Models of Computation

4: Regular expressions, finite automaton

Regular expressions

Applications

- search and replace dialogs of text editors
- search engines
- text processing utilities (e.g. sed and AWK)
- programming languages, lexical analysis
- genom analysis (genom as string)
- spam/malware filter

Regular expressions

Let V and $V^{\prime}=\{\varepsilon, \cdot,+, *,()$,$\} be disjoint alphabets. A regular$ expression over V is defined recursively as follows:

1. ε is a regular expression over V,
2. all a $\in V$ are regular expressions over V,
3. If R is a regular expression over V, then R^{*} is also a regular expression over V,
4. If Q and R are regular expressions over V, then
$(Q \cdot R)$ and $(Q+R)$ are also regular expressions over V.

* denotes the closure of iteration,
- concatenation, and
+ union.

Regular expressions

Each regular expression represents a regular language, which is defined as:

1. ε represents the language $\{\varepsilon\}$,
2. Letter $a(\in V)$ represents the language $\{a\}$,
3. if R is a regular expression over V, which represents the language L, then R^{*} represents L^{*},
4. if R and R^{\prime} are regular expressions over V, s.t.
R represents the language L and
R^{\prime} represents the language L^{\prime}, then
($R \cdot R^{\prime}$) represents the language $L L^{\prime}$,
$\left(R+R^{\prime}\right)$ represents the language $L \cup L^{\prime}$.

Regular expressions

Parentheses can be omitted when defining precedence on operations.
The the usual sequence is: $,^{\prime} \cdot,+$. The following regular expressions are equivalent:

- a^{*} is the same as (a)* and represent the language $\{a\}^{*}$.
- $(a+b)^{*}$ is the same as $((a)+(b))^{*}$ and represents the language $\{a, b\}^{*}$.
- $a^{*} \cdot b$ is the same as $\left((a)^{*}\right) \cdot(b)$ and represents the language $\{a\}^{*} b$.
- $b+a b^{*}$ is the same as $(b)+\left((a) \cdot(b)^{*}\right)$ and represents the language $\{b\} \cup\{a\}\{b\}^{*}$.
- $(a+b) \cdot a^{*}$ is the same as $((a)+(b)) \cdot\left((a)^{*}\right)$ and represents the language $\{a, b\}\{a\}^{*}$.

Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

- $P+(Q+R)=(P+Q)+R$
- $P \cdot(Q \cdot R)=(P \cdot Q) \cdot R$
- $P+Q=Q+P$
- $P \cdot(Q+R)=P \cdot Q+P \cdot R$
- $(P+Q) \cdot R=P \cdot R+Q \cdot R$
- $P^{*}=\varepsilon+P \cdot P^{*}$
- $\varepsilon \cdot P=P \cdot \varepsilon=P$
- $P^{*}=(\varepsilon+P)^{*}$

Regular expressions

Example:
The language represented the regular expressions $(a+b) a^{*}$ and $a a^{*}+b a^{*}$ is the same: $\left\{a a^{n} \mid n \geq 0\right\} \cup\left\{b a^{n} \mid n \geq 0\right\}$.

The language represented by $a+b a^{*}$ is:
$\left\{a, b, b a, b a^{2}, b a^{3}, \ldots\right\}$.

Expressive power of regular expressions

Theorem:

1) Every regular expression represents a regular (type 3) language.
2) For every regular (type 3) language, there is a regular expression representing the language.

Proof:

1) follows from the fact that the class of regular languages L_{3} is closed for the regular operations.

Expressive power of regular expressions

Proof:

For 2), we show that for every regular language L generated by a grammar $G=(N, T, P, S)$, a regular expression can be constructed, that represents L.

- Let $N=\left\{A_{1}, . ., A n\right\}, n \geq 1, S=A 1$.
- Assume, each rule of G is of form $A_{i} \rightarrow a A_{j}$ or $A_{i} \rightarrow \varepsilon$, where $a \in T, 1 \leq i, j \leq n$.
- We say that a non-terminal A_{m} is affected by the derivation $A_{i} \Rightarrow^{*} u A_{j}\left(u \in T^{*}\right)$, if A_{m} occurs in an intermediate string between A_{i} and $u A_{j}$ in the derivation.

