Models of Computation

6: Probabilistic automata, Pushdown automata, Contextfree languages

Probabilistic automaton

- Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of states of the probabilistic automaton $P A$. Reading an input symbol x in state s the automaton $P A$ goes to state s_{i} with probability $p_{i}(s, x)$, where for every s and x :

$$
\sum_{i=1}^{n} p_{i}(s, x)=1, \quad \text { and } \quad p_{i}(s, x) \geq 0, i=1, \ldots, n
$$

- Instead of the initial state, there is a distribution of initial states,
i.e. every state is an initial state with a fixed probability.
- The accepted language $L\left(P A, S_{f}, \eta\right)$ depends on
- the final states S_{f} and
- the cutting point $\eta, 0 \leq \eta<1$.
- The accepted language $L\left(P A, S_{f}, \eta\right)$ is the set of words, for which $P A$ reaches a state in S_{f} with a probability greater than η.

Probabilistic automaton

- An n-dimensional stochastic matrix $\left(p_{i j}\right)_{1 \leq i, j \leq n}$ is a square matrix, for which

$$
\begin{aligned}
& \text { 1.) } \quad p_{i j} \geq 0 \quad(1 \leq i, j \leq n) \\
& \text { 2.) } \quad \sum_{j=1}^{n} p_{i j}=1 \quad(1 \leq i \leq n) .
\end{aligned}
$$

- An n-dimensional stochastic row vector (column vector) is an n-dimensional row vector (column vector) whose components are are non-negative and the sum of the components is 1 .
- If only one component of the stochastic row vector is 1 , then it is called a coordinate vector.
- The n-dimensional unit matrix E_{n} is a stochastic matrix.

Probabilistic automaton

- A finite probabilistic automaton over an alphabet V is a triple $P A=\left(S, s_{0}, M\right)$, where
- $S=\left\{s_{1}, \ldots, S_{n}\right\}$ is a finite, nonempty set of states,
- S_{0} is a n-dimensional stochastic row vector, the distribution of the initial states
- M is a mapping that maps V to the set of n dimensional stochastic matrices.
- For $x \in V$, the (i, j) -th element of the matrix $M(x)$ is $p_{j}\left(s_{i}, X\right)$, it is the probability that reading x in state $s_{i}, P A$ goes to state state s_{j}.

Probabilistic automaton

- Example: Consider the following probabilistic automaton: $P A=\left(\left\{s_{1}, s_{2}\right\},(1,0), M\right)$ over the alphabet $\{x, y\}$, where

$$
M(x)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), M(y)=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

- The initial distribution shows that the initial state is s_{1}.
- The state transition digram:

Probabilistic automaton

- Let $P A=\left(S, s_{0}, M\right)$ be a finite probabilistic automaton over alphabet V. The function M on V can be extended to V^{*} as follows:
- $\hat{M}(\varepsilon):=E_{n}$
- $\hat{M}\left(x_{1} \ldots x_{n}\right):=M\left(x_{1}\right) M\left(x_{2}\right) \ldots M\left(x_{n}\right)$, where $n \geq 2, x_{i} \in V$.
- Instead of \hat{M}, we write M hereafter.
- For a word $w \in V^{*}$, the (i, j)-th element of $M(w)$ is the probability $p_{j}\left(s_{i}, w\right)$ that processing w in state s_{i} the automaton PA goes to state s_{j}.

Probabilistic automaton

- Let $P A=\left(S, S_{0}, M\right)$ be a finite probabilistic automaton over an alphabet V, and $w \in V^{*}$. The stochastic row vector $s_{0} M(w)$, denoted by $P A(w)$, is the state distribution resulting from \boldsymbol{w}.
- Note: $P A(\varepsilon)=s_{0}$.

