# Models of Computation 

1: Basics, Languages

## Basics, terminology

- Alphabet: a finite, non-empty set of symbols/letters.
- Words or strings over $V$ : Finite sequences of the elements of an alphabet $V$.
- $\quad V^{*}$ : the set of words over $V$ including the empty word $(\varepsilon)$.
- $V^{+}=V^{*} \backslash\{\varepsilon\}$ : the set of non-empty words over $V$.
- The length of a word $u=t_{1} \ldots t_{n}$ is the numer of letters in $u$, denoted by $|u|=n$.
- Length of the empty set $\varepsilon$ is $0(|\varepsilon|=0)$.
- Example:

Let $V=\{a, b\}$, then $a b$ and baaabb are words over $V$.

## Basics, terminology

- Let $V$ be an alphabet and let $u$ and $v$ be words over $V$ (i.e., $u, v \in V^{*}$ ). Then the word $u v$ is the concatenation of $u$ and $v$.
- $|u v|=|u|+|v|$.
- Example:

Let $V=\{a, b\}, u=a b$ and $v=b a a b b$ words over $V$.
Then $u v=a b b a a b b$.

## Basics, terminology

## Properties

- The concatenation is associative, but in general not commutative.
- if $u, v \in V^{*}, u \neq v$, then $u v$ differs from $v u$, unless $V$ consists of only one letter (not commutative).
- if $u, v, w \in V^{*}$, then $u(v w)=(u v) w$ (associative).
- $V^{*}$ is closed for the operation of concatenation (i.e. for any $u, v \in V^{*}$, $u v \in V^{*}$ holds).
- The concatenation is an operation with identity element, or neutral element, the neutral element is $\varepsilon$ (i.e., for any $u \in V^{*}, u=u \varepsilon=\varepsilon u$ ).


## Basics, terminology

- Let $i$ be a non-negative integer and $u$ be a word over $V$ ( $u \in V^{*}$ ). The $i$-th power $u^{i}$ of the word $u$ is the concatenation of $i$ instances of $u$.
- Convention: $u^{0}=\varepsilon$.
- Example:

Let $V=\{a, b\}$ and $u=a b b$ be a word above $V$. Then $u^{0}=\varepsilon, u^{1}=a b b, u^{2}=a b b a b b, u^{3}=a b b a b b a b b, \ldots$

## Basics, terminology

- Let $u$ and $v$ be words over $V$. The words $u$ and $v$ are equal, if as sequences of letters, they are equal element-by-element, i.e., $|u|=|v|$ and for all $i=1, \ldots,|u|$, the $i$-th letter of $u$ and the $i$-th letter of $v$ are equal.
- Let $V$ be an alphabet and $u$ and $v$ be words over $V$. The word $u$ is a subword (or substring) of $v$, if $v=x u y$, for some $x, y \in V^{*}$.
- A word $u$ is a proper subword (or proper substring) of a word $v$ if at least one of $x$ or $y$ is not empty, i.e. if $x y \neq \varepsilon$.
- If $x=\varepsilon$, then $u$ is the prefix of $v$.
- If $y=\varepsilon$, then $u$ is the suffix of $v$.


## Basics, terminology

- Example:

Let $V=\{a, b\}$ and $u=a b b$.

- Subwords of $u: \varepsilon, a, b, a b, b b, a b b$.
- Proper subwords of $u: \varepsilon, a, b, a b, b b$.
- Prefixes of $u: \varepsilon, a, a b, a b b$.
- Suffixes of $u: \varepsilon, b, b b, a b b$.


## Basics, terminology

- Let $u$ be a word over the alphabet $V$. The reverse (or mirror) word $u^{-1}$ of $u$ is the word obtained, s.t. the letters of $u$ are written in reverse order.
- Let $u=a_{1} \ldots a_{n}, a_{i} \in V, 1 \leq i \leq n$. Then $u^{-1}=a_{n} \ldots a_{1}$.
- $\left(u^{-1}\right)^{-1}=u$.
- $\left(u^{-1}\right)^{i}=\left(u^{\prime}\right)^{-1}$ also holds, where $i=1,2, \ldots$
- Example:

Let $V=\{a, b\}$ and $u=a b b a$ and $v=a a b b b a$ Then $u^{-1}=a b b a$ (palindrome) and $v^{-1}=a b b b a a$.

