Models of Computation

1: Basics, Languages

Basics, terminology

- Alphabet: a finite, non-empty set of symbols/letters.
- Words or strings over V : Finite sequences of the elements of an alphabet V.
- V^{*} : the set of words over V including the empty word (ε).
- $V^{+}=V^{*} \backslash\{\varepsilon\}$: the set of non-empty words over V.
- The length of a word $u=t_{1} \ldots t_{n}$ is the numer of letters u, denoted by $|u|=n$.
- Length of the empty set ε is $0(|\varepsilon|=0)$.
- Example:

Let $V=\{a, b\}$, then $a b$ and baaabb are words over V.

Basics, terminology

- Let V be an alphabet and let u and v be words over V (i.e., $u, v \in V^{*}$). Then the word $u v$ is the concatenation of u and v.
- $\quad|u v|=|u|+|v|$.
- Example:

Let $V=\{a, b\}, u=a b$ and $v=b a a b b$ words over V. Then $u v=a b b a a b b$.

Basics, terminology

Properties

- The concatenation is associative, but in general not commutative.
- if $u, v \in V^{*}, u \neq v$, then $u v$ differs from $v u$, unless V consists of only one letter (not commutative).
- if $u, v, w \in V^{*}$, then $u(v w)=(u v) w$ (associative).
- V^{*} is closed for the operation of concatenation (i.e. for any $u, v \in V^{*}$, $u v \in V^{*}$ holds).
- The concatenation is an operation with identity element, or neutral element, the neutral element is ε (i.e., for any $u \in V^{*}, u=u \varepsilon=\varepsilon u$).

Basics, terminology

- Let i be a non-negative integer and u be a word over V ($u \in V^{*}$). The i-th power u^{i} of the word u is the concatenation of i instances of u.
- Convention: $u^{0}=\varepsilon$.
- Example:

Let $V=\{a, b\}$ and $u=a b b$ be a word above V. Then $u^{0}=\varepsilon, u^{1}=a b b, u^{2}=a b b a b b, u^{3}=a b b a b b a b b, \ldots$

Basics, terminology

- Let u and v be words over V. The words u and v are equal, if as sequences of letters, they are equal element-by-element, i.e., $|u|=|v|$ and for all $i=1, \ldots,|u|$, the i-th letter of u and the i-th letter of v are equal.
- Let V be an alphabet and u and v be words over V. The word u is a subword (or substring) of v, if $v=x u y$, for some $x, y \in V^{*}$.
- A word u is a proper subword (or proper substring) of a word v if at least one of x or y is not empty, i.e. if $x y \neq \varepsilon$.
- If $x=\varepsilon$, then u is the prefix of v.
- If $y=\varepsilon$, then u is the suffix of v.

Basics, terminology

- Example:

Let $V=\{a, b\}$ and $u=a b b$.

- Subwords of $u: \varepsilon, a, b, a b, b b, a b b$.
- Proper subwords of $u: \varepsilon, a, b, a b, b b$.
- Prefixes of $u: \varepsilon, a, a b, a b b$.
- Suffixes of $u: \varepsilon, b, b b, a b b$.

Basics, terminology

- Let u be a word over the alphabet V. The reverse (or mirror) word u^{-1} of u is the word obtained, s.t. the letters of u are written in reverse order.
- Let $u=a_{1} \ldots a_{n}, a_{i} \in V, 1 \leq i \leq n$. Then $u^{-1}=a_{n} \ldots a_{1}$.
- $\left(u^{-1}\right)^{-1}=u$.
- $\left(u^{-1}\right)^{i}=\left(u^{\prime}\right)^{-1}$ also holds, where $i=1,2, \ldots$
- Example:

Let $V=\{a, b\}$ and $u=a b b a$ and $v=a a b b b a$ Then $u^{-1}=a b b a$ (palindrome) and $v^{-1}=a b b b a a$.

Basics, terminology

- Let V be an alphabet and L be an arbitrary subset of V^{*}. L is called a language over V.
- An empty language (a language that does not contain any words) is denoted by \varnothing.
- A language L over V is a finite language if it has a finite number of words. Otherwise, L is an infinite language.
- Example:

Let $V=\{a, b\}$ be an alphabet.
$L_{1}=\{a, b, \varepsilon\}$.
$L_{2}=\left\{a^{i} b^{i} \mid i \geq 0\right\}$.
$L_{3}=\left\{u u^{-1} \mid u \in V^{*}\right\}$.
$L_{4}=\left\{\left(a^{n}\right)^{2} \mid n \geq 1\right\}$.
$L_{5}=\left\{u \mid u \in\{a, b\}^{+}, N_{a}(u)=N_{b}(u)\right\}$, where $N_{a}(u)$ and $N_{b}(u)$ denote the number of occurrences of symbols a and b in u, respectively.
L_{1} is a finite language, the others are infinite.