Expressive power of regular expressions

Proof (cont.):

- A derivation $A_{i} \Rightarrow^{*} u A_{j}$ is called \boldsymbol{k}-bounded if $0 \leq m \leq k$ holds for all non-terminals A_{m} occurring in the derivation.
- Let $E^{k_{i j}}=\left\{u \in T^{*} \mid \exists A_{i} \Rightarrow * u A_{j} k\right.$-bounded derivation $\}$.
- We show by induction on k, that for language $E^{k_{i, j}}$, there is a regular expression representing $E^{k_{i, j}}$, $0 \leq i, j, k \leq n$.

Expressive power of regular expressions

Proof (cont.):

- $k=0$ (induction start):
- For $i \neq j, E_{i, j}$ is eighter empty, or it consists of symbols of $T\left(a \in E^{o_{i, j}}\right.$ if and only if $A_{i} \rightarrow a A_{j} \in P$.)
- For $i=j, E^{o_{i, j}}$ consists of ε and zero or more elements of T, so $E^{o_{i, j}}$ can be represented by a regular expression.

Expressive power of regular expressions

Proof (cont.):

- $k-1 \rightarrow k$ (induction step):
- Assume that for a fixed $k, 0<k \leq n, E^{k-1} i_{i, j}$ can be represented by a regular expression.
- Then for all i, j, k it holds that $E_{i, j}^{k}=E^{k-1, i, j}+E^{k-1} l_{i, k} \cdot\left(E^{k-1} k, k\right) * \cdot E^{k-1}{ }_{k, j}$.
- Therefore, $E^{k_{i, j}}$ can also be represented by a regular expression.
- Let I_{ε} be the set of indices i for which $A_{i} \rightarrow \varepsilon$.
- Then $L(G)=U_{i \in \varepsilon \varepsilon} E^{n}{ }_{1, i}$ can be representd by a regular expression. The claim of the theorem follows.

Finite Automata (FA)

- Identifying formal languages is also possible with recognition devices, i.e. by automata.
- An automaton can process and identify words.
- Grammars use a synthesizing approach, while automata an analytic one.
- An automaton accepts or rejects an input word.

Finite Automata (FA)

- A finite automaton (FA) performs a sequence of steps in discrete time intervals
- The FA starts in the initial state.
- The input word is located on the input tape and the reading head is on the leftmost symbol of an input word.
- After reading a symbol, the FA moves the reading head to one position to the right, then the state changes, regarding the state transition function.
- If the FA has read the input, it stops, accepts or rejects the input.

Finite Automata (FA)

- Example: automatic door control

State transition diagram:

Finite Automata (FA)

- Application examples:
- Automatic door control
- Coffee machine
- Pattern recognition
- Markov chains
- Pattern recognition
- Speech processing
- Optical character recognition
- Predictions of share prizes in the stock exchange

Finite Automata (FA)

A finite automaton is a 5-tuple $A=\left(Q, T, \delta, q_{0}, F\right)$, where

- Q is a finite, nonempty set of states,
- T is the finite alphabet of input symbols,
- $\delta: Q \times T \rightarrow Q$ is the state transition function
- $q_{0} \in Q$ is the initial state or start state,
- $F \subseteq Q$ is the set of acceptance states or end states.

Finite Automata (FA)

Remark:

- The function δ can be extended to a function $\hat{\delta}: Q \times T^{*} \rightarrow Q$ as follows:
- $\hat{\delta}(q, \varepsilon)=q$,
- $\hat{\delta}(q, x a)=\delta(\hat{\delta}(q, x), a)$ for all $x \in T^{*}$ and $a \in T$.

Finite Automata (FA)

Example:

- Let $A=\left(Q, T, \delta, q_{1}, F\right)$ be a FA, where

$$
Q=\left\{q_{1}, q_{2}, q_{3}\right\}, T=\{0,1\}, F=\left\{q_{2}\right\}, \text { and }
$$

$$
\delta\left(q_{1}, 0\right)=q_{1}, \delta\left(q_{1}, 1\right)=q_{2}, \delta\left(q_{2}, 0\right)=q_{3}, \delta\left(q_{2}, 1\right)=q_{2}
$$

$$
\delta\left(q_{3}, 0\right)=\delta\left(q_{3}, 1\right)=q_{2}
$$

State transition diagram:
State transition table:

δ	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

- The accepted language is $L(A)=\{w \mid w$ conains at least one 1 and the last 1 is not followed by an odd number of $0 s$ \}

Finite Automata (FA)

Example:

- Let $T=\{a, b, c\}$.

