
Tamás Lukovszki1Models of Computation

Models of Computation

1: Basics, Languages



Tamás Lukovszki2Models of Computation

Basics, terminology

 Alphabet: a finite, non-empty set of symbols/letters.
 Words or strings over V: Finite sequences of the elements of an 

alphabet V.
 V* : the set of words over V including the empty word (ε).
 V+ = V* \ {ε} : the set of non-empty words over V.
 The length of a word u = t1 ... tn is the numer of letters u,

denoted by |u| = n.
 Length of the empty set ε is 0 (|ε| = 0).

 Example:
Let V = {a, b}, then ab and baaabb are words over V.



Tamás Lukovszki3Models of Computation

Basics, terminology

 Let V be an alphabet and let u and v be words over V 
(i.e., u,v  ∈ V*). Then the word uv is the concatenation 
of u and v.

 |uv| = |u| + |v|.

 Example:
Let V = {a, b}, u = ab and v = baabb words over V. 
Then uv = abbaabb.



Tamás Lukovszki4Models of Computation

Basics, terminology

Properties 
● The concatenation is associative, but in general not 

commutative.
● if u, v  ∈ V*, u≠v, then uv differs from vu, unless V consists 

of only one letter (not commutative).
● if u, v , w  ∈ V*, then u(vw) = (uv)w (associative).

● V* is closed for the operation of concatenation 
(i.e. for any u, v  ∈ V*, uv  ∈ V* holds).

● The concatenation is an operation with identity element, or 
neutral element, the neutral element is ε 
(i.e., for any u  ∈ V*, u = uε = εu).



Tamás Lukovszki5Models of Computation

Basics, terminology

 Let i be a non-negative integer and u be a word over V 
(u  ∈ V*). The i-th power ui of the word u is the 
concatenation of i instances of u.

 Convention: u0 = ε.

 Example:
Let V = {a, b} and u = abb be a word above V.
Then u0 = ε, u1 = abb, u2 = abbabb, u3 = abbabbabb, ...



Tamás Lukovszki6Models of Computation

Basics, terminology

 Let u and v be words over V. The words u and v are equal, if 
as sequences of letters, they are equal element-by-element, 
i.e., |u|=|v| and for all i =  1,…,|u|, the i-th letter of u and the i-th 
letter of v are equal.

 Let V be an alphabet and u and v be words over V. 
The word u is a subword (or substring) of v, 
if v = xuy, for some x, y  ∈ V*. 

 A word u is a proper subword (or proper substring) of a 
word v if at least one of x or y is not empty, i.e. if xy ≠ ε.

 If x = ε, then u is the prefix of v. 
 If y = ε, then u is the suffix of v.



Tamás Lukovszki7Models of Computation

Basics, terminology

● Example:
Let V = {a, b} and u = abb.
● Subwords of u: ε, a, b, ab, bb, abb.
● Proper subwords of u: ε, a, b, ab, bb.
● Prefixes of u: ε, a, ab, abb.
● Suffixes of u: ε, b, bb, abb.



Tamás Lukovszki8Models of Computation

Basics, terminology

 Let u be a word over the alphabet V. The reverse (or mirror) 
word u-1 of u is the word obtained, s.t. the letters of u are written 
in reverse order.

 Let u = a1 . . . an , ai  ∈ V , 1 ≤ i ≤ n. Then u−1 = an . . . a1.
 (u−1)−1 = u.
 (u−1)i = (ui)−1 also holds, where i = 1, 2, …

 Example:
Let V = {a, b} and u = abba and v = aabbba
Then u−1 = abba (palindrome) and v−1 = abbbaa.



Tamás Lukovszki9Models of Computation

Basics, terminology

 Let V be an alphabet and L be an arbitrary subset of V*. L is called a language over V.
 An empty language (a language that does not contain any words) is denoted by .∅
 A language L over V is a finite language if it has a finite number of words. Otherwise, L 

is an infinite language.

 Example:
Let V = {a, b} be an alphabet.

L1 = {a, b, ε}.
L2 = {aibi | i ≥ 0}.
L3 = {uu−1 | u  ∈ V*}.
L4 = {(an)2 | n ≥ 1}.
L5 = {u | u  {∈ a, b}+ , Na(u) = Nb(u)}, where Na(u) and Nb(u) denote the number of 

occurrences of symbols a and b in u, respectively.

