Models of Computation

4: Regular expressions, finite automaton

Applications

- search and replace dialogs of text editors
- search engines
- text processing utilities (e.g. sed and AWK)
- programming languages, lexical analysis
- genom analysis (genom as string)
- spam/malware filter
- •

Let V and $V' = \{\varepsilon, \cdot, +, *, (,)\}$ be disjoint alphabets. A **regular expression** over V is defined recursively as follows:

- 1. ϵ is a regular expression over V,
- 2. all $a \in V$ are regular expressions over V,
- 3. If R is a regular expression over V, then R^* is also a regular expression over V,
- 4. If Q and R are regular expressions over V, then $(Q \cdot R)$ and (Q + R) are also regular expressions over V.
 - * denotes the closure of iteration,
 - · concatenation, and
 - + union.

Each regular expression **represents a regular language**, which is defined as:

- 1. ϵ represents the language $\{\epsilon\}$,
- 2. Letter $a \in V$ represents the language $\{a\}$,
- 3. if R is a regular expression over V, which represents the language L, then R^* represents L^* ,
- 4. if R and R' are regular expressions over V, s.t. R represents the language L and R' represents the language L', then (R · R') represents the language LL', (R + R') represents the language L U L'.

Parentheses can be omitted when defining precedence on operations. The the usual sequence is: *, ·, +. The following regular expressions are equivalent:

- a^* is the same as $(a)^*$ and represent the language $\{a\}^*$.
- $(a + b)^*$ is the same as $((a) + (b))^*$ and represents the language $\{a, b\}^*$.
- a^* · b is the same as $((a)^*)$ · (b) and represents the language $\{a\}^*b$.
- $b + ab^*$ is the same as $(b) + ((a) \cdot (b)^*)$ and represents the language $\{b\} \cup \{a\}\{b\}^*$.
- $(a + b) \cdot a^*$ is the same as $((a) + (b)) \cdot ((a)^*)$ and represents the language $\{a, b\}\{a\}^*$.

Let *P*, *Q*, an *R* be regular expressions. Then following hold:

•
$$P + (Q + R) = (P + Q) + R$$

•
$$P \cdot (Q \cdot R) = (P \cdot Q) \cdot R$$

•
$$P + Q = Q + P$$

•
$$P \cdot (Q + R) = P \cdot Q + P \cdot R$$

•
$$(P+Q)\cdot R = P\cdot R + Q\cdot R$$

•
$$P^* = \varepsilon + P \cdot P^*$$

•
$$\varepsilon \cdot P = P \cdot \varepsilon = P$$

•
$$P^* = (\varepsilon + P)^*$$

Example:

```
The language represented the regular expressions (a + b)a^* and aa^* + ba^* is the same: \{aa^n \mid n \ge 0\} \cup \{ba^n \mid n \ge 0\}.
```

```
The language represented by a + ba^* is: { a, b, ba, ba^2, ba^3, ... }.
```

Theorem:

- 1) Every regular expression represents a regular (type 3) language.
- 2) For every regular (type 3) language, there is a regular expression representing the language.

Proof:

1) follows from the fact that the class of regular languages \mathcal{L}_3 is closed for the regular operations.

Proof:

For 2), we show that for every regular language L generated by a grammar G = (N, T, P, S), a regular expression can be constructed, that represents L.

- Let $N = \{A_1, \ldots, A_n\}, n \ge 1, S = A_1.$
- Assume, each rule of G is of form $A_i \rightarrow aA_j$ or $A_i \rightarrow \epsilon$, where $a \in T$, $1 \le i, j \le n$.
- We say that a non-terminal A_m is **affected** by the derivation $A_i \Rightarrow^* uA_j$ ($u \in T^*$), if A_m occurs in an intermediate string between A_i and uA_j in the derivation.