## Basics, terminology

- Let $V$ be an alphabet and $L$ be an arbitrary subset of $V^{*}$. $L$ is called a language over $V$.
- An empty language (a language that does not contain any words) is denoted by $\varnothing$.
- A language $L$ over $V$ is a finite language if it has a finite number of words. Otherwise, $L$ is an infinite language.
- Example:

Let $V=\{a, b\}$ be an alphabet.
$L_{1}=\{a, b, \varepsilon\}$.
$L_{2}=\left\{a^{i} b^{i} \mid i \geq 0\right\}$.
$L_{3}=\left\{u u^{-1} \mid u \in V^{*}\right\}$.
$L_{4}=\left\{\left(a^{n}\right)^{2} \mid n \geq 1\right\}$.
$L_{5}=\left\{u \mid u \in\{a, b\}^{+}, N_{a}(u)=N_{b}(u)\right\}$, where $N_{a}(u)$ and $N_{b}(u)$ denote the number of occurrences of symbols $a$ and $b$ in $u$, respectively.
$L_{1}$ is a finite language, the others are infinite.

## Basics, terminology

- A generative grammar $G$ is a 4-tuple ( $N, T, P, S$ ), where
- $N$ and $T$ are disjoint finite alphabets (i.e. $N \cap T=\varnothing$ ).
- The elements of $N$ are called nonterminal symbols.
- The elements of $T$ are called terminal symbols.
- $S \in N$ is the start symbol (axiom).
- $P$ is a finite set of ordered $(x, y)$ pairs, where $x, y \in(N \cup T)^{*}$ and $x$ contains at least one non-terminal symbol.
- The elements of $P$ are called rewriting rules (rules for short) or productions. $x \rightarrow y$ can be used instead of $(x, y)$, where $\rightarrow \notin(N \cup T)$.


## Basics, terminology

- Example:
- $G_{1}=(\{S, A, B\},\{a, b, c\},\{S \rightarrow c, S \rightarrow A B, A \rightarrow a A, B \rightarrow \varepsilon$, $a b b \rightarrow a S b\}, S)$ is not a generative grammar.
- $G_{2}=(\{S, A, B, C\},\{a, b, c\},\{S \rightarrow a, S \rightarrow A B, A \rightarrow A b, B \rightarrow \varepsilon$, $a C A \rightarrow a S c\}, S)$ is a generative grammar.


## Basics, terminology

- Let $G=(N, T, P, S)$ be a generative grammar and let $u, v \in(N \cup T)^{\star}$. The word $v$ can be derived directly or in one step from $u$ in $G$, denoted as $u \nRightarrow_{G} v$, if $u=u_{1} x u_{2}$ and $v=u_{1} y u_{2}$, where $u_{1}, u_{2} \in(N \cup T)^{*}$ and $x \rightarrow y \in P$.
- Let $G=(N, T, P, S)$ be a generative grammar and $u, v \in(N \cup T)^{*}$. The word $v$ can be derived from $u$ in $G$, denoted as $u \neq{ }_{G} v$,
- if $u=v$, or
- there exists a word $z \in(N \cup T)^{\star}$, for which $u \Rightarrow{ }_{G} z$ and $z \Rightarrow_{G} y$.
$\bullet \Rightarrow$ * is the reflexive, transitive closure of $\Rightarrow$.
- $\Rightarrow^{+}$is the transitive closure of $\Rightarrow$.


## Basics, terminology

- Let $G=(N, T, P, S)$ be a generative grammar and $u, v \in(N \cup T)^{*}$.
The word $v$ can be derived in $k$ steps from $u$ in $G, k \geq 1$, if there exists a sequence of words $u_{1}, \ldots, u_{k+1} \in(N \cup T)^{*}$, s.t. $u=u_{1}, v=u_{k+1}$, and $u_{i} \Rightarrow_{G} u_{i+1}, 1 \leq i \leq k$.
- A word $v$ can be derived from a word $u$ in $G$ if either $u=v$, or there is a number $k \geq 1$, s.t. $v$ can be derived from $u$ in $k$ steps.