Probabilistic automaton

- Let $P A=\left(S, S_{0}, M\right)$ be a finite probabilistic automaton over an alphabet $V, 0 \leq \eta<1$, and \bar{s}_{f} an n-dimensional column vector, s.t. all elements of \bar{s}_{f} are either 0 or 1 .
(\bar{s}_{f} can be understood as a membership function for the final states $S_{f}, S_{f} \subseteq S$.)
- The language accepted by PA with cut point $\boldsymbol{\eta}$ is: $L\left(P A, \bar{s}_{f}, \eta\right)=\left\{w \in V^{*} \mid s_{0} M(w) \bar{s}_{f}>\eta\right\}$.
- A language L is called $\boldsymbol{\eta}$-stochastic if \exists probabilistic finite automaton $P A=\left(S, s_{0}, M\right)$ and column vector \bar{s}_{f}, s.t.
$L=L\left(P A, \bar{s}_{f}, \eta\right)$ holds.
- A language L is called stochastic if it is η-stochastic for a $0 \leq \eta<1$.

Probabilistic automaton

- Example: Let $P A=\left(\left\{s_{1}, s_{2}\right\},(1,0), M\right)$ over the alphabet $\{x, y\}$ with

$$
M(x)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), M(y)=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

- Then
- $P A\left(x^{n}\right)=(1,0) M\left(x^{n}\right)=(1,0)$, if n is even,
- $P A\left(x^{n}\right)=(0,1)$, if n is odd, and
- $P A(w)=(1 / 2,1 / 2)$ if w contains at least one y.
- Thus, for $\bar{s}_{f}=\binom{0}{1}$

$$
L\left(P A, \bar{s}_{f}, \eta\right)= \begin{cases}V^{*}-(x x)^{*} & \text { if } 0 \leq \eta<1 / 2 \\ x(x x)^{*} & \text { if } 1 / 2 \leq \eta<1\end{cases}
$$

- Thus, $V^{*}-(x x)^{*}$ is, e.g., a $1 / 3$-stochastic language, while $x(x x)^{*}$ is, e.g, a 2/3-stochastic language.
Therfore, both are stochastic languages.

Regular and ($\boldsymbol{\eta}$-)stochastic languages

- Theorem [Rabin 1963]: All regular languages are stochastic, but not all stochastic language is regular.
- Theorem [Rabin 1963]: All 0-stochastic languages are regular.

Pushdown automaton (PDA)

- A pushdown automaton (PDA) is a generalization of a finite automaton with (potentially) infinite stack and finite control.
- The new data is added to the top of the stack, and removed in reverse order.
- The stack is a last in, first out
 (LIFO) data structure.

Pushdown automata

- A pushdown automaton (PDA) is a 7-tuple $A=\left(Z, Q, T, \delta, z_{0}, q_{0}, F\right)$, where
- Z is a finite set of stack symbols (stack alphabet),
- Q is a finite set of states,
- T is the finite set of input symbols (input alphabet),
- $\delta: Z \times Q \times(T \cup\{\varepsilon\}) \rightarrow P\left(Z^{*} \times Q\right)$ is the transition function,
- where $P(X)$ is set of finite subsets of X. (example: $\delta(z, q, a)=\left\{\left(z^{\prime}, q^{\prime}\right),\left(z^{\prime \prime}, q^{\prime \prime}\right)\right\}$, note: non-deterministic by default).
- $z_{0} \in Z$ is the initial stack symbol,
- $q_{0} \in Q$ is the initial state,
- $F \subseteq Q$ is the set of accepting states or final states.

PDA

- The symbol at the top of the stack, the current state, and the input symbol determine the transition.
- At each step, the automaton takes one element from the top of the stack (pop) and writes several symbols (0, 1, 2, . . .) instead (push).
- If $\delta(z, q, \varepsilon)$ is not empty, then so-called ε-transition (ε-step, ε-movement) can be performed, which allows to change the state and modify the top of the stack without reading a symbol from the input tape.
- ε-transition is possible even before reading the first input symbol or even after reading the last input symbol.