Proof (cont.):

- A derivation $A_i \Rightarrow^* uA_j$ is called **k-bounded** if $0 \le m \le k$ holds for all non-terminals A_m occurring in the derivation.
- Let $E^{k}_{i,j} = \{ u \in T^* \mid \exists A_i \Rightarrow^* uA_j k \text{-bounded derivation} \}$.
- We show by induction on k, that for language $E^{k}_{i,j}$, there is a regular expression representing $E^{k}_{i,j}$, $0 \le i,j,k \le n$.

Proof (cont.):

- k = 0 (induction start):
 - For $i \neq j$, $E^{0}_{i,j}$ is eighter empty, or it consists of symbols of T ($a \in E^{0}_{i,j}$ if and only if $A_i \rightarrow aA_j \in P$.)
 - For i = j, $E^{0}_{i,j}$ consists of ε and zero or more elements of T, so $E^{0}_{i,j}$ can be represented by a regular expression.

Proof (cont.):

- $k-1 \rightarrow k$ (induction step):
 - Assume that for a fixed k, $0 < k \le n$, $E^{k-1}_{i,j}$ can be represented by a regular expression.
 - Then for all i, j, k it holds that $E^{k}_{i,j} = E^{k-1}_{i,j} + E^{k-1}_{i,k} \cdot (E^{k-1}_{k,k})^* \cdot E^{k-1}_{k,j}$.
 - Therefore, $E^{k}_{i,j}$ can also be represented by a regular expression.
 - Let I_{ε} be the set of indices *i* for which $A_i \rightarrow \varepsilon$.
 - Then $L(G) = \bigcup_{i \in I_E} E^{n}_{1,i}$ can be representd by a regular expression. The claim of the theorem follows.

- Identifying formal languages is also possible with recognition devices, i.e. by automata.
- An automaton can process and identify words.
- Grammars use a synthesizing approach, while automata an analytic one.
- An automaton accepts or rejects an input word.

- A finite automaton (FA) performs a sequence of steps in discrete time intervals
- The FA starts in the initial state.
- The input word is located on the input tape and the reading head is on the leftmost symbol of an input word.
- After reading a symbol, the FA moves the reading head to one position to the right, then the state changes, regarding the state transition function.
- If the FA has read the input, it stops, accepts or rejects the input.

Example: automatic door control

State transition diagram:

State transition table:

input signal

		NEITHER	FRONT	REAR	BOTH
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

- Application examples:
 - Automatic door control
 - Coffee machine
 - Pattern recognition
 - Markov chains
 - Pattern recognition
 - Speech processing
 - Optical character recognition
 - Predictions of share prizes in the stock exchange

•

A finite automaton is a 5-tuple $A = (Q, T, \delta, q_0, F)$, where

- Q is a finite, nonempty set of states,
- T is the finite alphabet of input symbols,
- $\delta: Q \times T \rightarrow Q$ is the **state transition function**
- $q_0 \in Q$ is the **initial state** or **start state**,
- F ⊆ Q is the set of acceptance states or end states.

Remark:

- The function δ can be extended to a function $\hat{\delta}: Q \times T^* \to Q$ as follows:
 - $\hat{\delta}(q, \varepsilon) = q$,
 - $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$ for all $x \in T^*$ and $a \in T$.

Example:

• Let $A = (Q, T, \delta, q_1, F)$ be a FA, where $Q = \{q_1, q_2, q_3\}, T = \{0, 1\}, F = \{q_2\}, \text{ and } \delta(q_1, 0) = q_1, \ \delta(q_1, 1) = q_2, \delta(q_2, 0) = q_3, \delta(q_2, 1) = q_2, \delta(q_3, 0) = \delta(q_3, 1) = q_2.$

State transition diagram:

State transition table:

δ	0	1	
q_1	q_1	q_2	
q_2	q 3	q 2	
q 3	q ₂	q 2	

• The accepted language is $L(A) = \{w \mid w \text{ conains at least one 1 and the last 1 is not followed by an odd number of 0s} \}$

Example:

Let T = {a,b,c}.
 Define a FA, which accepts the words of length of at most 5.

