Models of Computation

8: Decision problems, undecidability

Encoding objects into strings

- If O is some object (e.g., automaton, TM, polynomial, graph, etc.), we write $<O>$ to be an encoding of O into a string.
- If $O_{1}, O_{2}, \ldots, O_{k}$ is a list of objects then we write $\left.<O_{1}, O_{2}, \ldots, O_{k}\right\rangle$ to be an encoding of them together into a single string.
- Notation for writing Turing machines
- We will use English descriptions of algorithms when we describe TMs, knowing that we could (in principle) convert those descriptions into states, transition function, etc.
- $M=$ "On input w :
- [English description of the algorithm]"

Example

- TM M recognizing $L=\left\{a^{k} b^{k} c^{k}: k \geq 0\right\}$.
- $M=$ "On input w

1) Check if, $w \in a^{*} b^{*} c^{*}$, reject if not.
2) Count the number of a 's, b 's, and c 's in w.
3) Accept if all counts are equal; reject if not."

- High-level description is ok.
- We do not need to manage tapes, states, etc...

Encoding of TMs

- Assumed that $\Sigma=\{0,1\}$.
- The code of a TM M (denoted by $\langle M\rangle$) is the following:
- Let $M=\left(Q,\{0,1\}, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where
- $Q=\left\{p_{1}, \ldots, p_{k}\right\}, \Gamma=\left\{X_{1}, \ldots, X_{m}\right\}, D_{1}=R, D_{2}=S, D_{3}=L$,
- $k \geq 3, p_{1}=q_{0}, p_{k-1}=q_{\text {accept }}, p_{k}=q_{\text {reject }}$,
- $m \geq 3, X_{1}=0, X_{2}=1, X_{3}=$.
- The code of a transition $\delta\left(p_{i}, X_{j}\right)=\left(p_{r}, X_{s}, D_{t}\right)$ is $0^{i} 10^{j} 10^{r} 10^{s} 10^{t}$.
- $<M>$ is list of transition codes separated by 11.
- Note: $<M>$ starts and ends with 0 , does not contain the substring 111.
- <M,w>:=<M>111w

Acceptance Problem for DFAs

- Let $A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B$ is a DFA and B accepts $w\}$.

Theorem: $A_{\text {DFA }}$ is decidable.
Proof: Give TM $M_{\text {A-dFA }}$ that decides $A_{\text {DFA }}$.

- $M_{A-D F A}=$ "On input s
- check that s has the form $\langle B, w\rangle$ where B is a DFA and w is a string; reject if not.
- Simulate the computation of B on w.
- If ends in an accept state then accept. If not then reject."

Acceptance Problem for NFAs

- Let $A_{\text {NFA }}=\{\langle B, w\rangle \mid B$ is a NFA and B accepts $w\}$.

Theorem: $A_{\text {DFA }}$ is decidable.
Proof: Give TM $M_{\text {A-NFA }}$ that decides $A_{\text {NFA }}$.

- $M_{\text {A-NFA }}=$ "On input $<B, w>$
- Convert NFA B to equivalent DFA B^{\prime}.
- Run TM $M_{\text {A-dFA }}$ on input $\left.<B^{\prime}, w\right\rangle$. [$M_{\text {A-DFA }}$ decides $A_{\text {dFA }}$]
- Accept if $M_{\text {Adfa }}$ accepts.
- Reject if not."
- New element: Use conversion construction and previously constructed TM as a subroutine.

Emptiness Problem for DFAs

- Let $E_{\mathrm{DFA}}=\{\mid B$ is a DFA and $L(B)=\varnothing\}$.

Theorem: $E_{\text {DFA }}$ is decidable.
Proof: Give TM $M_{\text {E-DFA }}$ that decides $E_{\text {DFA }}$.

- $M_{\text {E-DFA }}=$ "On input $$
[Idea: Check for a path from start to accept.]
- Mark start state.
- Repeat until no new state is marked:
- Mark every state that has an incoming arrow from a previously marked state.
- Accept if no accept state is marked.
- Reject if some accept state is marked."

Equivalence Problem for DFAs

- Let $E Q_{\text {DFA }}=\{<A, B>\mid A, B$ are DFAs and $L(A)=L(B)\}$.

Theorem: $E Q_{D F A}$ is decidable.
Proof: Give TM $M_{\text {Eq-DFA }}$ that decides $E Q_{\text {DFA }}$.

- $M_{\text {EO-DFA }}=$ "On input $\langle A, B\rangle$ [Idea: Make DFA C that accepts w where A and B disagree.]
- Construct DFA C where $L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$
- Run $M_{\text {E-dfa }}$ on C.
- Accept if $M_{\text {E-Dfa }}$ accepts.
- Reject if $M_{\text {E-dFA }}$ rejects."

