigma \setminus \{ \triangleright, \triangleleft \}$, $w \in (\Sigma \setminus \{ \triangleright, \triangleleft \})^*$ or $a = _$, $w = \varepsilon$, it can be shown by induction on the length of the derivation that

• for
$$x \in \Gamma'$$
, $\alpha, \beta \in (\Gamma')^* : \triangleright q_0 aw \triangleleft \text{ yields } \triangleright \alpha q_{accept} x \beta \triangleleft \text{ if and only if } S \Rightarrow^* \triangleright \alpha (q_{accept}, x) \beta \triangleleft \Rightarrow^* \triangleright (q_0, a) w \triangleleft \Rightarrow \triangleright aw \triangleleft.$

Theorem: If A is LBA, then L(A) is decidable.

- Let w be an input word, |w|=n. Due to the linear bound, the number of possible configurations of A for an input w is at most $m(w) = |Q| \cdot n \cdot |\Gamma|^n$.
- Every computation longer than m(w) leads to an infinite loop.
- M' be the TM, s.t.
 on input <A,w>, where A is an LBA and w a string
 - 1) Run A on w for $\leq m(w)+1$ transitions
 - 2) If A accepts/rejects before this point, accept/reject as A.
 - 3)Otherwise, reject.
- Obviously, L(M') = L(A) and M' decides L(A).

R and L_1

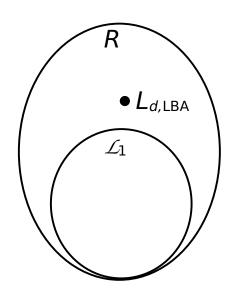
Theorem: $\mathcal{L}_1 \subset R$.

Proof:

- Based on the previous 2 theorems, $\mathcal{L}_1 \subseteq R$.
- Let $L_{d,LBA} = \{ \langle A \rangle : A \text{ is a LBA and } \langle A \rangle \notin L(A) \}$.
- *L*_{d,LBA} can be decided as follows:
 - For LBA A, let S be a TM which goes in state
 - q_{accept} if $\langle A \rangle \notin L(A)$ and
 - q_{reject} if $\langle A \rangle \in L(A)$.

Since L(A) decidable, S always halts. $\Rightarrow L_{d,LBA} \in R$.

- $L_{d,LBA}$ is not recognizable with LBA ($\Rightarrow L_{d,LBA} \notin \mathcal{L}_1$)
 - using Cantor's diagonalization method
 - For contradiction, assume that $L_{d,LBA}$ is recognized by an LBA S.
 - if $\langle S \rangle \in L_{d,LBA}$, then S recognizes $\langle S \rangle$, so $\langle S \rangle \notin L_{d,LBA}$, contradiction,
 - if $\langle S \rangle \notin L_{d,LBA}$, then S does not recognizes $\langle S \rangle$, so $\langle S \rangle \in L_{d,LBA}$, contradiction.



R and RE (recursively enumerable languages

• Universal language: $L_u = \{ \langle M, w \rangle \mid M \text{ is TM and } w \in L(M) \}$.

Theorem: $L_u \in RE \setminus R$.

- *L_u* is recursively enumerable (Turing-recognizable)
- We construct a TM U, called the universal TM, to recognize L_u .
- Let U be a multitape TM s.t.
 - 1st tape holds the input with the encodings of M and w.
 We use the encoding of TMs and binary strings from this lecture.
 - 2nd tape is used to simulate M's input tape.
 We initialize the 2nd tape with w.
 We move the head on the 2nd tape to the first simulated cell.
 - 3rd tape is used to store M's state.
 We initialize the 3rd tape with the start state of M.
 - 4th tape is used as a work tape.

R and RE

Proof (cont.):

- To simulate a transition of M,
 U searches tape 1 for a transition on the current state of M (stored on tape 3) and the current tape symbol of M (stored on tape 2).
- Then U stores the new state on tape 3,
 U changes the tape symbol on tape 2,
 U moves M's tape head left or right on tape 2 as specified by the transition.
- If M enters its final state signaling that M accepts w, then U accepts <M,w> and halts.

Thus, $L(U) = L_u$. ($\Rightarrow L_u \in RE$)

R and RE

Proof (cont.):

- *L*_u is not recursive:
- Suppose L_u were recursive. Then there would exist a TM M that accepts the complement of L_u .
- But we can transform M into a TM M' that accepts L_d as follows:
 - M' transforms its input string w into a pair <w,w>.
 - M' simulates M on <w,w> assuming the first w is an encoding of a
 TM M_i and the second w is an encoding of a binary string w_i.
 Since M accepts the complement of L_u, M will accept <w,w> if
 and only if M_i does not accept w_i.
- Thus, M' accepts w if and only if w is in L_d . But we have previously shown there does not exist a TM that recognizes L_d . Consequently, M does not exist.
- $\Rightarrow L_u \notin R$.

Halting Problem

- In Alan Turing's original formulation of Turing machines acceptance was just by halting not necessarily by halting in a final state.
- We define H(M) for a TM M to be the set of input strings w on which M halts in either a final or a nonfinal state.
- The **halting problem** is to he set of pairs $\{ \langle M, w \rangle \mid w \text{ is in } H(M) \}$.
- We can show the halting problem is recursively enumerable but not recursive.
- A similar argument can be used to show that many practical problems associated with software verification are undecidable. For example, the problem of determining whether a program will ever go into an infinite loop is undecidable.

References

 Michael Sipser: Introduction to the Theory of Computation. 3rd edition, 2012.