Define a FA, which accepts the words of length of at most 5 .
Solution:

- Formaly:
$A=\left(\left\{q_{0}, \ldots, q_{6}\right\},\{a, b, c\}, \delta, q_{0},\left\{q_{0}, \ldots, q_{5}\right\}\right)$,
$\delta\left(q_{i}, t\right)=q_{i+1}$, for $i=0, \ldots, 5, t \in\{a, b, c\}$,
$\delta\left(q_{6}, t\right)=q_{6}$, for $t \in\{a, b, c\}$
- State transition diagram:

State transition table:

	a	b	c
$\leftrightarrows q_{0}$	q_{1}	q_{1}	q_{1}
$\leftarrow q_{1}$	q_{2}	q_{2}	q_{2}
$\leftarrow q_{2}$	q_{3}	q_{3}	q_{3}
$\leftarrow q_{3}$	q_{4}	q_{4}	q_{4}
$\leftarrow q_{4}$	q_{5}	q_{5}	q_{5}
$\leftarrow q_{5}$	96	96	9_{6}
96	96	9_{6}	q_{6}

Deterministic and non-deterministic finite automata

- Deterministic finite automaton (DFA):

Function δ is single-valued, i.e. $\forall(q, a) \in Q \times T$ there is exactly one state s, s.t. $\delta(q, a)=s$.

- Nondeterministic finite automaton (NFA):
- Function δ is multi-valued, i.e. $\delta: Q \times T \rightarrow 2^{Q}$.
- Multiple initial states are allowed (the set of initial states $Q_{0} \subseteq Q$).
- It is allowed that $\delta(q, a)=\varnothing$ for sol (q, a), i.e. the machine gets stuck
- Null (or ε) move is allowed,
i.e. it can move forward without reading symbols.

NFA example

Deterministic and non-deterministic FA

- New features of non-determinism
- Multiple paths are possible (multiple choises at each step).
- ε-transition is a "free" move without reading input.
- Accepts the input if some path leads to an accepting state.

Deterministic and non-deterministic FA

- Alternative notation:
- State transitions can also be given in the form $q a \rightarrow p$, where $p \in \delta(q, a)$.
- Let M_{δ} be set of rules of the state transition of an NFA $A=\left(Q, T, \delta, Q_{0}, F\right)$.
- If M_{δ} contains exactly one rule $q a \rightarrow p$ for each pair (q, a), then the FA is deterministic, oherwise nondeterministic.

FA - reduction

- Let $A=\left(Q, T, \delta, Q_{0}, F\right)$ be a FA and $u, v \in Q T^{*}$ words. The FA A reduces the u in one step (directly) to v (notation: $u \Rightarrow_{A} v$, or short: $u \Rightarrow v$), if there are a rule $q a \rightarrow p \in M_{\delta}$ (i.e. $\delta(q, a)=p$) and a word $w \in T^{*}$, s.t. $u=q a w$ and $v=p w$ hold.
- The FA $A=\left(Q, T, \delta, Q_{0}, F\right)$ reduces $u \in Q T^{*}$ to $v \in Q T^{*}$ (notation: $u \Rightarrow_{A}^{*} v$, or short: $u \Rightarrow^{*} v$, if
- either $u=v$,
- or \exists a word $z \in Q T^{*}$, s.t. $u \Rightarrow * z$ and $z \Rightarrow v$.
- Remark: $\Rightarrow *$ is the reflexive, transitive closure of \Rightarrow.

FA - accepted language

- The language accepted/recognized by the FA $A=\left(Q, T, \delta, Q_{0}, F\right)$ is:
$L(A)=\left\{u \in T^{*} \mid q_{0} u \Rightarrow * p\right.$ for some $q_{0} \in Q_{0}$ and $p \in F\}$
- For a DFA A, there is one single start state $Q_{0}=\left\{q_{0}\right\}$. The language accepted by DFA A is: $L(A)=\left\{u \in T^{*} \mid q_{0} u \Rightarrow^{*} p\right.$ for some $\left.p \in F\right\}$

NFA accepting $L_{1} \cup L_{2}$

Theorem: If L_{1} and L_{2} are regular languages, then $L_{1} U L_{2}$ is also a regular language.

Proof (sketch): Let A_{1} be a DFA, accepting L_{1} and A_{2} a DFA accepting L_{2}. Then the following NFA accepts $L_{1} \cup L_{2}$.

NFA accepting $L_{1} L_{2}$

Theorem: If L_{1} and L_{2} regular languages, then $L_{1} L_{2}$ is also a regular language.

Proof (sketch): Let A_{1} be a DFA accepting L_{1}, A_{2} egy DFA accepting L_{2}.
The following NVA accepts $L_{1} L_{2}$.