Solution:

• Formaly:

$$A=(\{q_0,\ldots,q_6\},\{a,b,c\},\delta,q_0,\{q_0,\ldots,q_5\}),$$

 $\delta(q_i,t)=q_{i+1},$ for $i=0,\ldots,5$, $t\in\{a,b,c\},$
 $\delta(q_6,t)=q_6,$ for $t\in\{a,b,c\}$

State transition diagram:

State transition table:

	а	b	С
$\leftrightarrows q_0$	<i>q</i> ₁	<i>q</i> ₁	q_1
$\leftarrow q_1$	q_2	q_2	q_2
$\leftarrow q_2$	q_3	q ₃	q_3
$\leftarrow q_3$	q ₄	q ₄	q_4
$\leftarrow q_4$	q 5	q 5	q 5
$\leftarrow q_5$	9 6	q 6	q 6
9 6	q 6	q 6	q 6

Deterministic and non-deterministic finite automata

- **Deterministic finite automaton (DFA)**: Function δ is single-valued, i.e. \forall $(q, a) \in Q \times T$ there is exactly one state s, s.t. $\delta(q, a) = s$.
- Nondeterministic finite automaton (NFA):
 - Function δ is multi-valued, i.e. $\delta: Q \times T \rightarrow 2^Q$.
 - Multiple initial states are allowed (the set of initial states $Q_0 \subseteq Q$).
 - It is allowed that $\delta(q, a) = \emptyset$ for so (q,a), i.e. the machine gets stuck
 - Null (or ε) move is allowed,
 i.e. it can move forward without
 reading symbols.

NFA example

Deterministic and non-deterministic FA

- New features of non-determinism
 - Multiple paths are possible (multiple choises at each step).
 - ε-transition is a "free" move without reading input.
 - Accepts the input if <u>some</u> path leads to an accepting state.

Deterministic and non-deterministic FA

- Alternative notation:
- State transitions can also be given in the form $qa \rightarrow p$, where $p \in \delta(q, a)$.
- Let M_{δ} be set of rules of the state transition of an NFA $A = (Q, T, \delta, Q_0, F)$.
- If M_δ contains exactly one rule qa → p for each pair (q,a), then the FA is deterministic, oherwise nondeterministic.

FA - reduction

- Let $A = (Q, T, \delta, Q_0, F)$ be a FA and $u,v \in QT^*$ words. The FA A **reduces** the u **in one step** (**directly**) to v (notation: $u \Rightarrow_A v$, or short: $u \Rightarrow v$), if there are a rule $qa \rightarrow p \in M_\delta$ (i.e. $\delta(q, a) = p$) and a word $w \in T^*$, s.t. u = qaw and v = pw hold.
- The FA $A = (Q, T, \delta, Q_0, F)$ **reduces** $u \in QT^*$ to $v \in QT^*$ (notation: $u \Rightarrow_A v$, or short: $u \Rightarrow^* v$, if
 - either u = v,
 - or \exists a word $z \in QT^*$, s.t. $u \Rightarrow^* z$ and $z \Rightarrow v$.
- Remark: ⇒* is the reflexive, transitive closure of ⇒.

FA – accepted language

- The **language accepted/recognized** by the FA $A = (Q, T, \delta, Q_0, F)$ is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } q_0 \in Q_0 \text{ and } p \in F\}$
- For a DFA A, there is one single start state $Q_0 = \{q_0\}$. The language accepted by DFA A is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } p \in F\}$

NFA accepting $L_1 \cup L_2$

Theorem: If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof (sketch): Let A_1 be a DFA, accepting L_1 and A_2 a DFA accepting L_2 . Then the following NFA accepts

 $L_1U L_2$.

NFA accepting L_1L_2

Theorem: If L_1 and L_2 regular languages, then L_1L_2 is also a regular language.

Proof (sketch): Let A_1 be a DFA accepting L_1 , A_2 egy DFA accepting L_2 . The following NVA accepts L_1L_2 .

Models of Computation 27 Tamás Lukovszki

NFA accepting *L**

Theorem: If L is a regular language, then L^* is also a regular language.

Proof. (sketch): Let A be a DFA accepting L.

