Models of Computation

8: Decision problems, undecidability

Models of Computation 1 Tamas Lukovszki

Encoding objects into strings

* If O is some object (e.g., automaton, TM, polynomial, graph,
etc.), we write <O> to be an encoding of O into a string.

°* If O1, O,,...,0« is a list of objects then we write
<0, O;,...,0> to be an encoding of them together into a
single string.

e Notation for writing Turing machines

* We will use English descriptions of algorithms when we
describe TMs, knowing that we could (in principle) convert
those descriptions into states, transition function, etc.

* M= "0On input w:
. [English description of the algorithm]”

Models of Computation 2 Tamas Lukovszki

Example

» TM M recognizing L = {a"b"c* : k > 0}.

°* M= "“Oninput w
1) Check if, w € a*b*c*, reject if not.
2) Count the number of a’s, b’s, and ¢’'s in w.
3) Accept if all counts are equal; reject if not.”

* High-level description is ok.
* We do not need to manage tapes, states, etc...

Models of Computation 3 Tamas Lukovszki

Encoding of TMs

e Assumed that 2 = {0,1} .

* The code of a TM M (denoted <M>) is the following:

e Let M = (Q, {0,1}, T, 8, o, Qaccept, Qreject), Where
e Q=A{p1,...p}, = {X1,...Xmn}, D1 =R, D>,=5,Ds5 =1L,
e k=3, P1 = o, Pk-1 = Qaccept, Pk = (reject,
e m=3,X1=0,X2=1,X3=

e The code of a transition &6(p;, X;) = (pr, Xs, Dt) is
0'10'10710510¢.

e <M> is list of transition codes separated by 11.

e Note: <M> starts and ends with 0, does not contain the
substring 111.

e <M,w>:=<M>111lw

Models of Computation 4 Tamas Lukovszki

Existence of non-Turing-recognizable
languages

e Foralli =1, let w; be the /-th element of the set {0,1}*
ordered by length and lexicograpically, i.e.
{¢,0,1,00,01,10,11,000,001,...}.

* Let M; denote the TM encoded by w; (if w; does not encode a TM,
then M; is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.
Proof:

* Two different languages cannot be recognized by the same TM.

* The number of TMs is countably infinite (the encoding of TMs is
an injection into {0,1}*, whose cardinality is countably infinite).

* The set of languages over {0,1} (i.e. {L < {0,1}*}) s
uncountable (cardinality of continuum).

Models of Computation 5 Tamas Lukovszki

A non-Turing-recognizable language

Theorem: Let Ly = {w;: w; & L(M))}. Ly is not Turing-recognizable,
i.e. Ly & RE.

Proof: Georg Cantor's diagonalization method.

e Consider the bit table T, for which
TUj)=1leweclLM)(j=1).

* Let z be an infinitely long bit string

in the diagonal of T and T | (M) (M) (M) (D)
Z be the bitwise complement of z. %1 % (1) 1 1
* Foralli=1, the i-th row of T is the M2 1 0 0 (1)
characteristic vector of language L(M). 3 =
* Zis the characteristic vector of L. 5 ,
* |f Lycould be recognized by a TM D, L 0 ! =
the characteristic vector of D would
be arowinT.
e z differs from every row of T, so z =001

L, differs from all languages in RE. []

Models of Computation 6 Tamas Lukovszki

Recursive (Turing-deciable) languages R
and £; languages

e Alinear bounded automaton (LBA) | > |Wi| Wz ... Wn| <

IS @ nondeterministic TM, whose

* input alphabet % contains two special symbols
> (left endmarker) and < (right endmarker).

e The inputs are in the form >(Z\ {>,<1})*,
* > and <] cannot be overwritten

e The head cannot stand to the left of >
or to the right of <.

* The starting position of the head is the right neighbor of the
cell containing [>.

* An LBA is an NTM that has a limited working area.

* Named after an equivalent model in which the available storage is
bounded by a constant multiple of the length of the input.

Models of Computation 7 Tamas Lukovszki

R and

Theorem:

°* (1) For every type-1 grammar G, a LBA A can be given,
s.t. L(A) = L(G).

* (2) For every LBA A, a type-1 grammar G can be specified,
s.t. L(G) = L(A).
Proof:

°* (1) In the previous lecture, we saw that all type-0 grammar G an
NTM can be constructed recognizing L(G) .

* The construction simulates a derivation in G non-deterministically
on tape 3. At the end of the iterations the NTM checks if the
sentence on tape 3 is equal to the the input word w on tape 1.

 If Gis atype-1 grammar, the length of strings during the
derivation are non-decreasing. Therefore, the length of the string
on tape 2 never exceeds |w|, so this NTM is an LBA.

Models of Computation 8 Tamas Lukovszki

R and

Proof (cont.):

* (2) For every LBA A, a type-1 grammar G can be specified,
s.t. L(G) = L(A).

* We sightly modify the construction of the last lecture.
e LletlM:=r\{>,<tand G={(r12)uQ xr’'v{sA} 2, PS).
1) 5 - I>A(qaccept,a)A<] | I>A(Qaccept,a)<] | [>(Qaccept,a)A<] | D(Qaccept,a)<] (V aer’)

2)A—>aA|a (Vaeln)
3) b(g’,c) = (g,a)cif (q’.b,R) € 6(q,a) (Vcer)
4) (q’,b) = (q,a) if (q’,b,S) € 6(q,a)

5) (g’,c)b = c(q,a) if (q’,b,L) € 6(q,a) (Vcer)
6) >(qo,a) = >a (Vaer)

* 1-2. we generate an arbitrary accepting configuration.
Since A is an LBA, for accepting a word u, it is enough to generate a
configuration of length of at most |u|. After this the length of sentence is fixed.

e 3-5. configuration transitions are simulated in reverse order in the grammar.