PDA

- The configuration of the PDA is a word of a form of $z q w$, where
- $z \in Z^{*}$ is the current content of the stack,
- $q \in Q$ is the current state, and
- $w \in T^{*}$ is the unprocessed part of the input.
- $\quad z$ has its first letter at the bottom of the stack, and its last letter at the top of the stack.
- The reading head is on the first letter w.
- The symbol on the left of q is the symbol on the top of the stack and the symbol on the right of q is the next letter of the input to be processed.
- The initial configuration of the PDA $A=\left(Z, Q, T, \delta, Z_{0}, q_{0}, F\right)$ for input $w \in T^{*}$ is $z_{0} q_{0} W$.

PDA - operations

- Let $t \in T \cup\{\varepsilon\}, q, r \in Q$ and $z \in Z$
- $(\varepsilon, r) \in \delta(z, q, t)$: element z can be removed from the stack (POP operation)
- $(z, r) \in \delta(z, q, t)$: the contents of the stack may remain unchanged
- $\left(z^{\prime}, r\right) \in \delta(z, q, t): z$ can be replaced with z^{\prime} at the top of the stack
- $\left(z z^{\prime}, r\right) \in \delta(z, q, t)$: we can put z^{\prime} on top of the stack (PUSH operation)
- Other possibilities:
- $\left(z z^{\prime} z^{\prime \prime}, r\right) \in \delta(z, q, t)$: we can put $z^{\prime} z^{\prime \prime}$ on top of the stack, $z^{\prime \prime}$ will be on top ($z^{\prime \prime}, z^{\prime} \in Z$).
- In general, $(w, r) \in \delta(z, q, t)$, where $w \in Z^{*}$.

The symbol z is replaced by the word w, s.t. the last letter of w is on the top of the stack.

PDA - reduction

- The PDA A reduces the configuration $\alpha \in Z^{*} Q T^{*}$ to a configuration β $\in Z^{*} Q T^{*}$ in one step, denoted by $\alpha \Rightarrow_{A} \beta$, if $\exists z \in Z, q, p \in Q, a \in T \cup\{\varepsilon\}, x, y \in Z^{*}$, and $w \in T^{*}$, s.t. $(y, p) \in \delta(z, q, a)$ and $\alpha=$ xzqaw and $\beta=$ xypw.
- Examples:
- if $\delta\left(c, q_{1}, a\right)=\left\{\left(d d, q_{2}\right),\left(\varepsilon, q_{4}\right)\right\}$ and $z_{0} c d d c q_{1}$ is a configuration, then
- $z_{0} c d d \mathbf{c q} \mathbf{q}_{\mathbf{1}} \mathbf{a b a b b a} \Rightarrow_{A} Z_{0} c d d \boldsymbol{d} \boldsymbol{d q}_{\mathbf{2}} b a b b a$ and
- $z_{0} c d d c \boldsymbol{q}_{1} a b a b b a \Rightarrow_{A} Z_{0} c d d \boldsymbol{q}_{4} b a b b a$ also holds.
- if $\delta\left(c, q_{3}, \varepsilon\right)=\left\{\left(d d, q_{2}\right)\right\}$ and $z_{0} c d d c q_{3} a b a b b a$ is a configuration, then
- $z_{0} c d d \mathbf{c q} \boldsymbol{q}_{3} a b a b b a \Rightarrow_{A} Z_{0} c d d d d q_{2} a b a b b a$
- if $\delta\left(c, q_{5}, \varepsilon\right)=\varnothing$ and $\delta\left(c, q_{5}, a\right)=\varnothing$, then
- \exists configuration C s.t. $z_{0} C C q_{5} a a b \Rightarrow_{A} C$.