The fillowing NFA accepts L^* -t. A

• **Theorem**: For all NFA $A = (Q, T, \delta, Q_0, F)$ a DFA $A' = (Q', T, \delta', q'_0, F')$ can be constructed, s.t. L(A) = L(A') holds.

- Idea: DFA keeps track of the subset of possible states in NFA
- Remark: In worst case $|Q'| = 2^{|Q|}$.

Proof:

- Let Q'= 2^Q be the set of all subsets of the set Q.
 (the number of elements of Q' is 2^{|Q|}).
- Let $\delta': Q' \times T \to Q'$ be the function defined as: $\delta'(q', a) = \bigcup_{q \in q'} \delta(q, a)$.
- Let $q'_0 = Q_0$ and $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$
- To prove $L(A) \subseteq L(A')$ we prove Lemma 1, to $L(A') \subseteq L(A)$ we prove Lemma 2.
- First, an example (next slide)

NFA - DFA

Example:

```
• Let A = (Q, T, \delta, Q_0, F) be a NFA, where Q = \{q_0, q_1, q_2\}, T = \{a, b\}, Q_0 = \{q_0\}, F = \{q_2\}. \delta is defined as: \delta(q_0, a) = \{q_0, q_1\}, \delta(q_0, b) = \{q_1\}, \delta(q_1, a) = \emptyset, \delta(q_1, b) = \{q_2\}, \delta(q_2, a) = \{q_0, q_1, q_2\}, \delta(q_2, b) = \{q_1\}. Construct a DFA A' quivalent with A.
```

Solution:

• DFA: $A' = (Q', T, \delta', q'_0, F')$, where $Q' = \{\emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}, q'_0 = \{q_0\}, F' = \{\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}, \delta'$ next slide

NFA - DFA

Example (cont.):

 $\delta: \quad \delta(q_0, a) = \{q_0, q_1\}, \quad \delta(q_0, b) = \{q_1\}, \\ \delta(q_1, a) = \emptyset, \quad \delta(q_1, b) = \{q_2\}, \\ \delta(q_2, a) = \{q_0, q_1, q_2\}, \quad \delta(q_2, b) = \{q_1\}.$

 $\delta'(:) \qquad \delta'((\emptyset, a) = \emptyset, \qquad \delta'((\emptyset, b) = \emptyset, \\ \delta'((\{q_0\}, a) = \{q_0, q_1\}, \qquad \delta'((\{q_0\}, b) = \{q_1\}, \\ \delta'((\{q_1\}, a) = \emptyset, \qquad \delta'((\{q_1\}, b) = \{q_2\}, \\ \delta'((\{q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_2\}, b) = \{q_1\}, \\ \delta'((\{q_0, q_1\}, a) = \{q_0, q_1\}, \qquad \delta'((\{q_0, q_1\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1\}, \\ \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'(\{q_1, q_2\}, b$

 $\delta'((\{q_0,q_1,q_2\},a)=\{q_0,q_1,q_2\}, \quad \delta'((\{q_0,q_1,q_2\},b)=\{q_1,q_2\}.$

NFA - DFA

Example (cont.):

NVA

$$\delta(q_0, a) = \{q_0, q_1\}, \quad \delta(q_0, b) = \{q_1\}, \\ \delta(q_1, a) = \emptyset, \quad \delta(q_1, b) = \{q_2\}, \\ \delta(q_2, a) = \{q_0, q_1, q_2\}, \quad \delta(q_2, b) = \{q_1\}.$$

$$F = \{q_2\}$$

DVA

$$\delta'((\emptyset, a) = \emptyset, \qquad \delta'((\emptyset, b) = \emptyset, \\ \delta'((\{q_0\}, a) = \{q_0, q_1\}, \qquad \delta'((\{q_0\}, b) = \{q_1\}, \\ \delta'((\{q_1\}, a) = \emptyset, \qquad \delta'((\{q_1\}, b) = \{q_2\}, \\ \delta'((\{q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1\}, a) = \{q_0, q_1\}, \\ \delta'((\{q_0, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_2\}, b) = \{q_1\}, \\ \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_1, q_2\}, b) = \{q_1\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'(\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \\ \delta'(\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}, \qquad \delta'(\{q_0, q_1, q_2\}, b) = \{q_1, q_2\},$$

$$F' = \{\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}\}$$

Lemma 1:

For all p,q ∈ Q, q' ∈ Q' és u,v ∈ T*, if qu ⇒*_A pv and q ∈ q', then ∃ p' ∈ Q', s.t.
 q'u ⇒*_{A'} p'v and p ∈ p'.