Models of Computation 9 Tamas Lukovszki

R and

Proof (cont.):
1) 5 - |>A(Qaccept,a)A<] | I>A(Qaccept,a)<] | [>(Qaccept,a)A<] | D(Qaccept;a)<] (V aer’)

2)A—>aA|a (Vaerlrn)
3) b(q’,c) = (q,a)c if (q’,b,R) € 6(q,a) (Vcer)
4) (q’,b) - (qg,a) if (q’,b,S) € 6(q,a)

5) (q’,c)b - c(q,a) if (q’,b,L) € 6(q,a) (V cer’)
6) >(qo,a) - >a (Vaerlr)

* 6. Since the grammar does not decrease the length, technically we need
symbols from Q x [". Until the last step, the sentence contains exactly one of
that symbols.

e Forallae2\{><},we 2\ {><})*ora= _,w=c¢,itcan be shown by
induction on the length of the derivation that
e forx e, a,p € (I")* : >goaw< yields >aqaccepeXB< if and only if
S =* D>a(Gaccept, X) B =* D>(qo, @) W< = >aw<. []

Models of Computation 10 Tamas Lukovszki

R and

Theorem: If A is LBA, then L(A) is decidable.
Proof:

* Let w be an input word, |w|=n. Due to the linear bound, the
number of possible configurations of A for an input w is at most
m(w) = |Q| - n - |l]".

* Every computation longer than m(w) leads to an infinite loop.

* M’ be the TM, s.t.
on input <A,w>, where A is an LBA and w a string

1)Run A on w for < m(w)+1 transitions
2)If A accepts/rejects before this point, accept/reject as A.
3)Otherwise, reject.

* Obviously, L(M’) = L(A) and M’ decides L(A).

Models of Computation 11 Tamas Lukovszki

R and

Theorem: /; c R.
Proof:

°* Based on the previous 2 theorems, £1 € R.
e LetLlgsa = {<A>:Aisa lLBAand <A> & L(A)}.
* Lq8a Can be decided as follows:
* For LBA A, let S be a TM which goes in state
® Qaccept If <A> & L(A) and
® Qreject if <A> € L(A).
Since L(A) decidable, S always halts. = Lg8a€ R.

* Laiea is not recognizable with LBA (= Laea & L1)
e using Cantor's diagonalization method
* For contradiction, assume that L4.wsa is recognized by an LBA S.
* if <S> € Ly.sa, then S recognizes <S>, so <S> & Lq.8a, contradiction,

e if <S> & La.sa, then S does not recognizes <S>, so <S> € Lyza,
contradiction. []

Models of Computation 12 Tamas Lukovszki

R and RE (recursively enumerable

languages

e Universal language: L, = {<M,w> | MisTMand w € L(M)} .
Theorem: L, € RE | R.

Proof:

* [,is recursively enumerable (Turing-recognizable)
* We construct a TM U, called the universal TM, to recognize L..
* Let U be a multitape TM s.t.

e 1sttape holds the input with the encodings of M and w.
We use the encoding of TMs and binary strings from this lecture.

e 2nd tape is used to simulate M's input tape.
We initialize the 2" tape with w.
We move the head on the 2" tape to the first simulated cell.

e 3 tape is used to store M's state.
We initialize the 3™ tape with the start state of M.

* 4% tape is used as a work tape.

Models of Computation 13 Tamas Lukovszki

R and RE

Proof (cont.):

* To simulate a transition of M,
U searches tape 1 for a transition on the current state

of M (stored on tape 3) and the current tape symbol
of M (stored on tape 2).

* Then U stores the new state on tape 3,
U changes the tape symbol on tape 2,
U moves M's tape head left or right on tape 2 as
specified by the transition.

* If M enters its final state signaling that M accepts w,
then U accepts <M,w> and halts.

Thus, L(U) = L.. (= L.e RE)

Models of Computation 14 Tamas Lukovszki

R and RE

Proof (cont.):
e [,is not recursive:

* Suppose L, were recursive.
Then there would exist a TM M that accepts the complement of L..

* But we can transform M into a TM M' that accepts Ly as follows:
* M'transforms its input string w into a pair <w,w>.

e M'simulates M on <w,w> assuming the first w is an encoding of a
TM M; and the second w is an encoding of a binary string w..
Since M accepts the complement of L,, M will accept <w,w> if
and only if M; does not accept w;.

* Thus, M' accepts w if and only if wis in La.
But we have previously shown there does not exist a TM that
recognizes Ly. Consequently, M does not exist.

= L, € R. []

Models of Computation 15 Tamas Lukovszki

Halting Problem

* In Alan Turing’s original formulation of Turing machines
acceptance was just by halting not necessarily by halting in a
final state.

* We define H(M) for a TM M to be the set of input strings w on
which M halts in either a final or a nonfinal state.

* The halting problem is to he set of pairs
{<M,w> | wisin HM)}.

* We can show the halting problem is recursively enumerable
but not recursive.

* A similar argument can be used to show that many practical
problems associated with software verification are
undecidable. For example, the problem of determining
whether a program will ever go into an infinite loop is
undecidable.

Models of Computation 16 Tamas Lukovszki

References

* Michael Sipser: Introduction to the Theory of
Computation. 3rd edition, 2012.

Models of Computation 19 Tamas Lukovszki

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19