L1 is a finite language, the others are infinite.



Tamás Lukovszki10Models of Computation

Basics, terminology

● A generative grammar G is a 4-tuple (N, T, P, S), where
● N and T are disjoint finite alphabets (i.e. N ∩ T = ). ∅
● The elements of N are called nonterminal symbols.
● The elements of T are called terminal symbols.
● S  ∈ N is the start symbol (axiom).
● P is a finite set of ordered (x,y) pairs, where x,y  (∈ N  ∪ T )* 

and x contains at least one non-terminal symbol.
● The elements of P are called rewriting rules (rules for 

short) or productions. x → y can be used instead of (x,y), 
where → ∉ (N  ∪ T) .



Tamás Lukovszki11Models of Computation

Basics, terminology

● Example:
● G1 = ({S, A, B}, {a, b, c}, {S→c, S→AB, A→aA, B→ε, 

abb→aSb}, S) is not a generative grammar.

● G2 = ({S, A, B, C}, {a, b, c}, {S→a, S→AB, A→Ab, B→ε, 
aCA→aSc}, S) is a generative grammar.



Tamás Lukovszki12Models of Computation

Basics, terminology

● Let G = (N, T , P, S) be a generative grammar and let u, v  (∈ N  ∪ T)*. 
The word v can be derived directly or in one step from u in G, 
denoted as u ⇒G v, 
if u = u1xu2 and v = u1yu2 , where u1, u2  (∈ N  ∪ T )* and x → y  ∈ P.

● Let G = (N, T , P, S) be a generative grammar and u, v  (∈ N  ∪ T )*. 
The word v can be derived from u in G , denoted as u *⇒ G v,
● if u = v, or
● there exists a word z  (∈ N  ∪ T )*, for which u *⇒ G z and z ⇒G y.
● ⇒* is the reflexive, transitive closure of .⇒
● ⇒+ is the transitive closure of .⇒



Tamás Lukovszki13Models of Computation

Basics, terminology

 Let G = (N, T , P, S) be a generative grammar and 
u, v  (∈ N  ∪ T)*.
The word v can be derived in k steps from u in G, k ≥ 1, if 
there exists a sequence of words u1 , . . . , uk+1  (∈ N  ∪ T)*, 
s.t.  u=u1, v=uk+1, and ui ⇒G ui+1, 1 ≤ i ≤ k.

 A word v can be derived from a word u in G if either u = v, 
or there is a number k ≥ 1, s.t. v can be derived from u in k 
steps.



Tamás Lukovszki14Models of Computation

Basics, terminology

 Let G = (N, T , P, S) be an arbitrary generative grammar. 
The generated language L(G) by the grammar G is:
L(G ) = {w | S *⇒ G w , w  ∈ T*}

 This means that L(G) consists of words that are in T* and 
can be derived from S by grammar G.



Tamás Lukovszki15Models of Computation

Basics, terminology

 Example:
Let G = (N, T, P, S) be a generative grammar, where
N = {S, A, B}, T = {a, b} and 
P = {S → aSb, S → ab, S → ba}.
Then L(G) = {anabbn , anbabn | n ≥ 0}.

 Example:
Let G = (N, T , P, S) be a generative grammar, where 
N = {S, X , Y}, T = {a, b, c} and 
P = {S → abc, S → aXbc, Xb → bX , Xc → Ybcc, bY → Yb, 
aY → aaX , aY → aa}.
Then L(G) = {anbncn | n ≥ 1}.



Tamás Lukovszki16Models of Computation

Basics, terminology

 Each grammar generates a language, but the same 
language can be generated by several different grammars.

 Two grammars are equivalent if they generate the same 
language.

 Two languages   are weakly equivalent, if they differ only in 
the empty word.



Tamás Lukovszki17Models of Computation

Chomsky hierarchy

● Let G = (N, T , P, S) be a generative grammar. G is generative grammar 
is of i-type, i = 0, 1, 2, 3, if the rule set P satisfies the following:
● i = 0: no restriction.
● i = 1: All rules of P have the form u1Au2 → u1vu2, where

u1, u2, v  (∈ N  ∪ T )*, A  ∈ N, and v ≠ ε, except for a rule S → ε, when 
such a rule exists in P. 
If P contains the rule S → ε, then S does not occur on the right side of 
any rule.