Acceptance Problem for CFGs

- Let $A_{\text {CFG }}=\{\langle G, w\rangle \mid G$ is a CFG and G generates $w\}$.

Theorem: $A_{\text {cfg }}$ is decidable.
Proof: Give TM $M_{\text {A-cfg }}$ that decides $A_{\text {cfg }}$.

- $M_{\text {A.CFG }}=$ "On input $<G, w>$
- Convert into CNF.
- Try all derivations of length $\max (1,2|w|-1)$.
- Accept if any generate w.
- Reject if not.

Corollary: Every CFL is decidable.
Proof: Let L be a CFL, generated by CFG G.

- Construct TM $M_{G}=$ "on input w
- Chomsky Normal Form (CNF) only allows rules:
- $A \rightarrow B C$
- $B \rightarrow b$
- $S \rightarrow \varepsilon$
- Lemma 1: Every CFG can be converted CFG into CNF.
- Lemma 2: If G is in CNF and w $\in L(G)$, then every derivation of w has $\max (1,2|w|-1)$ steps.
- Run $M_{\text {A.cfg }}$ on $<G, w>$.
- Accept if $M_{\text {A-cfg }}$ accepts
- Reject if $M_{\text {A.Cfg }}$ rejects."

Emptiness Problem for CFGs

- Let $E_{\text {CFG }}=\{<G>\mid G$ is a CFG and $L(G)=\varnothing\}$.

Theorem: $E_{\text {CFG }}$ is decidable.
Proof: Give TM $M_{\mathrm{E}-\mathrm{CFG}}$ that decides E_{CFG}.

- $M_{\mathrm{E}-\mathrm{CFG}}=$ "On input <G>
[Idea: work backwards from terminals]
- Mark all occurrences of terminals in G.
- Repeat until no new variables get marked
- Mark all occurrences of variable A if
$A \rightarrow B_{1} B_{2} \ldots B_{k}$ is a rule and all B_{i} were already marked.
- Reject if the start variable is marked.
- Accept if not."

Equivalence Problem for CFGs

- Let $E Q_{\text {CFG }}=\{<G, H>\mid A, B$ are CFGs and $L(G)=$ $L(H)\}$.

Theorem: $E Q_{D F A}$ is not decidable.
Remark: CF languages is not closed under complementation or intersection.
Proof: s. Sipser, 5.1. exercise

Existence of non-Turing-recognizable languages

- For all $i \geq 1$, let w_{i} be the i-th element of the set $\{0,1\}^{*}$ ordered by length and lexicograpically, i.e. $\{\varepsilon, 0,1,00,01,10,11,000,001, \ldots\}$.
- Let M_{i} denote the TM encoded by w_{i} (if w_{i} does not encode a TM, then M_{i} is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.
Proof:

- Two different languages cannot be recognized by the same TM.
- The number of TMs is countably infinite (the encoding of TMs is an injection into $\{0,1\}^{*}$, whose cardinality is countably infinite).
- The set of languages over $\{0,1\}$ (i.e. $\left\{L \subseteq\{0,1\}^{*}\right\}$) is uncountable (cardinality of continuum).

A non-Turing-recognizable language

Theorem: Let $L_{d}=\left\{w_{i}: w_{i} \notin L\left(M_{i}\right)\right\} . L_{d}$ is not Turing-recognizable, i.e. $L_{d} \notin R E$.

Proof: Georg Cantor's diagonalization method.

- Consider the bit table T, for which

$$
T(i, j)=1 \Leftrightarrow w_{j} \in L\left(M_{i}\right)(i, j \geq 1) .
$$

- Let z be an infinitely long bit string in the diagonal of T and \bar{z} be the bitwise complement of z.
- For all $i \geq 1$, the i-th row of T is the characteristic vector of language $L\left(M_{i}\right)$.
- \bar{z} is the characteristic vector of L_{d}.
- If L_{d} could be recognized by a TM D, the characteristic vector of D would be a row in T.
- ż differs from every row of T, so

T	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	\ldots	$\langle D\rangle$	\ldots
M_{1}	$\underline{1}$	0	1		1	
M_{2}	0	$\underline{1}$	1	\ldots	0	\ldots
M_{3}	1	0	$\underline{0}$		1	
\vdots		\vdots		\ddots		
D	1	0	1		$?$	
\vdots		\vdots				\ddots
		$\bar{z}=001 \ldots$				

L_{d} differs from all languages in $R E$. \square

Recursive languages \boldsymbol{R}

- A language L is recursive if $L=L(M)$ for a decider TM M.

Theorem: If a L is recursive, then \bar{L} is also reccursive.

