
Tamás Lukovszki1Models of Computation

Models of Computation

8: Decision problems, undecidability

Tamás Lukovszki2Models of Computation

Encoding objects into strings

● If O is some object (e.g., automaton, TM, polynomial, graph,
etc.), we write <O> to be an encoding of O into a string.

● If O1, O2,…,Ok is a list of objects then we write
<O1, O2,…,Ok> to be an encoding of them together into a
single string.

● Notation for writing Turing machines
● We will use English descriptions of algorithms when we

describe TMs, knowing that we could (in principle) convert
those descriptions into states, transition function, etc.

● M = “On input w:
● [English description of the algorithm]”

Tamás Lukovszki3Models of Computation

Example

● TM M recognizing
● M = “On input w

1) Check if, w ∈ a*b*c*, reject if not.

2) Count the number of a’s, b’s, and c’s in w.

3) Accept if all counts are equal; reject if not.”

● High-level description is ok.
● We do not need to manage tapes, states, etc…

Tamás Lukovszki4Models of Computation

Encoding of TMs

● Assumed that Σ = {0,1} .
● The code of a TM M (denoted <M>) is the following:
● Let M = (Q, {0,1}, Γ, δ, q0, qaccept, qreject), where

● Q = {p1,...,pk}, Γ = {X1,…,Xm}, D1 = R, D2 = S, D3 = L,
● k ≥ 3, p1 = q0, pk−1 = qaccept, pk = qreject,
● m ≥ 3 , X1 = 0 , X2 = 1 , X3 = _.
● The code of a transition δ(pi, Xj) = (pr, Xs, Dt) is

0i10j10r10s10t.
● <M> is list of transition codes separated by 11.

● Note: <M> starts and ends with 0, does not contain the
substring 111.

● <M,w> := <M>111w

Tamás Lukovszki5Models of Computation

Existence of non-Turing-recognizable
languages
● For all i ≥ 1, let wi be the i-th element of the set {0,1}*

ordered by length and lexicograpically, i.e.
{ε,0,1,00,01,10,11,000,001,…}.

● Let Mi denote the TM encoded by wi (if wi does not encode a TM,
then Mi is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.

Proof:
● Two different languages ​​cannot be recognized by the same TM.
● The number of TMs is countably infinite (the encoding of TMs is

an injection into {0,1}*, whose cardinality is countably infinite).
● The set of languages over {0,1} (i.e. {L ⊆ {0,1}*}) is

uncountable (cardinality of continuum). ⃞

Tamás Lukovszki6Models of Computation

A non-Turing-recognizable language

Theorem: Let Ld = {wi : wi ∉ L(Mi)}. Ld is not Turing-recognizable,
i.e. Ld ∉ RE.

Proof: Georg Cantor's diagonalization method.
● Consider the bit table T, for which

T(i,j) = 1 ⇔ wj ∈ L(Mi) (i,j ≥ 1).
● Let z be an infinitely long bit string

in the diagonal of T and
z ̄ be the bitwise complement of z.

● For all i ≥ 1, the i-th row of T is the
characteristic vector of language L(Mi).

● z̄ is the characteristic vector of Ld.
● If Ld could be recognized by a TM D,

the characteristic vector of D would
be a row in T.

● z ̄ differs from every row of T, so
Ld differs from all languages in RE . ⃞

z = 001...

Tamás Lukovszki7Models of Computation

Recursive (Turing-deciable) languages R
and L1 languages

● A linear bounded automaton (LBA)
is a nondeterministic TM, whose

● input alphabet Σ contains two special symbols
▷ (left endmarker) and ◁ (right endmarker).

● The inputs are in the form ▷(Σ \ {▷,◁})*◁,
● ▷ and ◁ cannot be overwritten
● The head cannot stand to the left of ▷

or to the right of ◁.
● The starting position of the head is the right neighbor of the

cell containing ▷.
● An LBA is an NTM that has a limited working area.
● Named after an equivalent model in which the available storage is

bounded by a constant multiple of the length of the input.

w1 w2 wn ◁▷ ...