● i = 2: All rules of P are of the form A → v, where 
A  ∈ N and v  (∈ N  ∪ T )* .

● i = 3: All rules of P are of the form either A → uB or A → u, where 
A, B  ∈ N and u  ∈ T*.



Tamás Lukovszki18Models of Computation

Chomsky hierarchy

 A language L is of type i, where i = 0, 1, 2, 3, if it can be 
generated by a type i grammar.

 Li, i = 0, 1, 2, 3, denotes the class (family) of type i 
languages.



Tamás Lukovszki19Models of Computation

Chomsky hierarchy

 Type 0 grammars are called phrase-structured grammars.
 Type 1 grammars are context-sensitive grammars, since 

some occurrence of the nonterminal A can only be substituted 
with the word v in the presence of contexts u1 and u2.

 Type 2 grammars are context-free grammars, because the 
substitution of a nonterminal A with v is allowed in any context.

 Type 3 grammars are regular or finite state grammars.

 The classes of languages   of type 0,1,2,3 are called recursively 
enumerable, context-sensitive, context-free, and regular, 
respectively.



Tamás Lukovszki20Models of Computation

Chomsky hierarchy

Linguistic background
”The cunning fox hastily ate the leaping frog.”

 S → A + B (S: sentence, A: noun phrase, B: verb phrase)
 A → C + D + E (C : article, D: adjective, E : noun)
 B → G + B (G : adverb)
 B → F + A (F : verb)
 C → the
 D → cunning
 E → fox
 G → hastily
 F → ate
 D → leaping
 E → frog



Tamás Lukovszki21Models of Computation

Chomsky hierarchy

Linguistic background

 + (space) – terminal symbol
 cunning ←→ leaping , fox ←→ frog (they are 

interchangeable, but the meanings are different)
 Sentence is syntactically correct

 It is not possible to describe the complete syntax of natural 
languages



Tamás Lukovszki22Models of Computation

Chomsky hierarchy

 It is oblivious that L3  ⊆ L2  ⊆ L0 and L1  ⊆ L0 .
 It can also be shown that (Chomsky's hierarchy) following hold:

L3  ⊂ L2  ⊂ L1  ⊂ L0 .
 The inclusion relation between language class L2 and L1 is not 

oblivious from the definition of the corresponding grammars.
However, L1 can be also generated by so called length-non-
decreasing grammars. For all rules p → q of a length-non-
decreasing grammar,  | p| ≤ | q| is fulfilled, except  S → ε. 
If S → ε  ∈ P, then S does not occur in the right side of any rule 
of P.



Tamás Lukovszki23Models of Computation

Operations on Languages

● Let V be an alphabet and L1, L2 be languages over V (that is, L1  ⊆ V* 
and L2  ⊆ V*)
● union: L1  ∪ L2 = {u | u  ∈ L1 or u  ∈ L2 }.
● intersection: L1 ∩ L2 = {u | u  ∈ L1 and u  ∈ L2 }.
● difference: L1 - L2 = {u | u  ∈ L1 and u ∉ L2 }.

● Example:
Let V = {a, b} be an alphabet and L1 = {a, b} and L2 = {ε, a, bbb} 
languages   over V. Then

L1  ∪ L2 = {ε, a, b, bbb}
L1 ∩ L2 = {a}
L1 − L2 = {b}



Tamás Lukovszki24Models of Computation

Operations on Languages

 The complement of the language L  ⊆ V* with respect to 
the alphabet V is the language L = V* − L.

 Example:
Let V = {a} be an alphabet and let L = {a4n | n ≥ 0}. Then
L= V* − {a4n | n ≥ 0}.



Tamás Lukovszki25Models of Computation

Operations on Languages

 Let V be an alphabet and L1, L2 be languages over V 
(i.e. L1  ⊆ V* and L2  ⊆ V*). The concatenation of L1 and L2 
is L1L2 = {u1u2 | u1  ∈ L1 , u2  ∈ L2 }.

 Remark:
The following equalities hold for every language L:
∅L = L  =  and∅ ∅
{ε}L = L{ε} = L.