Basics, terminology

- A generative grammar G is a 4-tuple (N, T, P, S), where
- N and T are disjoint finite alphabets (i.e. $N \cap T=\varnothing$).
- The elements of N are called nonterminal symbols.
- The elements of T are called terminal symbols.
- $S \in N$ is the start symbol (axiom).
- P is a finite set of ordered (x, y) pairs, where $x, y \in(N \cup T)^{*}$ and x contains at least one non-terminal symbol.
- The elements of P are called rewriting rules (rules for short) or productions. $x \rightarrow y$ can be used instead of (x, y), where $\rightarrow \notin(N \cup T)$.

Basics, terminology

- Example:
- $G_{1}=(\{S, A, B\},\{a, b, c\},\{S \rightarrow c, S \rightarrow A B, A \rightarrow a A, B \rightarrow \varepsilon$, $a b b \rightarrow a S b\}, S)$ is not a generative grammar.
- $G_{2}=(\{S, A, B, C\},\{a, b, c\},\{S \rightarrow a, S \rightarrow A B, A \rightarrow A b, B \rightarrow \varepsilon$, $a C A \rightarrow a S c\}, S)$ is a generative grammar.

Basics, terminology

- Let $G=(N, T, P, S)$ be a generative grammar and let $u, v \in(N \cup T)^{\star}$. The word v can be derived directly or in one step from u in G, denoted as $u \nRightarrow_{G} v$, if $u=u_{1} x u_{2}$ and $v=u_{1} y u_{2}$, where $u_{1}, u_{2} \in(N \cup T)^{*}$ and $x \rightarrow y \in P$.
- Let $G=(N, T, P, S)$ be a generative grammar and $u, v \in(N \cup T)^{*}$. The word v can be derived from u in G, denoted as $u \neq{ }_{G} v$,
- if $u=v$, or
- there exists a word $z \in(N \cup T)^{\star}$, for which $u \Rightarrow{ }_{G} z$ and $z \Rightarrow_{G} y$.
$\bullet \Rightarrow$ * is the reflexive, transitive closure of \Rightarrow.
- \Rightarrow^{+}is the transitive closure of \Rightarrow.

Basics, terminology

- Let $G=(N, T, P, S)$ be a generative grammar and $u, v \in(N \cup T)^{*}$.
The word v can be derived in k steps from u in $G, k \geq 1$, if there exists a sequence of words $u_{1}, \ldots, u_{k+1} \in(N \cup T)^{*}$, s.t. $u=u_{1}, v=u_{k+1}$, and $u_{i} \Rightarrow_{G} u_{i+1}, 1 \leq i \leq k$.
- A word v can be derived from a word u in G if either $u=v$, or there is a number $k \geq 1$, s.t. v can be derived from u in k steps.

Basics, terminology

- Let $G=(N, T, P, S)$ be an arbitrary generative grammar. The generated language $L(G)$ by the grammar G is: $L(G)=\left\{w \mid S{\Rightarrow{ }^{*} G} w, w \in T^{*}\right\}$
- This means that $L(G)$ consists of words that are in T^{*} and can be derived from S by grammar G.

Basics, terminology

- Example:

Let $G=(N, T, P, S)$ be a generative grammar, where
$N=\{S, A, B\}, T=\{a, b\}$ and
$P=\{S \rightarrow a S b, S \rightarrow a b, S \rightarrow b a\}$.
Then $L(G)=\left\{a^{n} a b b^{n}, a^{n} b a b^{n} \mid n \geq 0\right\}$.

- Example:

Let $G=(N, T, P, S)$ be a generative grammar, where
$N=\{S, X, Y\}, T=\{a, b, c\}$ and
$P=\{S \rightarrow a b c, S \rightarrow a X b c, X b \rightarrow b X, X c \rightarrow Y b c c, b Y \rightarrow Y b$,
$a Y \rightarrow a a X, a Y \rightarrow a a\}$.
Then $L(G)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.

Basics, terminology

- Each grammar generates a language, but the same language can be generated by several different grammars.
- Two grammars are equivalent if they generate the same language.
- Two languages are weakly equivalent, if they differ only in the empty word.

Chomsky hierarchy

- Let $G=(N, T, P, S)$ be a generative grammar. G is generative grammar is of i-type, $i=0,1,2,3$, if the rule set P satisfies the following:
- $i=0$: no restriction.
- $i=1$: All rules of P have the form $u_{1} A u_{2} \rightarrow u_{1} v u_{2}$, where
$u_{1}, u_{2}, v \in(N \cup T)^{\star}, A \in N$, and $v \neq \varepsilon$, except for a rule $S \rightarrow \varepsilon$, when such a rule exists in P.
If P contains the rule $S \rightarrow \varepsilon$, then S does not occur on the right side of any rule.
- $i=2$: All rules of P are of the form $A \rightarrow v$, where $A \in N$ and $v \in(N \cup T)^{*}$.
- $i=3$: All rules of P are of the form either $A \rightarrow u B$ or $A \rightarrow u$, where $A, B \in N$ and $u \in T^{*}$.