Tamás Lukovszki8Models of Computation

R and L1

Theorem:
● (1) For every type-1 grammar G, a LBA A can be given,

s.t. L(A) = L(G).
● (2) For every LBA A, a type-1 grammar G can be specified,

s.t. L(G) = L(A).

Proof:
● (1) In the previous lecture, we saw that all type-0 grammar G an

NTM can be constructed recognizing L(G) .
● The construction simulates a derivation in G non-deterministically

on tape 3. At the end of the iterations the NTM checks if the
sentence on tape 3 is equal to the the input word w on tape 1.

● If G is a type-1 grammar, the length of strings during the
derivation are non-decreasing. Therefore, the length of the string
on tape 2 never exceeds |w|, so this NTM is an LBA.

Tamás Lukovszki9Models of Computation

R and L1

Proof (cont.):
● (2) For every LBA A, a type-1 grammar G can be specified,

s.t. L(G) = L(A).
● We sightly modify the construction of the last lecture.
● Let Γ’ := Γ \ {▷,◁} and G = ((Γ \ Σ) ∪ Q × Γ’ ∪ {S,A}, Σ, P, S).

1) S → ▷A(qaccept,a)A◁ | ▷A(qaccept,a)◁ | ▷(qaccept,a)A◁ | ▷(qaccept,a)◁ (∀ a∈Γ’)

2) A → aA | a (∀ a∈Γ’)

3) b(q’,c) → (q,a)c if (q’,b,R) ∈ δ(q,a) (∀ c∈Γ’)

4) (q’,b) → (q,a) if (q’,b,S) ∈ δ(q,a)

5) (q’,c)b → c(q,a) if (q’,b,L) ∈ δ(q,a) (∀ c∈Γ’)

6) ▷(q0,a) → ▷a (∀ a∈Γ’)
● 1-2. we generate an arbitrary accepting configuration.

Since A is an LBA, for accepting a word u, it is enough to generate a
configuration of length of at most |u|. After this the length of sentence is fixed.

● 3-5. configuration transitions are simulated in reverse order in the grammar.

Tamás Lukovszki10Models of Computation

R and L1

Proof (cont.):

1) S → ▷A(qaccept,a)A◁ | ▷A(qaccept,a)◁ | ▷(qaccept,a)A◁ | ▷(qaccept,a)◁ (∀ a∈Γ’)

2) A → aA | a (∀ a∈Γ’)

3) b(q’,c) → (q,a)c if (q’,b,R) ∈ δ(q,a) (∀ c∈Γ’)

4) (q’,b) → (q,a) if (q’,b,S) ∈ δ(q,a)

5) (q’,c)b → c(q,a) if (q’,b,L) ∈ δ(q,a) (∀ c∈Γ’)

6) ▷(q0,a) → ▷a (∀ a∈Γ’)

● 6. Since the grammar does not decrease the length, technically we need
symbols from Q × Γ’. Until the last step, the sentence contains exactly one of
that symbols.

● For all a ∈ Σ \ {▷,◁}, w ∈ (Σ \ {▷,◁})* or a = _, w = ε, it can be shown by
induction on the length of the derivation that

● for x ∈ Γ’, α,β ∈ (Γ’)* : ▷q0aw◁ yields ▷αqacceptxβ◁ if and only if
S ⇒* ▷α(qaccept,x)β◁ ⇒* ▷(q0,a)w◁ ⇒ ▷aw◁. ⃞

Tamás Lukovszki11Models of Computation

R and L1

Theorem: If A is LBA, then L(A) is decidable.

Proof:
● Let w be an input word, |w|=n. Due to the linear bound, the

number of possible configurations of A for an input w is at most
m(w) = |Q| · n · |Γ|n.

● Every computation longer than m(w) leads to an infinite loop.
● M’ be the TM, s.t.

on input <A,w>, where A is an LBA and w a string

1)Run A on w for ≤ m(w)+1 transitions

2)If A accepts/rejects before this point, accept/reject as A.