Proof:

- Induction over the number of reduction steps n in $qu \Rightarrow *_A pv$.
- For n=0: the claim holds trivially, p'=q'.

Proof (Lemma 1, cont.):

- For $n \rightarrow n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $qu \Rightarrow^*_A pv$ be a reduction of n+1 steps. Then for some $q_1 \in Q$ and $u_1 \in T^*$ holds that $qu \Rightarrow_A q_1u_1 \Rightarrow^*_A pv$.
- Therefore, $\exists a \in T$, s.t. $u = au_1$ and $q_1 \in \delta(q, a)$.
- Since $\delta(q, a) \subseteq \delta'(q', a)$, for $q \in q'$, q'_1 can be choosen as $q'_1 = \delta'(q', a)$.
- Consequently, $q'u \Rightarrow_{A'} q'_1u_1$, where $q_1 \in q'_1$.
- By the induction assumption, $\exists p' \in Q'$, s.t. $q'_1u_1 \Rightarrow^*_{A'} p'v$ and $p \in p'$, which proves the claim. \square

Proof (Theorem, cont.):

- Let $u \in L(A)$, i.e. $q_0u \Rightarrow^*_A p$, for some $q_0 \in Q_0$, $p \in F$.
- By Lemma 1, $\exists p'$, s.t. $q'_0u \Rightarrow *_{A'}p'$, where $p \in p'$.
- By definition of F', $p \in p'$ and $p \in F$ imply that $p' \in F'$, which proves $L(A) \subseteq L(A')$.
- For $L(A') \subseteq L(A)$, we prove Lemma 2.

Lemma 2:

- For all p', $q' \in Q'$, $p \in Q$ and $u, v \in T^*$,
 - if $q'u \Rightarrow *_{A'} p'v$ and $p \in p'$,
 - then $\exists q \in Q$, s.t. $qu \Rightarrow *_A pv$ and $q \in q'$.

Proof:

- Induction over the number of steps n in the reduction.
- For n = 0: The claim holds trivially.

Proof (Lemma 2, cont.):

- For $n \rightarrow n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $q'u \Rightarrow *_{A'} p'v$ be a reduction of n+1 steps. Then $q'u \Rightarrow *_{A'} p'_1v_1 \Rightarrow_{A'} p'v$, where $v_1 = av$, for some $p'_1 \in Q'$ and $a \in T$.
- Then, $p \in p' = \delta'(p'_1, a) = \bigcup_{p_1 \in p'_1} \delta(p_1, a)$.
- Consequently, $\exists p_1 \in p'_1$, s.t. $p \in \delta(p_1, a)$.
- For this p_1 , it holds that $p_1v_1 \Rightarrow_A pv$.
- By the induction assumption, $qu \Rightarrow^*_A p_1v_1$, for some $q \in q_0$, which implies the claim. \square

Proof (Theorem, cont.):

- Let $q'_0u \Rightarrow *_{A'}p'$ and $p' \in F$.
- By the definition of F', $\exists p \in p'$, s.t. $p \in F$.
- Then, by Lemma 2, for some $q_0 \in q'_0$, holds that $q_0 u \Rightarrow *_A p$.
- This proves the claim of the theorem. \square

Corollaries

Corollary 1:

• The class of regular languages \mathcal{L}_3 is closed for the complement operation.

Proof:

- Let L be a language, recognized by a FA $A = (Q,T,\delta,q_0,F)$
- Then $\overline{L} = T^* L$ can be recognized by a FA $A = (Q, T, \delta, q_0, Q F)$