Chomsky hierarchy

- A language L is of type i, where $i=0,1,2,3$, if it can be generated by a type i grammar.
- $\mathcal{L}_{i}, i=0,1,2,3$, denotes the class (family) of type i languages.

Chomsky hierarchy

- Type 0 grammars are called phrase-structured grammars.
- Type 1 grammars are context-sensitive grammars, since some occurrence of the nonterminal A can only be substituted with the word v in the presence of contexts u_{1} and u_{2}.
- Type 2 grammars are context-free grammars, because the substitution of a nonterminal A with v is allowed in any context.
- Type 3 grammars are regular or finite state grammars.
- The classes of languages of type 0,1,2,3 are called recursively enumerable, context-sensitive, context-free, and regular, respectively.

Chomsky hierarchy

Linguistic background
"The cunning fox hastily ate the leaping frog."

- $S \rightarrow A+B$ (S: sentence, A : noun phrase, B : verb phrase)
- $A \rightarrow C+D+E$ (C : article, D : adjective, E : noun $)$
- $B \rightarrow G+B$ (G: adverb)
- $B \rightarrow F+A$ (F : verb)
- $C \rightarrow$ the
- $D \rightarrow$ cunning
- $E \rightarrow$ fox
- $G \rightarrow$ hastily
- $F \rightarrow$ ate
- $D \rightarrow$ leaping
- $E \rightarrow$ frog

Chomsky hierarchy

Linguistic background

- + (space) - terminal symbol
- cunning $\leftarrow \rightarrow$ leaping, fox $\leftarrow \rightarrow$ frog (they are interchangeable, but the meanings are different)
- Sentence is syntactically correct
- It is not possible to describe the complete syntax of natural languages

Chomsky hierarchy

- It is oblivious that $\mathcal{L}_{3} \subseteq \mathcal{L}_{2} \subseteq \mathcal{L}_{0}$ and $\mathcal{L}_{1} \subseteq \mathcal{L}_{0}$.
- It can also be shown that (Chomsky's hierarchy) following hold: $\mathcal{L}_{3} \subset \mathcal{L}_{2} \subset \mathcal{L}_{1} \subset \mathcal{L}_{0}$.
- The inclusion relation between language class \mathcal{L}_{2} and \mathcal{L}_{1} is not oblivious from the definition of the corresponding grammars. However, \mathcal{L}_{1} can be also generated by so called length-nondecreasing grammars. For all rules $p \rightarrow q$ of a length-nondecreasing grammar, $|p| \leq|q|$ is fulfilled, except $S \rightarrow \varepsilon$. If $S \rightarrow \varepsilon \in P$, then S does not occur in the right side of any rule of P.

Operations on Languages

- Let V be an alphabet and L_{1}, L_{2} be languages over V (that is, $L_{1} \subseteq V^{*}$ and $\left.L_{2} \subseteq V^{*}\right)$
- union: $L_{1} \cup L_{2}=\left\{u \mid u \in L_{1}\right.$ or $\left.u \in L_{2}\right\}$.
- intersection: $L_{1} \cap L_{2}=\left\{u \mid u \in L_{1}\right.$ and $\left.u \in L_{2}\right\}$.
- difference: $L_{1}-L_{2}=\left\{u \mid u \in L_{1}\right.$ and $\left.u \notin L_{2}\right\}$.
- Example:

Let $V=\{a, b\}$ be an alphabet and $L_{1}=\{a, b\}$ and $L_{2}=\{\varepsilon, a, b b b\}$ languages over V. Then

$$
\begin{aligned}
& L_{1} \cup L_{2}=\{\varepsilon, a, b, b b b\} \\
& L_{1} \cap L_{2}=\{a\} \\
& L_{1}-L_{2}=\{b\}
\end{aligned}
$$

Operations on Languages

- The complement of the language $L \subseteq V^{*}$ with respect to the alphabet V is the language $L=V^{*}-L$.
- Example:

Let $V=\{a\}$ be an alphabet and let $L=\left\{a^{4 n} \mid n \geq 0\right\}$. Then $\bar{L}=V^{*}-\left\{a^{4 n} \mid n \geq 0\right\}$.

Operations on Languages

- Let V be an alphabet and L_{1}, L_{2} be languages over V (i.e. $L_{1} \subseteq V^{*}$ and $L_{2} \subseteq V^{*}$). The concatenation of L_{1} and L_{2} is $L_{1} L_{2}=\left\{u_{1} u_{2} \mid u_{1} \in L_{1}, u_{2} \in L_{2}\right\}$.
- Remark:

The following equalities hold for every language L :
$\varnothing L=L \varnothing=\varnothing$ and
$\{\varepsilon\} L=L\{\varepsilon\}=L$.