PDA - reduction

- The PDA A reduces the configuration $\alpha \in Z^{*} Q T^{*}$ to a configuration $\beta \in Z^{*} Q T^{*}$, denoted by $\alpha \Rightarrow{ }^{*} \beta$, if
- either $\alpha=\beta$,
- or $\exists \alpha_{1}, \ldots, \alpha_{n}$ a finite sequence of words, s.t. $\alpha=\alpha_{1}, \beta=\alpha_{n}$ and $\alpha_{i} \Rightarrow_{A} \alpha_{i+1}, 1 \leq i \leq n-1$.
- The relation $\Rightarrow^{*} \subseteq Z^{*} Q T^{*} \times Z^{*} Q T^{*}$ is the reflexive and transitive closure of relation \Rightarrow_{A}.
- Example:
- If $\delta\left(d, q_{6}, b\right)=\left\{\left(\varepsilon, q_{5}\right)\right\}$ and $\delta\left(d, q_{5}, \varepsilon\right)=\left\{\left(d d, q_{2}\right),\left(\varepsilon, q_{4}\right)\right\}$ then
- \#cddq 6 bab $\Rightarrow_{A} \# c d q_{5} a b \Rightarrow_{A} \# c d d q_{2} a b$ and
- \#cddq ${ }_{6} b a b \Rightarrow_{A} \# c d q_{5} a b \Rightarrow_{A} \# c q_{4} a b$.
- So, \#cddq ${ }_{6} b a b \Rightarrow *_{A} \# c d d q_{2} a b$ and $\# c d d q_{6} b a b \Rightarrow *_{A} \# c q_{4} a b$.

PDA - reduction

- The accepted language with accepting state (or with final state) by a PDA A is:
$L(A)=\left\{w \in T^{*} \mid z_{0} q_{0} w \Rightarrow_{A} x p\right.$, where $\left.x \in Z^{*}, p \in F\right\}$.

PDA

A PDA A can be alternatively given by

- Rewriting rules
- The set of rules is denoted by M_{δ}.

Using this alternative notation:

- zqa $\rightarrow u p \in M_{\delta} \Leftarrow(u, p) \in \delta(z, q, a)$,
- $z q \rightarrow u p \in M_{\delta} \Leftarrow(u, p) \in \delta(z, q, \varepsilon)$.
- $\left(p, q \in Q, a \in T, z \in Z, u \in Z^{*}\right)$
- State transition diagram
- For $p, q \in Q, a \in T \cup\{\varepsilon\}, z \in Z, u \in Z^{*}$:

- Final states are indicated by double circle.
- The start state is indicated by \rightarrow.

Deterministic PDA

- The PDA $A=\left(Z, Q, T, \delta, z_{0}, q_{0}, F\right)$ is deterministic if for all $(z, q, a) \in Z \times Q \times T$ it holds that $|\delta(z, q, a)|+|\delta(z, q, \varepsilon)|=1$.
- So, for all $q \in Q$ and $z \in Z$
- either $\delta(z, q, a)$ contains exactly one element for each input symbol $a \in T$ and $\delta(z, q, \varepsilon)=\varnothing$,
- or $\delta(z, q, \varepsilon)$ contains exactly one element and $\delta(z, q, a)=\varnothing$ for all input symbols $a \in T$.
- Remark: If for all $(z, q, a) \in Z \times Q \times T$, it holds that $|\delta(z, q, a)|+|\delta(z, q, \varepsilon)| \leq 1$ then the PDA can be easily extended to a deterministic one accepting the same language. Thus, PDAs fulfilling this condition can be considered as deterministic in a broader sense.

Deterministic PDA

- The acceptance (recognition) power of deterministic PDAs is less than of non-deterministic PDAs.
- Example: Let
- $L_{1}=\left\{w w^{-1} \mid w \in\{a, b\}^{*}\right\}$,
- $L_{2}=\left\{w w^{-1} \mid w \in\{a, b\}^{*}\right\}$.
- L_{1} can be accepted by a deterministic PDA, but L_{2} not.
- Both L_{1} and L_{2} can be accepted by a nondeterministic PDA.