## Basics, terminology

- Let $G=(N, T, P, S)$ be an arbitrary generative grammar. The generated language $L(G)$ by the grammar $G$ is: $L(G)=\left\{w \mid S{\Rightarrow{ }^{*} G} w, w \in T^{*}\right\}$
- This means that $L(G)$ consists of words that are in $T^{*}$ and can be derived from $S$ by grammar $G$.


## Basics, terminology

- Example:

Let $G=(N, T, P, S)$ be a generative grammar, where
$N=\{S, A, B\}, T=\{a, b\}$ and
$P=\{S \rightarrow a S b, S \rightarrow a b, S \rightarrow b a\}$.
Then $L(G)=\left\{a^{n} a b b^{n}, a^{n} b a b^{n} \mid n \geq 0\right\}$.

- Example:

Let $G=(N, T, P, S)$ be a generative grammar, where
$N=\{S, X, Y\}, T=\{a, b, c\}$ and
$P=\{S \rightarrow a b c, S \rightarrow a X b c, X b \rightarrow b X, X c \rightarrow Y b c c, b Y \rightarrow Y b$,
$a Y \rightarrow a a X, a Y \rightarrow a a\}$.
Then $L(G)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.

## Basics, terminology

- Each grammar generates a language, but the same language can be generated by several different grammars.
- Two grammars are equivalent if they generate the same language.
- Two languages are weakly equivalent, if they differ only in the empty word.


## Chomsky hierarchy

- Let $G=(N, T, P, S)$ be a generative grammar. $G$ is generative grammar is of $i$-type, $i=0,1,2,3$, if the rule set $P$ satisfies the following:
- $i=0$ : no restriction.
- $i=1$ : All rules of $P$ have the form $u_{1} A u_{2} \rightarrow u_{1} v u_{2}$, where
$u_{1}, u_{2}, v \in(N \cup T)^{\star}, A \in N$, and $v \neq \varepsilon$, except for a rule $S \rightarrow \varepsilon$, when such a rule exists in $P$.
If $P$ contains the rule $S \rightarrow \varepsilon$, then $S$ does not occur on the right side of any rule.
- $i=2$ : All rules of $P$ are of the form $A \rightarrow v$, where $A \in N$ and $v \in(N \cup T)^{*}$.
- $i=3$ : All rules of $P$ are of the form either $A \rightarrow u B$ or $A \rightarrow u$, where $A, B \in N$ and $u \in T^{*}$.


## Chomsky hierarchy

- A language $L$ is of type $i$, where $i=0,1,2,3$, if it can be generated by a type $i$ grammar.
- $\mathcal{L}_{i}, i=0,1,2,3$, denotes the class (family) of type $i$ languages.


## Chomsky hierarchy

- Type 0 grammars are called phrase-structured grammars.
- Type 1 grammars are context-sensitive grammars, since some occurrence of the nonterminal $A$ can only be substituted with the word $v$ in the presence of contexts $u_{1}$ and $u_{2}$.
- Type 2 grammars are context-free grammars, because the substitution of a nonterminal $A$ with $v$ is allowed in any context.
- Type 3 grammars are regular or finite state grammars.
- The classes of languages of type 0,1,2,3 are called recursively enumerable, context-sensitive, context-free, and regular, respectively.


## Chomsky hierarchy

Linguistic background
"The cunning fox hastily ate the leaping frog."

- $S \rightarrow A+B$ (S: sentence, $A$ : noun phrase, $B$ : verb phrase)
- $A \rightarrow C+D+E$ ( $C$ : article, $D$ : adjective, $E$ : noun $)$
- $B \rightarrow G+B$ (G: adverb)
- $B \rightarrow F+A$ (F : verb)
- $C \rightarrow$ the
- $D \rightarrow$ cunning
- $E \rightarrow$ fox
- $G \rightarrow$ hastily
- $F \rightarrow$ ate
- $D \rightarrow$ leaping
- $E \rightarrow$ frog


## Chomsky hierarchy

Linguistic background

-     + (space) - terminal symbol
- cunning $\leftarrow \rightarrow$ leaping, fox $\leftarrow \rightarrow$ frog (they are interchangeable, but the meanings are different)
- Sentence is syntactically correct
- It is not possible to describe the complete syntax of natural languages