NFA accepting L^{*}

Theorem: If L is a regular language, then L^{*} is also a regular language.

Proof. (sketch): Let A be a DFA accepting L.
The fillowing NFA accepts L^{*}-t.

Computing power of NFA

- Theorem: For all NFA $A=\left(Q, T, \delta, Q_{0}, F\right)$ a DFA $A^{\prime}=\left(Q^{\prime}, T, \delta^{\prime}, q^{\prime}{ }_{0}, F^{\prime}\right)$ can be constructed, s.t. $L(A)=L\left(A^{\prime}\right)$ holds.
- Idea: DFA keeps track of the subset of possible states in NFA
- Remark: In worst case $\left|Q^{\prime}\right|=2^{|Q|}$.

Computing power of NFA

Proof:

- Let $Q^{\prime}=2^{\circ}$ be the set of all subsets of the set Q. (the number of elements of Q^{\prime} is $\left.2^{|Q|}\right)$.
- Let $\delta^{\prime}: Q^{\prime} \times T \rightarrow Q^{\prime}$ be the function defined as: $\delta^{\prime}\left(q^{\prime}, a\right)=\mathrm{U}_{q \in q^{\prime}} \delta(q, a)$.
- Let $q^{\prime}{ }_{0}=Q_{0}$ and $F^{\prime}=\left\{q^{\prime} \in Q^{\prime} \mid q^{\prime} \cap F \neq \varnothing\right\}$
- To prove $L(A) \subseteq L\left(A^{\prime}\right)$ we prove Lemma 1, to $L\left(A^{\prime}\right) \subseteq L(A)$ we prove Lemma 2 .
- First, an example (next slide)

NFA - DFA

Example:

- Let $A=\left(Q, T, \delta, Q_{0}, F\right)$ be a NFA, where $Q=\left\{q_{0}, q_{1}, q_{2}\right\}, T=\{a, b\}, Q_{0}=\left\{q_{0}\right\}, F=\left\{q_{2}\right\}$. δ is defined as:
$\delta\left(q_{0}, a\right)=\left\{q_{0}, q_{1}\right\}, \delta\left(q_{0}, b\right)=\left\{q_{1}\right\}$,
$\delta\left(q_{1}, a\right)=\varnothing, \delta\left(q_{1}, b\right)=\left\{q_{2}\right\}$,
$\delta\left(q_{2}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\}, \delta\left(q_{2}, b\right)=\left\{q_{1}\right\}$. Construct a DFA A^{\prime} quivalent with A.

Solution:

- DFA: $A^{\prime}=\left(Q^{\prime}, T, \delta^{\prime}, q^{\prime}{ }_{0}, F^{\prime}\right)$, where
$Q^{\prime}=\left\{\varnothing,\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$,
$q^{\prime}{ }_{0}=\left\{q_{0}\right\}$,
$F^{\prime}=\left\{\left\{q_{2}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$,
δ^{\prime} next slide

NFA - DFA

Example (cont.):

- δ :

$$
\begin{array}{cl}
\delta\left(q_{0}, a\right)=\left\{q_{0}, q_{1}\right\}, & \delta\left(q_{0}, b\right)=\left\{q_{1}\right\}, \\
\delta\left(q_{1}, a\right)=\emptyset, & \delta\left(q_{1}, b\right)=\left\{q_{2}\right\}, \\
\delta\left(q_{2}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\}, & \delta\left(q_{2}, b\right)=\left\{q_{1}\right\} .
\end{array}
$$

- δ^{\prime} :

$$
\begin{array}{cc}
\delta^{\prime}((\emptyset, a)=\emptyset, & \delta^{\prime}((\emptyset, b)=\emptyset, \\
\delta^{\prime}\left(\left(\left\{q_{0}\right\}, a\right)=\left\{q_{0}, q_{1}\right\},\right. & \delta^{\prime}\left(\left(\left\{q_{0}\right\}, b\right)=\left\{q_{1}\right\},\right. \\
\delta^{\prime}\left(\left(\left\{q_{1}\right\}, a\right)=\emptyset,\right. & \delta^{\prime}\left(\left(\left\{q_{1}\right\}, b\right)=\left\{q_{2}\right\},\right. \\
\delta^{\prime}\left(\left(\left\{q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\},\right. & \delta^{\prime}\left(\left(\left\{q_{2}\right\}, b\right)=\left\{q_{1}\right\},\right. \\
\delta^{\prime}\left(\left(\left\{q_{0}, q_{1}\right\}, a\right)=\left\{q_{0}, q_{1}\right\},\right. & \delta^{\prime}\left(\left(\left\{q_{0}, q_{1}\right\}, b\right)=\left\{q_{1}, q_{2}\right\},\right. \\
\delta^{\prime}\left(\left(\left\{q_{0}, q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\},\right. & \delta^{\prime}\left(\left(\left\{q_{0}, q_{2}\right\}, b\right)=\left\{q_{1}\right\},\right. \\
\delta^{\prime}\left(\left(\left\{q_{1}, q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\},\right. & \delta^{\prime}\left(\left(\left\{q_{1}, q_{2}\right\}, b\right)=\left\{q_{1}, q_{2}\right\},\right. \\
\delta^{\prime}\left(\left(\left\{q_{0}, q_{1}, q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\},\right. & \delta^{\prime}\left(\left(\left\{q_{0}, q_{1}, q_{2}\right\}, b\right)=\left\{q_{1}, q_{2}\right\} .\right.
\end{array}
$$