Operations on Languages

- $\quad L^{i}$ denotes the i-th iteration of L (for the operation of concatenation), where $i \geq 1$. By convention, $L^{0}=\{\varepsilon\}$.
- The iterative closure (or Kleene closure) of a language L is: $L^{*}=U_{i \geq 0} L^{i}$.
- The positive closure of L is: $L^{+}=U_{i \geq 1} L^{i}$.
- Remark:

Obviously, if $\varepsilon \in L$, then $L^{+}=L^{*}$. Otherwise, $L^{+}=L^{*}-\{\varepsilon\}$.

Operations on Languages

- Example (concatenation):

Let $V=\{a, b\}$ and let
$L_{1}=\{a, b\}, L_{2}=\{\varepsilon, a, b b b\}$,
$L_{3}=\left\{a^{4 n} b^{4 n} \mid n \geq 0\right\}$ and $L_{4}=\left\{a^{7 n} b^{7 n} \mid n \geq 0\right\}$.
Then

- $L_{1} L_{2}=\{a, b, a a, b a, a b b b, b b b b\}$,
- $\quad L_{3} L_{4}=\left\{a^{4 n} b^{4 n} a^{7 m} b^{7 m} \mid n \geq 0, m \geq 0\right\}$.

Operations on Languages

- Let V be an alphabet and $L \subseteq V^{*}$. Then the language $L^{-1}=\left\{u^{-1} \mid u \in L\right\}$ is the mirror (or reversal) of L.
- Remarks:
- $\left(L^{-1}\right)^{-1}=L$,
- $\left(L_{1} L_{2} \ldots L_{n}\right)^{-1}=L_{n}{ }^{-1} . . L_{2}{ }^{-1} L_{1}{ }^{-1}$,
- $\quad\left(L^{\prime}\right)^{-1}=\left(L^{-1}\right)^{i}$, where $i \geq 0$, and
- $\left(L^{*}\right)^{-1}=\left(L^{-1}\right)^{*}$.

Operations on Languages

- Example (mirror, reversal):

Let $V=\{a, b\}$ and $L=\{\varepsilon, a, a b b\}$ be a language over V. Then $L^{-1}=\{\varepsilon, a, b b a\}$.

Operations on Languages

- The prefix of a language $L \subseteq V^{*}$ is the language $\operatorname{PRE}(L)=\left\{u \mid u \in V^{*}, u v \in L\right.$ for some $\left.v \in V^{*}\right\}$.
- Remark: By definition, $L \subseteq \operatorname{PRE}(L)$ for any language $L \in V^{*}$.
- The suffix of a language $L \subseteq V^{*}$ is the language $\operatorname{SUF}(L)=\left\{u \mid u \in V^{*}, v u \in L\right.$ for some $\left.v \in V^{*}\right\}$.

Operations on Languages

- Let V_{1} and V_{2} be two alphabets. The mapping $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ is called a homomorphism if the following conditions hold:
- for every word $u \in V_{1}^{*}$ there is exactly one word $v \in V_{2}{ }^{*}$ for which $h(u)=v$.
- $h(u v)=h(u) h(v)$, for all $u, v \in V_{1}{ }^{*}$.
- Remarks:
- It follows from the above conitions that $h(\varepsilon)=\varepsilon$. Namely, for all $u \in V_{1}{ }^{*}$ holds $h(u)=h(\varepsilon u)=h(u \varepsilon)$.
- For all words $u=a_{1} a_{2} \ldots a_{n}, a_{i} \in V_{1}, 1 \leq i \leq n$, it holds that $h(u)=h\left(\mathrm{a}_{1}\right) h\left(\mathrm{a}_{2}\right) \ldots h\left(\mathrm{a}_{n}\right)$.
I.e. it is sufficient to define the mapping h on the elements of V_{1}, this is automatically extended to $V_{1}{ }^{*}$.

Operations on Languages

- A homomorphism $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ is ε-free if for all $u \in V_{1}{ }^{+}, h(u) \neq \varepsilon$.
- Let $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ be a homomorphism. The \boldsymbol{h}-homomorphic image of a language $L \in V_{1}{ }^{*}$ is the language $h(L)=\left\{w \in V_{2}{ }^{*} \mid w=h(u), u \in L\right\}$
- Example (homomorphism): Let $V_{1}=V_{2}=\{a, b\}$ be two alphabets. Let $h: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ be a homomorphism, s.t. $h(a)=b b b, h(b)=a b$ and $L=\{a, a b b a\}$. Then $h(L)=\{b b b, b b b a b a b b b b\}$.

Operations on Languages

- A homomorphism h is called an isomorphism if following holds:
for any $u, v \in V_{1}{ }^{*}$, if $h(u)=h(v)$, then $u=v$.
- Example (isomorphism - binary representation of decimal numbers):
$V_{1}=\{0,1,2, \ldots, 9\}, V_{2}=\{0,1\}$,
$h(0)=0000, h(1)=0001, \ldots, h(9)=1001$

Controlled context-free grammars

- Question: Is it possible to generate non-context-free languages with context-free grammars by specifying conditions on the applicability of production rules.
- Answer: yes, e.g.
- Programmed grammars
- Matrix grammars
- Random context grammars

Programmed Grammars

- A context-free programmed grammar is a 4-tuple
$G=(N, T, P, S)$, where
- N and T are disjoint finite alphabets,
- $S \in N$ is the start symbol (axiom),
- P is a finite set of ordered triples of the form
$r=(p, \sigma, \varphi)$,
where p is a context-free rule, $\sigma, \varphi \subseteq P$,
- σ is the success field of r, φ is the failure field of r.
- If $r=(p, \sigma, \varnothing)$, for all rules $r \in P$, then the grammar G is without appearance checking, otherwise, with appearance checking.