## Chomsky hierarchy

- It is oblivious that $\mathcal{L}_{3} \subseteq \mathcal{L}_{2} \subseteq \mathcal{L}_{0}$ and $\mathcal{L}_{1} \subseteq \mathcal{L}_{0}$.
- It can also be shown that (Chomsky's hierarchy) following hold: $\mathcal{L}_{3} \subset \mathcal{L}_{2} \subset \mathcal{L}_{1} \subset \mathcal{L}_{0}$.
- The inclusion relation between language class $\mathcal{L}_{2}$ and $\mathcal{L}_{1}$ is not is oblivious from the definition of the corresponding grammars. However, $\mathcal{L}_{1}$ can be also generated by so called length-nondecreasing grammars. For all rules $p \rightarrow q$ of a length-nondecreasing grammar, $|p| \leq|q|$ is fulfilled, except $S \rightarrow \varepsilon$. If $S \rightarrow \varepsilon \in P$, then $S$ does not occur in the right side of any rule of $P$.


## Operations on Languages

- Let $V$ be an alphabet and $L_{1}, L_{2}$ be languages over $V$ (that is, $L_{1} \subseteq V^{*}$ and $\left.L_{2} \subseteq V^{*}\right)$
- union: $L_{1} \cup L_{2}=\left\{u \mid u \in L_{1}\right.$ or $\left.u \in L_{2}\right\}$.
- intersection: $L_{1} \cap L_{2}=\left\{u \mid u \in L_{1}\right.$ and $\left.u \in L_{2}\right\}$.
- difference: $L_{1}-L_{2}=\left\{u \mid u \in L_{1}\right.$ and $\left.u \notin L_{2}\right\}$.
- Example:

Let $V=\{a, b\}$ be an alphabet and $L_{1}=\{a, b\}$ and $L_{2}=\{\varepsilon, a, b b b\}$ languages over $V$. Then

$$
\begin{aligned}
& L_{1} \cup L_{2}=\{\varepsilon, a, b, b b b\} \\
& L_{1} \cap L_{2}=\{a\} \\
& L_{1}-L_{2}=\{b\}
\end{aligned}
$$

## Operations on Languages

- The complement of the language $L \subseteq V^{*}$ with respect to the alphabet $V$ is the language $L=V^{*}-L$.
- Example:

Let $V=\{a\}$ be an alphabet and let $L=\left\{a^{4 n} \mid n \geq 0\right\}$. Then $\bar{L}=V^{*}-\left\{a^{4 n} \mid n \geq 0\right\}$.

## Operations on Languages

- Let $V$ be an alphabet and $L_{1}, L_{2}$ be languages over $V$ (i.e. $L_{1} \subseteq V^{*}$ and $L_{2} \subseteq V^{*}$ ). The concatenation of $L_{1}$ and $L_{2}$ is $L_{1} L_{2}=\left\{u_{1} u_{2} \mid u_{1} \in L_{1}, u_{2} \in L_{2}\right\}$.
- Remark:

The following equalities hold for every language $L$ :
$\varnothing L=L \varnothing=\varnothing$ and
$\{\varepsilon\} L=L\{\varepsilon\}=L$.

## Operations on Languages

- $\quad L^{i}$ denotes the $i$-th iteration of $L$ (for the operation of concatenation), where $i \geq 1$. By convention, $L^{0}=\{\varepsilon\}$.
- The iterative closure (or Kleene closure) of a language $L$ is: $L^{*}=U_{i \geq 0} L^{i}$.
- The positive closure of $L$ is: $L^{+}=U_{i \geq 1} L^{i}$.
- Remark:

Obviously, if $\varepsilon \in L$, then $L^{+}=L^{*}$. Otherwise, $L^{+}=L^{*}-\{\varepsilon\}$.

## Operations on Languages

- Example (concatenation):

Let $V=\{a, b\}$ and let
$L_{1}=\{a, b\}, L_{2}=\{\varepsilon, a, b b b\}$,
$L_{3}=\left\{a^{4 n} b^{4 n} \mid n \geq 0\right\}$ and $L_{4}=\left\{a^{7 n} b^{7 n} \mid n \geq 0\right\}$.
Then

- $L_{1} L_{2}=\{a, b, a a, b a, a b b b, b b b b\}$,
- $\quad L_{3} L_{4}=\left\{a^{4 n} b^{4 n} a^{7 m} b^{7 m} \mid n \geq 0, m \geq 0\right\}$.