Tamás Lukovszki26Models of Computation

Operations on Languages

 Li denotes the i-th iteration of L (for the operation of 
concatenation), where i ≥ 1. By convention, L0 = {ε}.

 The iterative closure (or Kleene closure) of a language L 
is: L* = Ui≥0 Li.

 The positive closure of L is: L+ = Ui≥1 Li.

 Remark:
Obviously, if ε  ∈ L, then L+ = L*. Otherwise, L+ = L* − {ε}.



Tamás Lukovszki27Models of Computation

Operations on Languages

 Example (concatenation):
Let V = {a, b} and let 
L1 = {a, b}, L2 = {ε, a, bbb},  
L3 = {a4nb4n | n ≥ 0} and L4 = {a7nb7n | n ≥ 0}. 
Then
● L1L2 = {a, b, aa, ba, abbb, bbbb},
● L3L4= {a4nb4na7mb7m | n ≥ 0, m ≥ 0}.



Tamás Lukovszki28Models of Computation

Operations on Languages

 Let V be an alphabet and L  ⊆ V*. Then the language
L−1 = {u−1 | u  ∈ L} is the mirror (or reversal) of L.

 Remarks:
● (L−1)−1 = L,
● (L1L2 . . . Ln)−1 = Ln

−1. . . L2
-1L1

-1,
● (Li)−1 = (L−1 )i , where i ≥ 0, and
● (L*)−1 = (L−1)*.



Tamás Lukovszki29Models of Computation

Operations on Languages

 Example (mirror, reversal):
Let V = {a, b} and L = {ε, a, abb} be a language over V. Then 
L−1 = {ε, a, bba}.



Tamás Lukovszki30Models of Computation

Operations on Languages

 The prefix of a language L  ⊆ V* is the language 
PRE(L) = { u | u  ∈ V* , uv  ∈ L for some v  ∈ V* }.

 Remark:
By definition, L  PRE(⊆ L) for any language L  ∈ V*.

 The suffix of a language L  ⊆ V* is the language 
SUF(L) = { u | u  ∈ V* , vu  ∈ L for some v  ∈ V* }.



Tamás Lukovszki31Models of Computation

Operations on Languages

● Let V1 and V2 be two alphabets. The mapping h : V1* → V2*
is called a homomorphism if the following conditions hold:
● for every word u  ∈ V1* there is exactly one word 

v  ∈ V2* for which h(u) = v.
● h(uv) = h(u)h(v), for all u, v  ∈ V1*.

● Remarks:
● It follows from the above conitions that h(ε) = ε.

Namely, for all u  ∈ V1* holds h(u) = h(εu) = h(uε).
● For all words u = a1a2 . . . an, ai  ∈ V1 , 1 ≤ i ≤ n, it holds that

h(u) = h(a1)h(a2) . . . h(an). 
I.e. it is sufficient to define the mapping h on the elements of V1, 
this is automatically extended to V1*.



Tamás Lukovszki32Models of Computation

Operations on Languages

 A homomorphism h : V1* → V2* is ε-free if
for all u  ∈ V1

+, h(u) ≠ ε.

 Let h : V1* → V2* be a homomorphism.
The h-homomorphic image of a language L  ∈ V1* is
the language h(L) = {w  ∈ V2* | w = h(u), u  ∈ L}

 Example (homomorphism):
Let V1 = V2 = {a, b} be two alphabets. Let h : V1* → V2* be a 
homomorphism, s.t. h(a) = bbb, h(b) = ab and L = {a, abba}. 
Then h(L) = {bbb, bbbababbbb}.



Tamás Lukovszki33Models of Computation

Operations on Languages

 A homomorphism h is called an isomorphism 
if following holds:
for any u, v  ∈ V1*, if h(u) = h(v), then u = v.

 Example (isomorphism – binary representation of decimal 
numbers):
V1 = {0, 1, 2, . . . , 9}, V2 = {0, 1},
h(0) = 0000, h(1) = 0001, . . . , h(9) = 1001



Tamás Lukovszki34Models of Computation

Controlled context-free grammars

● Question: Is it possible to generate non-context-free 
languages   with context-free grammars by specifying 
conditions on the applicability of production rules.