Programmed Grammars

- Let $G=(N, T, P, S)$ be a programmed context-free grammar
- If $u, v \in(N \cup T)^{*}$ are two consecutive sentences (strings) in a derivation (the i-1-st. and i-th, where $i \geq 0$) and the i-th applied rule is $r_{i}=(A \rightarrow w, \sigma, \varphi)$, then exactly one of the following hold
- if $u=x A y$, for some $x, y \in(N \cup T)^{\star}$, then $v=x w y$, and the $i+1$-st rule r_{i+1} applied in the derivation (if exists) $r_{i+1} \in \sigma$. (I.e. the next applied rule must be from the success set.)
- if u does not contain A, then $v=u$, and the $i+1$-st rule r_{i+1} applied in the derivation (if exists) is $r_{i+1} \in$ φ. (I.e. the next applied rule must be from the failure set.)
- Notation: $u \Rightarrow v$

Programmed Grammars

- Let $G=(N, T, P, S)$ a programmed context-free grammar. The language $L(G)$ generated by \mathbf{G} is:
$L(G):=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$,
where \Rightarrow^{*} is the reflexive, transitive closure of the relation \Rightarrow.

Programmed Grammar

- Example:

Let $G=(N, T, P, S)$ be a programmed grammar, where $N=\{S, A\}, T=\{a\}$, and $P=\left\{r_{1}, r_{2}, r_{3}\right\}$, where

- $r_{1}=\left(S \rightarrow A A,\left\{r_{1}\right\},\left\{r_{2}\right\}\right)$,
- $r_{2}=\left(A \rightarrow S,\left\{r_{2}\right\},\left\{r_{1}, r_{3}\right\}\right)$, and
- $r_{3}=\left(S \rightarrow a,\left\{r_{3}\right\}, \varnothing\right)$.

Then $L(G)=\left\{a^{2^{n}} \mid n \geq 0\right\}$.

Programmed Grammar

Let $\begin{aligned} G & =\left(\{S, A\},\{a\}, S,\left\{r_{1}, r_{2}, r_{3}\right\}\right), \text { where } \\ r_{1} & =\left(S \rightarrow A A,\left\{r_{1}\right\},\left\{r_{2}\right\}\right) \\ r_{2} & =\left(A \rightarrow S,\left\{r_{2}\right\},\left\{r_{1}, r_{3}\right\}\right) \\ r_{3} & =\left(S \rightarrow a,\left\{r_{3}\right\}, \emptyset\right)\end{aligned}$
The derivation for the string aaaa is as follows:

$$
\begin{aligned}
S & \Rightarrow r_{r_{1}} A A \Rightarrow{ }_{r_{1}} A A \Rightarrow r_{r_{2}} S A \Rightarrow_{r_{2}} S S \Rightarrow_{r_{2}} S S \\
& \Rightarrow r_{r_{1}} A A S \Rightarrow_{r_{1}} A A A \Rightarrow r_{r_{1}} A A A A \\
& \Rightarrow \Rightarrow_{r_{2}} S A A A \Rightarrow_{r_{2}} S S A A \Rightarrow_{r_{2}} S S S A \Rightarrow_{r_{2}} \text { SSSS } \Rightarrow_{r_{2}} S S S S \\
& \Rightarrow r_{r_{3}} \text { aSSS } \Rightarrow_{r_{3}} \text { aaSS } \Rightarrow_{r_{3}} \text { aaaS } \Rightarrow_{r_{3}} \text { aaaa } \Rightarrow_{r_{3}} \text { aaaa }
\end{aligned}
$$

As can be seen from the derivation and the rules, each time r_{1} and r_{2} succeed, they feed back to themselves, which forces each rule to continue to rewrite the string over and over until it can do so no more. Upon failing, the derivation can switch to a different rule. In the case of r_{1}, that means rewriting all Ss as AAs, then switching to r_{2}. In the case of r_{2}, it means rewriting all $A \mathrm{~s}$ as Ss , then switching either to r_{1}, which will lead to doubling the number of Ss produced, or to r_{3} which converts the Ss to as then halts the derivation. Each cycle through r_{1} then r_{2} therefore either doubles the initial number of Ss , or converts the Ss to as. The trivial case of generating a, in case it is difficult to see, simply involves vacuously applying r_{1}, thus jumping straight to r_{2} which also vacuously applies, then jumping to r_{3} which produces a.