Non-Deterministic PDA

- Example: Accepting $L_{2}=\left\{w w^{-1} \mid w \in\{a, b\}^{*}\right\}$ non-deterministically.
- Idea:
- 1. read and push input symbols non-deterministically either repeat 1 . or go to 2 .
- 2. read input symbols and pop stack sympols, compare if not equal reject.
- 3. enter accept state if stack is empty.
- Non-deterministic PDA:

$$
\begin{aligned}
A & =\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\right. \\
\cdot & \left.\{\$, a, b\}, \delta, q_{0}, \$,\left\{q_{2}\right\}\right), \text { where: } \\
& \left.\cdot\left(z, q_{0}\right) \in \delta\left(z, q_{0}\right) \in \delta\right), \quad \forall t \in\{a, b\}, z \in\{\$, a, b\} \\
& \left.\cdot\left(\varepsilon, q_{1}\right) \in \delta\right), \quad \forall z \in\left\{\left(t, q_{1}, t\right), \quad \forall t \in\{a, b\}\right. \\
& \cdot\left(\$, q_{2}\right) \in \delta\left(\$, q_{1}, \varepsilon\right)
\end{aligned}
$$

Non-deterministic PDA

- Example: Accepting $L_{2}=\left\{w w^{-1} \mid w \in\{a, b\}^{*}\right\}$ non-deterministically.
- Idea:
- 1. read and push input symbols non-deterministically either repeat 1 . or go to 2 .
- 2. read input symbols and pop stack sympols, compare if not equal reject.
- 3. enter accept state if stack is empty.

PDA

- The language accepted by the PDA A with an empty stack is
- $N(A)=\left\{w \in T^{*} \mid z_{0} q_{0} W \Rightarrow *_{A} p\right.$, where $\left.p \in Q\right\}$.
- Example: Let $A=\left(\{\$, a\}\left\{q_{0}, q_{1}\right\},\{a, b\}, \delta, \$, q_{0},\{ \}\right)$, where δ is:
- \$ $q_{0} a \rightarrow \$ a q_{0}$
- $a q_{0} a \rightarrow a a q_{0}$
- $a q_{0} b \rightarrow q_{1}$
- $a q_{1} b \rightarrow q_{1}$
- $\$ q_{1} \rightarrow q_{1}$.

Then $N(A)=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

- Remark: If the stack is empty, the operation of the automaton is blocked, since no transition is defined for the case of an empty stack. (This is why we need the symbol z_{0} in the initial configuration. The set of accepting states is irrelevant to $N(A)$.)

Computing power of PDAs

- Theorem: For every PDA A, a PDA A^{\prime} can be constructed, s.t. $N\left(A^{\prime}\right)=L(A)$ is fulfilled.
- Theorem: For every context-free grammar G, a PDA A can be constructed, s.t. $L(A)=L(G)$.
- Theorem: For every PDA A, a context-free grammar G can be given, s.t. $L(G)=N(A)$
- Therefore, the computing power of PDAs (either we consider acceptance with accepting end state or acceptance with an empty stack) equal to the computing power of context-free (type 2) grammars.

Converting CFGs to PDAs

- Theorem: For every context-free grammar (CFG) G, a PDA A can be constructed, s.t. $L(A)=L(G)$.
- Proof construction: Convert the CFG G to the following PDA.
- Push the start symbol on the stack.
- If the top of stack is
- Non-terminal: replace with right hand side of rule (nondeterministic choice).
- Terminal: pop it and match with next input symbol.
- If the stack is empty, accept.
- Example: Let $G=(N, T, P, S)$ be the CFG with $T=\{a,+, \times,()$,$\} ,$ $N=\{S, M, F\}$, and $P=\{S \rightarrow S+M|M, M \rightarrow M \times F| F, F \rightarrow(S) \mid a\}$. Input: $a+a \times a$.