● Answer: yes, e.g.
● Programmed grammars 
● Matrix grammars
● Random context grammars



Tamás Lukovszki35Models of Computation

Programmed Grammars

● A context-free programmed grammar is a 4-tuple
G = (N, T, P, S), where
● N and T are disjoint finite alphabets,
● S  ∈ N is the start symbol (axiom),
● P is a finite set of ordered triples of the form 

r = (p, σ, φ),
where p is a context-free rule, σ, φ  ⊆ P,

● σ is the success field of r, φ is the failure field of r.
● If r = (p, σ, ), for all rules ∅ r  P∈ , then the grammar G is 

without appearance checking, otherwise, with appearance 
checking.



Tamás Lukovszki36Models of Computation

Programmed Grammars

● Let G = (N,T,P,S) be a programmed context-free grammar 
● If u,v  ( ∈ N  ∪ T )* are two consecutive sentences (strings) in a 

derivation (the i−1-st. and i-th, where i ≥ 0) and the i-th applied rule 
is ri =  (A → w, σ, φ), then exactly one of the following hold
● if u = xAy, for some x,y  ( ∈ N  ∪ T )*, then v = xwy, and 

the i+1-st rule ri+1 applied in the derivation (if exists) ri+1  ∈ σ.
(I.e. the next applied rule must be from the success set.)

● if u does not contain A, then v = u, and
the i+1-st rule ri+1 applied in the derivation (if exists) is ri+1  ∈
φ. (I.e. the next applied rule must be from the failure set.)

● Notation: u ⇒ v



Tamás Lukovszki37Models of Computation

Programmed Grammars

● Let G = (N,T,P,S) a programmed context-free grammar. 
The language L(G) generated by G is:

L(G) := { w  T*∈  | S * w⇒  },
where * is the reflexive, transitive closure of the relation ⇒ .⇒



Tamás Lukovszki38Models of Computation

Programmed Grammar

● Example:
Let G = (N, T, P, S) be a programmed grammar, where
N = {S, A}, T = {a}, and P = {r1, r2, r3}, where
● r1 = (S → AA , {r1}, {r2}),
● r2 = (A → S, {r2}, {r1, r3}), and
● r3 = (S → a, {r3}, ).∅

Then L(G) = 



Tamás Lukovszki39Models of Computation

Programmed Grammar

Source: https://en.wikipedia.org/wiki/Controlled_grammar



Tamás Lukovszki40Models of Computation

Matrix Grammar

● A context-free matrix grammar with appearance checking is 
a 5-tuple G = (N, T, M, S, F ), where
● N and T are disjoint finite alphabets,
● S  ∈ N is the start symbol (axiom),
● M = {m1, m2, . . . , mn}, n ≥ 1, is a finite set of sequences

mi = (pi1 , . . . , pik(i) ), k(i) ≥ 1, 1 ≤ i ≤ n, where 
each pij , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i), is a context-free rule, and

● F  {⊆ pij | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)} 
is a subset of rules of sequences in M.

● The elements of M are called matrices.



Tamás Lukovszki41Models of Computation

Matrix Grammar

 A matrix grammar G = (N, T, M, S, F) is without 
appearance checking, if and only if F = .∅



Tamás Lukovszki42Models of Computation

Matrix Grammar

● Let G = (N, T, M, S, F ) be  matrix grammar and 
w,w’  (∈ N  ∪ T)*. Then w’ can be derived from w 
according to a matrix  
mi : (Ai1 → vi1 , . . . , Aik(i) → vik(i) )  ∈ M, 1 ≤ i ≤ n, k(i) ≥ 1, 
(denoted as: w ⇒mi w’), 
if and only if there exist words wi1 , . . . , wik(i)+1  (∈ N  ∪ T )*, s.t. 
w = wi1 , w’ = wik(i)+1 and
for all i and j, where 1 ≤ i ≤ n, 1 ≤ j ≤ k(i),
● either wij = w’ijAijw’’ij and wij+1 = w’ijvijw’’ij,
● or Aij does not appear wij and wij = wij+1, 

and Aij → vij  ∈ F.