Source: https://en.wikipedia.org/wiki/Controlled_grammar

Matrix Grammar

- A context-free matrix grammar with appearance checking is a 5 -tuple $G=(N, T, M, S, \mathcal{F})$, where
- N and T are disjoint finite alphabets,
- $S \in N$ is the start symbol (axiom),
- $M=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}, n \geq 1$, is a finite set of sequences $m_{i}=\left(p_{i 1}, \ldots, p_{i k(i)}\right), k(i) \geq 1,1 \leq i \leq n$, where each $p_{i j}, 1 \leq i \leq n, 1 \leq j \leq k(i)$, is a context-free rule, and
- $\mathcal{F} \subseteq\left\{p_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq k(i)\right\}$
is a subset of rules of sequences in M.
- The elements of M are called matrices.

Matrix Grammar

- A matrix grammar $G=(N, T, M, S, \mathscr{F})$ is without appearance checking, if and only if $\mathcal{F}=\varnothing$.

Matrix Grammar

- Let $G=(N, T, M, S, \mathcal{F})$ be matrix grammar and $w, w^{\prime} \in(N \cup T)^{\star}$. Then w^{\prime} can be derived from w according to a matrix $m_{i}:\left(A_{i 1} \rightarrow v_{i 1}, \ldots, A_{i k(i)} \rightarrow v_{i k(i)}\right) \in M, 1 \leq i \leq n, k(i) \geq 1$, (denoted as: $w \Rightarrow_{m i} w^{\prime}$), if and only if there exist words $w_{i 1}, \ldots, w_{i k(1)+1} \in(N \cup T)^{*}$, s.t. $w=w_{i 1}, w^{\prime}=w_{i k(1)+1}$ and for all i and j, where $1 \leq i \leq n, 1 \leq j \leq k(i)$,
- either $w_{i j}=w^{\prime}{ }_{i j} A_{i j} W^{\prime \prime}{ }_{i j}$ and $w_{i j+1}=w^{\prime}{ }_{i j} V_{i j} W^{\prime \prime}{ }_{i j}$,
- or $A_{i j}$ does not appear $w_{i j}$ and $w_{i j}=w_{i j+1}$, and $A_{i j} \rightarrow v_{i j} \in \mathcal{F}$.

Matrix Grammar

- Let $G=(N, T, M, S, \mathcal{F})$ be a matrix grammar.

The language $L(G)$ generated by G is:
$L(G)=\left\{w \in T^{*} \mid S \Rightarrow_{m_{1}} y_{1} \Rightarrow_{m_{2}} y_{2} \Rightarrow_{m_{\beta}} \ldots . \Rightarrow_{m_{s}} W, 1 \leq j_{i} \leq r, 1 \leq i \leq s\right\}$.

- Example: Let $G=(N, T, M, S, \varnothing)$ be a matrix grammar without appearace checking, where $N=\{S, A, B\}, T=\{a, b\}$, and

$$
M=\left\{m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right\}, \text { where }
$$

$$
m_{1}=(S \rightarrow A B),
$$

$$
m_{2}=(A \rightarrow b A, B \rightarrow b B),
$$

$$
m_{3}=(A \rightarrow b, B \rightarrow b),
$$

$$
m_{4}=(A \rightarrow a A, B \rightarrow a B) \text {, and }
$$

$$
m_{5}=(A \rightarrow a, B \rightarrow a) .
$$

Then $L(G)=\left\{w w \mid w \in\{a, b\}^{+}\right\}$.

Random context grammar

- A random context grammar is a 4 -tuple $G=(N, T, P, S)$, where
N and T are disjoint finite alphabets,
$S \in N$ is the start symbol (axiom),
P is a finite set of ordered triples of the form (p, Q, R), where p is a context-free rule, $Q, R \subseteq N$.

Random context grammar

- Let $G=(N, T, P, S)$ be a random context grammar. The word y can be derived from $x, x, y \in(N \cup T)^{\star}$, (notation: $x \Rightarrow y$), if
- $x=x^{\prime} A x^{\prime \prime}, y=x^{\prime} w x^{\prime \prime}$, for some words $x^{\prime}, x^{\prime \prime} \in(N \cup T)^{*}$ and
- For all $(A \rightarrow W, Q, R) \in P$, if all symbols of Q appearin $x^{\prime} x^{\prime \prime}$, and no symbol of R appear in $x^{\prime} x^{\prime \prime}$.
- Remark:
Q is called the permitting context of $(A \rightarrow W, Q, R)$ and R is called the forbidding context of $(A \rightarrow W, Q, R)$.

Random context grammar

- Let $G=(N, T, P, S)$ be a random context grammar.

The language $L(G)$ generated by the grammar G is:
$L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$.