NFA - DFA

Example (cont.):

 NVA| $\delta\left(q_{0}, a\right)=\left\{q_{0}, q_{1}\right\}$, | $\delta\left(q_{0}, b\right)=\left\{q_{1}\right\}$, |
| :---: | :--- |
| $\delta\left(q_{1}, a\right)=\emptyset$, | $\delta\left(q_{1}, b\right)=\left\{q_{2}\right\}$, |
| $\delta\left(q_{2}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$, | $\delta\left(q_{2}, b\right)=\left\{q_{1}\right\}$. |

$F=\left\{q_{2}\right\}$

DVA

$$
\begin{aligned}
& \delta^{\prime}((\phi, a)=\emptyset, \\
& \delta^{\prime}((,), b)=\emptyset, \\
& \delta^{\prime}\left(\left(\left\{q_{0}\right\}, a\right)=\left\{q_{0}, q_{1}\right\},\right. \\
& \delta^{\prime}\left(\left(\left\{q_{1}\right\}, a\right)=\emptyset\right. \text {, } \\
& \delta^{\prime}\left(\left(\left\{q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\},\right. \\
& \delta^{\prime}\left(\left(\left\{q_{0}, q_{1}\right\}, a\right)=\left\{q_{0}, q_{1}\right\}\right. \text {, } \\
& \delta^{\prime}\left(\left(\left\{q_{0}, q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\}\right. \text {, } \\
& \delta^{\prime}\left(\left\{q_{1}, q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\}, \\
& \delta^{\prime}\left(\left(\left\{q_{0}\right\}, b\right)=\left\{q_{1}\right\},\right. \\
& \delta^{\prime}\left(\left\{\left\{q_{1}\right\}, b\right)=\left\{q_{2}\right\},\right. \\
& \delta^{\prime}\left(\left\{\left\{q_{2}\right\}, b\right)=\left\{q_{1}\right\},\right. \\
& \delta^{\prime}\left(\left(\left\{q_{0}, q_{1}\right\}, b\right)=\left\{q_{1}, q_{2}\right\},\right. \\
& \delta^{\prime}\left(\left(\left\{q_{0}, q_{2}\right\}, b\right)=\left\{q_{1}\right\},\right. \\
& \delta^{\prime}\left(\left(\left\{q_{1}, q_{2}\right\}, b\right)=\left\{q_{1}, q_{2}\right\},\right. \\
& \delta^{\prime}\left(\left(\left\{q_{0}, q_{1}, q_{2}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}\right\}, \quad \delta^{\prime}\left(\left\{\left\{q_{0}, q_{1}, q_{2}\right\}, b\right)=\left\{q_{1}, q_{2}\right\} .\right.\right. \\
& F^{\prime}=\left\{\left\{q_{2}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}
\end{aligned}
$$

Computing power of NFA

Lemma 1:

- For all $p, q \in Q, q^{\prime} \in Q^{\prime}$ és $u, v \in T^{*}$,
if $q u \Rightarrow^{*} A_{A} p v$ and $q \in q^{\prime}$,
then $\exists p^{\prime} \in Q^{\prime}$, s.t.
$q^{\prime} u \Rightarrow *_{A^{\prime}} p^{\prime} v$ and $p \in p^{\prime}$.

Proof:

- Induction over the number of reduction steps n in $q u \Rightarrow *_{A} p v$.
- For $n=0$: the claim holds trivially, $p^{\prime}=q^{\prime}$.