Proof:

- Let $L=L(M)$ for some TM M which halts for every input. We construct a TM M^{\prime} with $\bar{L}=L\left(M^{\prime}\right)$.

- The accepting states of M will be the rejecting states of M^{\prime} (halts without acceptance)
- M^{\prime} has a new accepting state r (there is no transition from r).
- Consider all pairs (q, a) of non accepting states q of M and input symbol a, for which there is no transition in M (M halts without acceptance). For all such pairs (q, a) add a transition to state r.
- Since M is halts with every input word, M^{\prime} also halts with every input word.
- M^{\prime} accepts exatly the words that are not accepted by $M . M^{\prime}$ accepts \bar{L}.

Complements of recursively enumerable (RE) languages

Theorem: If $L \in R E$ and $\bar{L} \in R E$, then $L \in R$ (and $\bar{L} \in R E$).

Proof:

- Let $L=L\left(M_{1}\right)$ and $\bar{L}=L\left(M_{2}\right) . M_{1}$ and M_{2} are simulated in parallel with a TM M.
- Let M be a 2-tape TM.
- Tape-1 of M simulates the tape of M_{1},
- Tape-2 of M simulates the tape of M_{2}.
- The states of M correspod to the pairs $Q_{1} \times Q_{2}$ (pairs of states of M_{1} and M_{2}).
- If the input w of M is in L, then M_{1} accepts it and halts. Then M accepts w and halts.
- If the input w of M is in \bar{L}, then M_{2} accepts it and halts.

Then M rejects w and halts. So M halts with all inputs and $L(M)=L$.

R and RE

- Universal language: $L_{u}=\{\langle M, w\rangle \mid M$ is TM and $w \in L(M)\}$. Theorem: $L_{u} \in R E \backslash R$.
Proof:
- L_{u} is recursively enumerable (Turing-recognizable)
- We construct a TM U, called the universal TM, to recognize L_{u}.

- Let U be a multitape TM s.t.
- $1^{\text {st }}$ tape holds the input with the encodings of M and w.

We use the encoding of TMs and binary strings from this lecture.

- $2^{\text {nd }}$ tape is used to simulate M's input tape.

We initialize the $2^{\text {nd }}$ tape with w.
We move the head on the $2^{\text {nd }}$ tape to the first simulated cell.

- $3^{\text {rd }}$ tape is used to store M's state.

We initialize the $3^{\text {rd }}$ tape with the start state of M.

- $4^{\text {th }}$ tape is used as a work tape.

R and RE

Proof (cont.):

- Simulating a transition of M :
- U searches tape 1 for a transition for the current state of M (stored on tape 3) and the current tape symbol of M (stored on tape 2).
- Then U stores the new state on tape 3 , U changes the tape symbol on tape 2 , U moves M 's tape head left or right on tape 2 as specified by the transition.
- If M enters its final state signaling that M accepts w, then U accepts $\langle M, w\rangle$ and halts.
- Thus, $L(U)=L_{u}$.
- $\Rightarrow L_{u} \in R E$

R and RE

Proof (cont.):

- L_{u} is not recursive:

- Suppose for contradiction, L_{u} were recursive.

Then there would exist a TM M that accepts \bar{L}_{u} the complement of L_{u}.

- Then we can transform M into a TM M^{\prime} that accepts L_{d} as follows:
- M^{\prime} transforms its input string w into a pair $\langle w, w\rangle$.
- M^{\prime} simulates M on $<w, w>$ assuming the first w is an encoding of a TM M_{i} and the second w is an encoding of a binary string w_{i}. Since M accepts the complement of L_{u}, M will accept $<w, w>$ if and only if M_{i} does not accept w_{i}.
- Thus, M^{\prime} accepts w if and only if w is in L_{d}.

But we have previously shown that there does not exist a TM that recognizes L_{d}. Consequently, M does not exist.

- $\Rightarrow L_{u} \notin R$.

Halting Problem

- In Alan Turing's original formulation of Turing machines acceptance was just by halting not necessarily by halting in a final state.
- We define $H(M)$ for a TM M to be the set of input strings w on which M halts in either a final or a nonfinal state.
- The halting problem is to he set of pairs $H A L T=\{\langle M, w\rangle \mid w$ is in $H(M)\}$.
- Theorem: HALT $\in R E \backslash R$. Proof: Similar to the proof of $L_{u} \in R E \backslash R$.
- A similar argument can be used to show that many practical problems associated with software verification are undecidable. For example, the problem of determining whether a program will ever go into an infinite loop is undecidable.