- Example:

Let $G=(N, T, P, S)$ be a random context grammar, where
$N=\{S, X, Y, A\}, T=\{a\}$, and $P=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}$, where
$r_{1}=(S \rightarrow X X, \varnothing,\{Y, A\})$,
$r_{2}=(X \rightarrow Y, \varnothing,\{S\})$,
$r_{3}=(Y \rightarrow S, \varnothing,\{X\})$,
$r_{4}=(S \rightarrow A, \varnothing,\{X, Y\})$,
$r_{5}=(A \rightarrow a, \varnothing,\{S\})$.
Then $L(G)=\left\{a^{2^{n}} \mid n \geq 0\right\}$.

Random context grammar

- A random context grammar generating the language $\left\{a^{2^{n}} \mid n \geq 0\right\}$. Let $G=\left(\{S, X, Y, A\},\{a\}, S,\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}\right)$, where

$$
\begin{aligned}
& r_{1}=(S \rightarrow X X, \emptyset,\{Y, A\}) \\
& r_{2}=(X \rightarrow Y, \emptyset,\{S\}) \\
& r_{3}=(Y \rightarrow S, \emptyset,\{X\}) \\
& r_{4}=(S \rightarrow A, \emptyset,\{X, Y\}) \\
& r_{5}=(A \rightarrow a, \emptyset,\{S\})
\end{aligned}
$$

Consider now the production for aaaa:

$$
\begin{aligned}
S & \Rightarrow r_{r_{1}} X X \Rightarrow_{r_{2}} Y X \Rightarrow_{r_{2}} Y Y \Rightarrow_{r_{3}} S Y \Rightarrow_{r_{3}} S S \\
& \Rightarrow r_{r_{1}} X X S \Rightarrow_{r_{1}} X X X X \Rightarrow_{r_{2}} Y X X X \Rightarrow_{r_{2}} Y Y X X \Rightarrow_{r_{2}} Y Y Y X \Rightarrow_{r_{2}} Y Y Y Y \\
& \Rightarrow_{r_{3}} S Y Y Y \Rightarrow_{r_{3}} S S Y Y \Rightarrow_{r_{3}} S S S Y \Rightarrow_{r_{3}} S S S S \\
& \Rightarrow \Rightarrow_{r_{4}} A S S S \Rightarrow_{r_{4}} A A S S \Rightarrow_{r_{4}} A A A S \Rightarrow_{r_{4}} A A A A \\
& \Rightarrow_{r_{5}} \text { aAAA } \Rightarrow_{r_{5}} \text { aaAA } \Rightarrow_{r_{5}} \text { aaaA } \Rightarrow_{r_{5}} \text { aaaa }
\end{aligned}
$$

Source: https://en.wikipedia.org/wiki/Controlled_grammar

Language families

- $\quad L\left(\mathrm{PR}_{\mathrm{ac}}\right)$ denotes the class of programmed grammars with ε-free rules with apearance checking.
- $\quad L\left(\mathrm{PR}^{\varepsilon}{ }_{\text {ac }}\right)$ denotes the class of arbitrary programmed grammars with apearance checking.
- If the grammar is without appearance checking, the index ac is omitted.
- $\quad \mathcal{L}\left(\mathrm{MAT}_{\mathrm{ac}}\right), \mathcal{L}\left(\mathrm{MAT}^{\varepsilon} \varepsilon_{\mathrm{ac}}\right)$ are the classes of matrix grammars with and without ε free rules with apearance checking, respectively.
- $\quad L\left(\mathrm{RC}_{\mathrm{ac}}\right), \mathcal{L}\left(\mathrm{RC}^{\varepsilon} \mathrm{ac}^{\mathrm{c}}\right)$ are the classes of random context grammars with and without ε-free rules with apearance checking, respectively.
- Theorem 1 [Dassow, Paun, 2012]:

The following relations hold:
$\mathcal{L}_{2} \subset \mathcal{L}\left(\mathrm{PR}_{\mathrm{ac}}\right)=\mathcal{L}\left(\mathrm{MAT}_{\mathrm{ac}}\right)=\mathcal{L}\left(\mathrm{RC}_{\text {ac }}\right) \subset \mathcal{L}_{1}$ and $\mathcal{L}\left(\mathrm{PR}_{\mathrm{ac}}^{\varepsilon}\right)=\mathcal{L}\left(\mathrm{MAT}_{\mathrm{ac}}^{\varepsilon}\right)=\mathcal{L}\left(\mathrm{RC}_{\mathrm{ac}}^{\varepsilon}\right)=\mathcal{L}_{0}$.

L-system

- A OL-system (non-interacting Lindenmayer system, or Lsystem) is a triple $G=(V, P, w)$, where
- V is a finite alphabet,
- P is a finite set of context-free rewriting rules (or production rules), and
- $w \in V^{+}$is the start state (or axiom or initiator).
- For every $a \in V$, there exists a rule $a \rightarrow x \in P$ (We say P is complete).
- Remark: For any symbol $a \in V$, which does not appear on the left hand side of a production in P, the identity production $a \rightarrow a$ is assumed; these symbols are called constants or terminals.