3)Otherwise, reject.
● Obviously, L(M’) = L(A) and M’ decides L(A). ⃞

Tamás Lukovszki12Models of Computation

R and L1

Theorem: L1 ⊂ R.

Proof:

● Based on the previous 2 theorems, L1 ⊆ R.
● Let Ld,LBA = {<A> : A is a LBA and <A> ∉ L(A)}.
● Ld,LBA can be decided as follows:

● For LBA A, let S be a TM which goes in state
● qaccept if <A> ∉ L(A) and
● qreject if <A> ∈ L(A).

 Since L(A) decidable, S always halts. ⇒ Ld,LBA∈ R.

● Ld,LBA is not recognizable with LBA (⇒ Ld,LBA ∉ L1)
● using Cantor's diagonalization method
● For contradiction, assume that Ld,LBA is recognized by an LBA S.

● if <S> ∈ Ld,LBA, then S recognizes <S>, so <S> ∉ Ld,LBA, contradiction,
● if <S> ∉ Ld,LBA, then S does not recognizes <S>, so <S> ∈ Ld,LBA,

contradiction. ⃞

R

L1

Ld,LBA

Tamás Lukovszki13Models of Computation

R and RE (recursively enumerable
languages
● Universal language: Lu = {<M,w> | M is TM and w ∈ L(M)} .

Theorem: Lu ∈ RE \ R.

Proof:
● Lu is recursively enumerable (Turing-recognizable)
● We construct a TM U, called the universal TM, to recognize Lu.
● Let U be a multitape TM s.t.

● 1st tape holds the input with the encodings of M and w.
We use the encoding of TMs and binary strings from this lecture.

● 2nd tape is used to simulate M's input tape.
We initialize the 2nd tape with w.
We move the head on the 2nd tape to the first simulated cell.

● 3rd tape is used to store M's state.
We initialize the 3rd tape with the start state of M.

● 4th tape is used as a work tape.

RE

R

Lu

Tamás Lukovszki14Models of Computation

R and RE

Proof (cont.):
● To simulate a transition of M,

U searches tape 1 for a transition on the current state
of M (stored on tape 3) and the current tape symbol
of M (stored on tape 2).

● Then U stores the new state on tape 3,
U changes the tape symbol on tape 2,
U moves M's tape head left or right on tape 2 as
specified by the transition.

● If M enters its final state signaling that M accepts w,
then U accepts <M,w> and halts.

Thus, L(U) = Lu. (⇒ Lu∈ RE)

Tamás Lukovszki15Models of Computation

R and RE

Proof (cont.):
● Lu is not recursive:
● Suppose Lu were recursive.

Then there would exist a TM M that accepts the complement of Lu.
● But we can transform M into a TM M' that accepts Ld as follows:

● M' transforms its input string w into a pair <w,w>.
● M' simulates M on <w,w> assuming the first w is an encoding of a

TM Mi and the second w is an encoding of a binary string wi.
Since M accepts the complement of Lu, M will accept <w,w> if
and only if Mi does not accept wi.

● Thus, M' accepts w if and only if w is in Ld.
But we have previously shown there does not exist a TM that
recognizes Ld. Consequently, M does not exist.

● ⇒ Lu ∉ R. ⃞

Tamás Lukovszki16Models of Computation

Halting Problem

● In Alan Turing’s original formulation of Turing machines
acceptance was just by halting not necessarily by halting in a
final state.

● We define H(M) for a TM M to be the set of input strings w on
which M halts in either a final or a nonfinal state.

● The halting problem is to he set of pairs
{<M,w> | w is in H(M)}.

● We can show the halting problem is recursively enumerable
but not recursive.

● A similar argument can be used to show that many practical
problems associated with software verification are
undecidable. For example, the problem of determining
whether a program will ever go into an infinite loop is
undecidable.

Tamás Lukovszki19Models of Computation

References

● Michael Sipser: Introduction to the Theory of
Computation. 3rd edition, 2012.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19