Tamás Lukovszki43Models of Computation

Matrix Grammar

 Let G = (N, T, M, S, F ) be a matrix grammar. 
The language L(G) generated by G is:
L(G) = {w  ∈ T* | S ⇒mj1y1 ⇒mj2y2 ⇒mj3 . . . ⇒mjsw, 1 ≤ ji ≤ r, 1 ≤ i ≤ s}.

 Example: Let G = (N, T , M, S, ) be a matrix grammar without ∅
appearace checking, where N = {S, A, B}, T = {a, b}, and 
M = {m1, m2, m3, m4, m5}, where
m1 = (S → AB),
m2 = (A → bA, B → bB),
m3 = (A → b, B → b),
m4 = (A → aA, B → aB), and
m5 = (A → a, B → a).
Then L(G) = {ww | w  {∈ a, b}+ }.



Tamás Lukovszki44Models of Computation

Random context grammar

 A random context grammar is a 4-tuple G = (N, T , P, S), 
where 
N and T are disjoint finite alphabets,
S  ∈ N is the start symbol (axiom),
P is a finite set of ordered triples of the form (p, Q, R), 
where p is a context-free rule, Q, R  ⊆ N.



Tamás Lukovszki45Models of Computation

Random context grammar

 Let G = (N, T, P, S) be a random context grammar. The word 
y can be derived from x, x,y  (∈ N  ∪ T)*, (notation: x  ⇒ y), if 

● x = x’Ax’’, y = x’wx’’, for some words x’,x’’  (∈ N  ∪ T)* and
● For all (A → w, Q, R) ∈ P, if all symbols of Q appearin 

x’x’’, and no symbol of R appear in x’x’’.

 Remark:
Q is called the permitting context of (A → w, Q, R) and
R is called the forbidding context of (A → w, Q, R).



Tamás Lukovszki46Models of Computation

Random context grammar

 Let G = (N, T, P, S) be a random context grammar. 
The language L(G) generated by the grammar G is:
L(G) = {w  ∈ T* | S * ⇒ w}.

 Example:
Let G = (N, T , P, S) be a random context grammar, where 
N = {S, X, Y, A}, T = {a}, and P = {r1,r2, r3, r4, r5}, where
r1 = (S → XX, , {∅ Y, A}),
r2 = (X → Y, , {∅ S}),
r3 = (Y → S, , {∅ X}),
r4 = (S → A, , {∅ X, Y}),
r5 = (A → a, , {∅ S}).
Then L(G ) = 



Tamás Lukovszki47Models of Computation

Random context grammar

 A random context grammar generating the language 

 

Source: https://en.wikipedia.org/wiki/Controlled_grammar



Tamás Lukovszki48Models of Computation

Language families

 L(PRac) denotes the class of programmed grammars with ε-free rules with 
apearance checking.

 L(PRε
ac) denotes the class of arbitrary programmed grammars with apearance 

checking.
 If the grammar is without appearance checking, the index ac is omitted.
 L(MATac ), L(MATε

ac) are the classes of matrix grammars with and without  ε-
free rules with apearance checking, respectively.

 L(RCac ), L(RCε
ac) are the classes of random context grammars with and 

without  ε-free rules with apearance checking, respectively.

 Theorem 1 [Dassow, Paun, 2012]: 
The following relations hold:
L2  ⊂ L(PRac) = L(MATac) = L(RCac)  ⊂ L1 and
L(PRε

ac) = L(MATε
ac) = L(RCε

ac) = L0.



Tamás Lukovszki49Models of Computation

L-system

● A 0L-system (non-interacting Lindenmayer system, or L-
system) is a triple G = (V, P, w), where

● V is a finite alphabet,
● P is a finite set of context-free rewriting rules (or production 

rules), and 
● w  ∈ V+ is the start state (or axiom or initiator). 
● For every a  ∈ V, there exists a rule a → x  ∈ P 

(We say P is complete).

● Remark: For any symbol a  ∈ V, which does not appear on the left 
hand side of a production in P, the identity production 
a → a is assumed; these symbols are called constants or 
terminals.



Tamás Lukovszki50Models of Computation

L-rewriting

 For words z1, z2  ∈ V*,  z1 can be rewritten to z2 regarding 
G, denoted by z1 ⇒ z2, if z1 = a1a2 . . . ar, z2 = x1x2 . . . xr, for 
some ai → xi  ∈ P, 1 ≤ i ≤ r.