L-rewriting

- For words $z_{1}, z_{2} \in V^{*}, z_{1}$ can be rewritten to z_{2} regarding G, denoted by $z_{1} \Rightarrow z_{2}$, if $z_{1}=a_{1} a_{2} \ldots a_{r}, z_{2}=x_{1} x_{2} \ldots x_{r}$, for some $a_{i} \rightarrow x_{i} \in P, 1 \leq i \leq r$.
- Remark: As many rules as possible are applied simultaneously. This differentiates an L-system from a language generated by a classical formal grammar.

L-system, generated language

- Let $G=(V, P, w)$ be a OL-system. The language $L(G)$ generated by G is:
$L(G)=\left\{z \in V^{*} \mid w \Rightarrow^{*} z\right\}$, where
\Rightarrow * is the reflexive transitive closure of \Rightarrow.

L-system, generated language

- Example: Let $G=(V, P, w)$ be a OL-system, where $V=\{a\}$,
$P=\left\{a \rightarrow a^{2}\right\}$, and
$w=a^{3}$.
Then $L(G)=\left\{a^{3 \cdot 2^{n}} \mid i \geq 0\right\}$

L-system, generated language

- Example (fractal, binary tree): Let $G=(V, P, w)$ be a OL-system, where $V=\{0,1,[]$,$\} ,$
$P=\{1 \rightarrow 11,0 \rightarrow 1[0] 0\}$, and
$\mathrm{w}=0$.
It produces the sequence:

```
w = wo = 0
w
W
w3 = 1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0
```

This string can be drawn as an image
by interpreting the symbols as follows:
0 : draw a line segment ending in a leaf
1: draw a line segment
[: push position and angle, turn left 45 degrees
]: pop position and angle, turn right 45 degrees

Family of languages generated by OL-systems

- $\quad \mathcal{L}(0 \mathrm{~L})$ denotes the family of languages generated by OL-systems.

E0L-systems

- An EOL-system (Extened OL-system) is a 4-tuple $G=(V, T, P, w)$, where $G=(V, P, w)$ is a OL-system and T is an alphabet of terminal symbols.
- Derivation \Rightarrow_{G} (short \Rightarrow) and \Rightarrow^{*} are defined similarly to OL-systems.
- The language $L(G)$ generated by G is:
$L(G)=\left\{z \in T^{*} \mid w \Rightarrow^{*} z\right\}$.
- $\quad \mathcal{L}(E O L)$ denotes the family of languages generated by EOL-systems.

EOL-systems, generated language

- Example:

Let $G=(V, T, P, w)$ be an EOL-system, where
$V=\{a, b\}$,
$T=\{b\}$,
$P=\{a \rightarrow b, a \rightarrow b b, b \rightarrow b\}$, and
$w=a$.
Then $L(G)=\{b, b b\}$.

DOL-systems

- A DOL-system (deterministic OL-system) is a OL-system, if for every $a \in V$ there is exactly one rule $a \rightarrow x, x \in V^{*}$.
- If the axiom is replaced by a finite language, then we obtain OL-system (DOL-system) with a finite number of axioms, denoted as F0L-system (FDOL-system).
- Remark: Since the set of production rules P of a DOL-system $G=(V, P, w)$ defines a homomorphism $h: V \rightarrow V^{*}$, the notation $G=(V, h, w)$ is also used.

TOL-systems

- A TOL-system is an ($n+2$)-tuple $G=\left(V, P_{1}, \ldots, P_{n}, w\right)$, $n \geq 1$, where each $G_{i}=\left(V, P_{i}, w\right), 1 \leq i \leq n$, is a OL-system.
- The language $L(G)$ generated by G is: $L(G)=\left\{z \in V^{*} \mid w \Rightarrow_{G i 1} W_{1} \Rightarrow_{G i 2} \ldots \Rightarrow_{G i m} W_{m}=z\right.$, $\left.1 \leq i_{j} \leq n, 1 \leq j \leq m\right\}$.
- $\quad \leq(\mathrm{TOL})$ denotes the family of languages generated by TOLsystems

TOL-systems

- Example: Let $G=\left(V, P_{1}, P_{2}, w\right)$ be a TOL-system, where $V=\{a\}$,
$P_{1}=\left\{a \rightarrow a^{2}\right\}, P_{2}=\left\{a \rightarrow a^{3}\right\}$, and
$w=a$.
- Then $L(G)=\left\{a^{i} \mid i=2^{m} 3^{n}, m, n \geq 0\right\}$.

Literature

- Handbook of Formal Languages, G. Rozenberg, A. Salomaa, (eds.), Springer-Verlag, Berlin-Heidelberg, 1997.
- Gy. E. Révész, Introduction to Formal Languages, Dover Publications, Inc., New York, 2012.
- G. Rozenberg, A. Salomaa, The mathematical theory of L systems, Vol. 90., Academic Press, 1980.
- J. Dassow, Gh. Paun. Regulated rewriting in formal language theory, Springer Publishing Company, Inc., 2012.