## Operations on Languages

- Let $V$ be an alphabet and $L \subseteq V^{*}$. Then the language $L^{-1}=\left\{u^{-1} \mid u \in L\right\}$ is the mirror (or reversal) of $L$.
- Remarks:
- $\left(L^{-1}\right)^{-1}=L$,
- $\left(L_{1} L_{2} \ldots L_{n}\right)^{-1}=L_{n}{ }^{-1} . . L_{2}{ }^{-1} L_{1}{ }^{-1}$,
- $\quad\left(L^{\prime}\right)^{-1}=\left(L^{-1}\right)^{i}$, where $i \geq 0$, and
- $\left(L^{*}\right)^{-1}=\left(L^{-1}\right)^{*}$.


## Operations on Languages

- Example (mirror, reversal):

Let $V=\{a, b\}$ and $L=\{\varepsilon, a, a b b\}$ be a language over $V$. Then $L^{-1}=\{\varepsilon, a, b b a\}$.

## Operations on Languages

- The prefix of a language $L \subseteq V^{*}$ is the language $\operatorname{PRE}(L)=\left\{u \mid u \in V^{*}, u v \in L\right.$ for some $\left.v \in V^{*}\right\}$.
- Remark: By definition, $L \subseteq \operatorname{PRE}(L)$ for any language $L \in V^{*}$.
- The suffix of a language $L \subseteq V^{*}$ is the language $\operatorname{SUF}(L)=\left\{u \mid u \in V^{*}, v u \in L\right.$ for some $\left.v \in V^{*}\right\}$.


## Operations on Languages

- Let $V_{1}$ and $V_{2}$ be two alphabets. The mapping $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ is called a homomorphism if the following conditions hold:
- for every word $u \in V_{1}^{*}$ there is exactly one word $v \in V_{2}{ }^{*}$ for which $h(u)=v$.
- $h(u v)=h(u) h(v)$, for all $u, v \in V_{1}{ }^{*}$.
- Remarks:
- It follows from the above conitions that $h(\varepsilon)=\varepsilon$. Namely, for all $u \in V_{1}{ }^{*}$ holds $h(u)=h(\varepsilon u)=h(u \varepsilon)$.
- For all words $u=a_{1} a_{2} \ldots a_{n}, a_{i} \in V_{1}, 1 \leq i \leq n$, it holds that $h(u)=h\left(\mathrm{a}_{1}\right) h\left(\mathrm{a}_{2}\right) \ldots h\left(\mathrm{a}_{n}\right)$.
I.e. it is sufficient to define the mapping $h$ on the elements of $V_{1}$, this is automatically extended to $V_{1}{ }^{*}$.


## Operations on Languages

- A homomorphism $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ is $\varepsilon$-free if for all $u \in V_{1}{ }^{+}, h(u) \neq \varepsilon$.
- Let $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ be a homomorphism. The $\boldsymbol{h}$-homomorphic image of a language $L \in V_{1}{ }^{*}$ is the language $h(L)=\left\{w \in V_{2}{ }^{*} \mid w=h(u), u \in L\right\}$
- Example (homomorphism): Let $V_{1}=V_{2}=\{a, b\}$ be two alphabets. Let $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ be a homomorphism, s.t. $h(a)=b b b, h(b)=a b$ and $L=\{a, a b b a\}$. Then $h(L)=\{b b b, b b b a b a b b b b\}$.


## Operations on Languages

- A homomorphism $h$ is called an isomorphism if following holds:
for any $u, v \in V_{1}{ }^{*}$, if $h(u)=h(v)$, then $u=v$.
- Example (isomorphism - binary representation of decimal numbers):
$V_{1}=\{0,1,2, \ldots, 9\}, V_{2}=\{0,1\}$,
$h(0)=0000, h(1)=0001, \ldots, h(9)=1001$


## Literature

- Handbook of Formal Languages, G. Rozenberg, A. Salomaa, (eds.), Springer-Verlag, Berlin-Heidelberg, 1997.
- Gy. E. Révész, Introduction to Formal Languages, Dover Publications, Inc., New York, 2012.
- G. Rozenberg, A. Salomaa, The mathematical theory of L systems, Vol. 90., Academic Press, 1980.
- J. Dassow, Gh. Paun. Regulated rewriting in formal language theory, Springer Publishing Company, Inc., 2012.