 Remark: As many rules as possible are applied 
simultaneously. This differentiates an L-system from a 
language generated by a classical formal grammar.



Tamás Lukovszki51Models of Computation

L-system, generated language

 Let G = (V, P, w) be a 0L-system. The language L(G) 
generated by G is:
L(G) = {z  ∈ V*| w * ⇒ z}, where

* is the reflexive transitive closure of .⇒ ⇒



Tamás Lukovszki52Models of Computation

L-system, generated language

 Example: Let G = (V, P, w) be a 0L-system, where
V = {a},
P = {a → a2}, and
w = a3. 
Then 



Tamás Lukovszki53Models of Computation

L-system, generated language

 Example (fractal, binary tree): Let G = (V, P, w) be a 0L-system, where
V = {0, 1, [, ]},
P = {1 → 11, 0 → 1[0]0}, and
w = 0.
 
It produces the sequence:
w = w0 = 0
w1 = 1[0]0
w2 = 11[1[0]0]1[0]0
w3 = 1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0
…
This string can be drawn as an image 
by interpreting the symbols as follows:
0: draw a line segment ending in a leaf
1: draw a line segment
[: push position and angle, turn left 45 degrees
]: pop position and angle, turn right 45 degrees



Tamás Lukovszki55Models of Computation

Family of languages generated by 0L-systems

 L(0L) denotes the family of languages generated by 
0L-systems.



Tamás Lukovszki56Models of Computation

E0L-systems

 An E0L-system (Extened 0L-system) is a 4-tuple 
G = (V, T, P, w), where G = (V, P, w) is a 0L-system and 
T is an alphabet of terminal symbols.

 Derivation ⇒G (short ) and ⇒  * are defined similarly to ⇒
0L-systems.

 The language L(G) generated by G is:
L(G) = {z  ∈ T* | w * ⇒ z}.

 L(E0L) denotes the family of languages generated by 
E0L-systems.



Tamás Lukovszki57Models of Computation

E0L-systems, generated language

 Example: 
Let G = (V, T, P, w) be an E0L-system, where
V = {a, b},
T = {b},
P = {a → b, a → bb, b → b}, and
w = a.
Then L(G) = {b, bb}.



Tamás Lukovszki58Models of Computation

D0L-systems

 A D0L-system (deterministic 0L-system) is a 0L-system, if 
for every a  ∈ V there is exactly one rule a → x, x  ∈ V*.

 If the axiom is replaced by a finite language, then we obtain 
0L-system (D0L-system) with a finite number of axioms, 
denoted as F0L-system (FD0L-system).

 Remark: Since the set of production rules P of a D0L-system 
G = (V, P, w) defines a homomorphism h : V → V*, the 
notation G = (V, h, w) is also used.



Tamás Lukovszki59Models of Computation

T0L-systems

 A T0L-system is an (n+2)-tuple G = (V, P1, . . . , Pn, w), 
n ≥ 1, where each Gi = (V, Pi, w), 1 ≤ i ≤ n, is a 0L-system.

 The language L(G) generated by G is:
L(G) = {z  ∈ V* | w ⇒Gi1 w1 ⇒Gi2 . . . ⇒Gim wm = z, 

1 ≤ ij ≤ n, 1 ≤ j ≤ m}.

 L(T0L) denotes the family of languages generated by T0L-
systems



Tamás Lukovszki60Models of Computation

T0L-systems

 Example: Let G = (V, P1, P2, w) be a T0L-system, where
V = {a},
P1 = {a → a2}, P2 = {a → a3}, and
w = a.

 Then L(G ) = {ai | i = 2m3n, m,n ≥ 0}.



Tamás Lukovszki61Models of Computation

Literature

 Handbook of Formal Languages, G. Rozenberg, A. 
Salomaa, (eds.), Springer–Verlag, Berlin–Heidelberg, 1997.

 Gy. E. Révész, Introduction to Formal Languages, Dover 
Publications, Inc., New York, 2012.

 G. Rozenberg, A. Salomaa, The mathematical theory of L 
systems, Vol. 90., Academic Press, 1980.

 J. Dassow, Gh. Paun. Regulated rewriting in formal 
language theory, Springer Publishing Company, Inc., 2012.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