Computing power of NFA

Proof (Lemma 1, cont.):

- For $n \rightarrow n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $q u \Rightarrow *_{A} p v$ be a reduction of $n+1$ steps. Then for some $q_{1} \in Q$ and $u_{1} \in T^{*}$ holds that $q u \Rightarrow_{A} q_{1} u_{1} \Rightarrow_{A}^{*} p v$.
- Therefore, $\exists a \in T$, s.t. $u=a u_{1}$ and $q_{1} \in \delta(q, a)$.
- Since $\delta(q, a) \subseteq \delta^{\prime}\left(q^{\prime}, a\right)$, for $q \in q^{\prime}$, $q^{\prime}{ }_{1}$ can be choosen as $q^{\prime}{ }_{1}=\delta^{\prime}\left(q^{\prime}, a\right)$.
- Consequently, $q^{\prime} u \Rightarrow_{A^{\prime}} q^{\prime}{ }_{1} u_{1}$, where $q_{1} \in q^{\prime}{ }_{1}$.
- By the induction assumption, $\exists p^{\prime} \in Q^{\prime}$, s.t. $q^{\prime}{ }_{1} u_{1} \Rightarrow^{*} A^{\prime} p^{\prime} v$ and $p \in p^{\prime}$, which proves the claim. \square

Computing power of NFA

Proof (Theorem, cont.):

- Let $u \in L(A)$, i.e. $q_{0} u \Rightarrow_{A} p$, for some $q_{0} \in Q_{0}, p \in F$.
- By Lemma 1, $\exists p^{\prime}$, s.t. $q^{\prime}{ }_{0} u \Rightarrow_{A^{\prime}} p^{\prime}$, where $p \in p^{\prime}$.
- By definition of $F^{\prime}, p \in p^{\prime}$ and $p \in F$ imply that $p^{\prime} \in F^{\prime}$, which proves $L(A) \subseteq L\left(A^{\prime}\right)$.
- For $L\left(A^{\prime}\right) \subseteq L(A)$, we prove Lemma 2 .

Computing power of NFA

Lemma 2:

- For all $p^{\prime}, q^{\prime} \in Q^{\prime}, p \in Q$ and $u, v \in T^{*}$,
- if $q^{\prime} u \Rightarrow *_{A^{\prime}} p^{\prime} v$ and $p \in p^{\prime}$,
- then $\exists q \in Q$, s.t. $q u \Rightarrow^{*} p v$ and $q \in q^{\prime}$.

Proof:

- Induction over the number of steps n in the reduction.
- For $n=0$: The claim holds trivially.

Computing power of NFA

Proof (Lemma 2, cont.):

- For $n \rightarrow n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $q^{\prime} u \Rightarrow_{A^{\prime}} p^{\prime} v$ be a reduction of $n+1$ steps. Then $q^{\prime} u \Rightarrow A_{A^{\prime}} p^{\prime}{ }_{1} v_{1} \Rightarrow_{A^{\prime}} p^{\prime} v$, where $v_{1}=a v$, for some $p_{1}^{\prime} \in Q^{\prime}$ and $a \in T$.
- Then, $p \in p^{\prime}=\delta^{\prime}\left(p^{\prime}{ }_{1}, a\right)=U_{p 1 \in p^{\prime} 1} \delta\left(p_{1}, a\right)$.
- Consequently, $\exists p_{1} \in p^{\prime}{ }_{1}$, s.t. $p \in \delta\left(p_{1}, a\right)$.
- For this p_{1}, it holds that $p_{1} v_{1} \Rightarrow_{A} p v$.
- By the induction assumption, $q u \Rightarrow^{*}{ }_{A} p_{1} v_{1}$, for some $q \in q_{0}$, which implies the claim. \square

Computing power of NFA

Proof (Theorem, cont.):

- Let $q^{\prime}{ }_{0} u \Rightarrow *_{A^{\prime}} p^{\prime}$ and $p^{\prime} \in F$.
- By the definition of $F^{\prime}, \exists p \in p^{\prime}$, s.t. $p \in F$.
- Then, by Lemma 2, for some $q_{0} \in q^{\prime}{ }_{0}$, holds that $q_{0} u \Rightarrow^{*}{ }_{A} p$.
- This proves the claim of the theorem. \square

Corollaries

Corollary 1 :

- The class of regular languages \mathcal{L}_{3} is closed for the complement operation.

Proof:

- Let L be a language, recognized by a FA $A=\left(Q, T, \delta, q_{0}, F\right)$
- Then $\bar{L}=T^{*}-L$ can be recognized by a FA $A=\left(Q, T, \delta, q_{0}, Q-F\right)$