Bar-Hillel Lemma -
 pumping lemma for context-free languages

- A necessary condition that a language is context-free (thus, it can be recognized by a PDA).
- Theorem (Bar-Hillel lemma, or pumping lemma for context-free languages):
For every context-free language L, there exists a natural number n, s.t. for every word $z \in L$ with $|z|>n$, holds that z can be written as $z=u v w x y$ ($u, v, w, x, y \in T^{*}$), satisfying the following 3 conditions:

1. $|v w x| \leq n$,
2. $v x \neq \varepsilon$,
3. $u v^{i} w x^{i} y \in L$, for all $i \geq 0$.

Bar-Hillel Lemma

- Proof: Assume, that the grammar is ε free and given in Chomsky normal form (i.e. all production rules are of the form: $A \rightarrow B C$, or $A \rightarrow a$, or $S \rightarrow \varepsilon$).
The derivation of a word $z \in L(G)$ can be represented by a tree T_{s}.
If the depth of T_{s} (lengt of the longest path from S to a leaf) is k, then $|z| \leq 2^{k}$, due to the Chomsky normal form. Let N be the set of non-terminals in G and $j=|N|$. Let $n=2^{j+1}$. If $z \in L$ and $|z|>n$, then the longest path in the derivation tree of $S \Rightarrow^{*} z$ must be longer than j. Consider the last section of this path of length $j+1$. There must be a non-terminal $A \in N$ that occurs at least twice in this section.

Bar-Hillel Lemma

- Proof (cont.): Consider two such occurrences of A on this path. Let r be the word corresponding to the subtree of the first one (closer to S), and let w be the word corresponding to the other one. Then, $A \Rightarrow^{*} r$ and $A \Rightarrow^{*} w$, and w is a subword of r, so $r=v w x$ for some $v, x \in T^{*}$. Furthermore, $z=u r y$, for some $u, y \in T^{*}$. Due to the choice of the occurrences of $A,|r| \leq 2^{j+1}$. On the other hand, $S \Rightarrow * u A y$ and $A \Rightarrow * v A x$.
Therefore, $\mathrm{S} \Rightarrow * u v^{i} w x^{i} y$, for any $i \geq 0$. Thus, $A \Rightarrow * v A x$ contains at least one step, and the first step must be the application of a rule of the form $A \rightarrow B C$. Therefore $|v x| \geq 1$, since G is ε-free. \square

V W X

Application of the Bar-Hillel Lemma

- Claim: The language $L=\left\{a^{j} b^{j} c^{j}: j \geq 1\right\}$ is not context-free.
- Proof: Assume for contradiction, that G is a context-free grammar generating L.
Then, by the lemma, $\exists n \geq 0$ s.t. \forall word $z \in L$, $|z|>n$ can be written in the form $z=u v w x y$, satisfying $|v w x| \leq n, v x \neq \varepsilon$, and for all $i \geq 0$, $u v^{i} w x^{i} y \in L$.
Consider a word $a^{m} b^{m} c^{m}$ with $m>n$.
Since $|v w x| \leq n, v w x$ can not contain all three symbols of a, b, c.
Assume, w.l.o.g., it contains at least one a and does not contain any c. Then by pumping,
for $i \geq 2$, $u v^{i} w x^{i} y$ contains more a's than c's.

Consequently, $u v^{i} w x^{i} y \notin L . \square$

Example

- Example: A context sensitive grammar generating $L=\left\{a^{j} b^{j} c^{j}: j \geq 1\right\}$:
$S \rightarrow a b c \mid a A b c$
$A b \rightarrow b A$
$A c \rightarrow B b c c$
$b B \rightarrow B b$
$a B \rightarrow a a \mid a a A$

References

- Michael O. Rabin: Probabilistic Automata. Information and Control. 6 (3): 230-245, 1963. doi:10.1016/s0019-9958(63)90290-0
- Michael Sipser: Introduction to the Theory of Computation. 3rd edition, 2012.