Reducibility - Concept

- If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.
- If A is reducible to B then solving B gives a solution to A.
- B is easy $\rightarrow A$ is easy.
- A is hard $\rightarrow B$ is hard.
this is the form we will use

Reducibility

- If we know that some problem is undecidable, we can use that to show other problems are undecidable.
- $H A L T=\{<M, w\rangle \mid M$ halts on input $w\}$.

Theorem: HALT is undecidable.
Proof: Showing that L_{u} is reducible to HALT.

- Assume that HALT is decidable and show that L_{u} is decidable.
- Let R be a TM deciding HALT.
- Construct TM S deciding L_{u}.
- $S=$ "On input $<M, w>$

1. Use R to test if M on w halts. If not, reject.
2. Simulate M on w until it halts (as guaranteed by R).
3. If M has accepted then accept.

If M has rejected then reject.

- TM S decides L_{u} is a contradiction. Therefore, HALT is undecidable.

Recursive (Turing-decidable) languages
 R and \mathcal{L}_{1} languages

- A linear bounded automaton (LBA) is a nondeterministic TM, whose

\triangleright	w_{1}	w_{2}	\cdots			

- input alphabet Σ contains two special symbols \triangleright (left endmarker) and \triangleleft (right endmarker).
- The inputs are in the form $\triangleright(\Sigma \backslash\{\triangleright, \triangleleft\})^{*} \triangleleft$,
- \triangleright and \triangleleft cannot be overwritten
- The head cannot stand to the left of \triangleright or to the right of \triangleleft.
- The starting position of the head is the right neighbor of the cell containing D.
- An LBA is an NTM that has a limited working area.
- Named after an equivalent model in which the available storage is bounded by a constant multiple of the length of the input.

R and L_{1}

Theorem:

- (1) For every type-1 grammar G, a LBA A can be given, s.t. $L(A)=L(G)$.
- (2) For every LBA A, a type-1 grammar G can be specified, s.t. $L(G)=L(A)$.

Proof:

- (1) In the previous lecture, we saw that all type-0 grammar G an NTM can be constructed recognizing $L(G)$.
- The construction simulates a derivation in G non-deterministically on tape 3. At the end of the iterations the NTM checks if the sentence on tape 3 is equal to the the input word w on tape 1.
- If G is a type-1 grammar, the length of strings during the derivation are non-decreasing. Therefore, the length of the string on tape 2 never exceeds $|w|$, so this NTM is an LBA.

R and L_{1}

Proof (cont.):

- (2) For every LBA A, a type-1 grammar G can be specified, s.t. $L(G)=L(A)$.
- We sightly modify the construction of the last lecture.
- Let $\Gamma^{\prime}:=\Gamma \backslash\{\triangleright, \triangleleft\}$ and $G=\left((\Gamma \mid \Sigma) \cup Q \times \Gamma^{\prime} \cup\{S, A\}, \Sigma, P, S\right)$.

1) $S \rightarrow \triangleright A\left(q_{\text {accept }}, a\right) A \triangleleft\left|\triangleright A\left(q_{\text {accept }}, a\right) \triangleleft\right| \triangleright\left(q_{\text {accept }}, a\right) A \triangleleft \mid \triangleright\left(q_{\text {accept }}, a\right) \triangleleft \quad\left(\forall a \in \Gamma^{\prime}\right)$
2) $A \rightarrow a A \mid a$
3) $b\left(q^{\prime}, c\right) \rightarrow(q, a) c$ if $\left(q^{\prime}, b, R\right) \in \delta(q, a)$ ($\forall a \in \Gamma^{\prime}$)
4) $\left(q^{\prime}, b\right) \rightarrow(q, a)$ if $\left(q^{\prime}, b, S\right) \in \delta(q, a)$
5) $\left(q^{\prime}, c\right) b \rightarrow c(q, a)$ if $\left(q^{\prime}, b, L\right) \in \delta(q, a)$
6) $\triangleright\left(q_{0}, a\right) \rightarrow \triangleright a$

- 1-2. we generate an arbitrary accepting configuration. Since A is an LBA, for accepting a word u, it is enough to generate a configuration of length of at most $|u|$. After this the length of sentence is fixed.
- 3-5. configuration transitions are simulated in reverse order in the grammar.

R and L_{1}

Proof (cont.):

1) $S \rightarrow \triangleright A\left(q_{\text {accept }}, a\right) A \triangleleft\left|\triangleright A\left(q_{\text {accept }}, a\right) \triangleleft\right| \triangleright\left(q_{\text {accept }}, a\right) A \triangleleft \mid \triangleright\left(q_{\text {accept }}, a\right) \triangleleft \quad\left(\forall a \in \Gamma^{\prime}\right)$
2) $A \rightarrow a A \mid a$ ($\forall a \in \Gamma^{\prime}$)
3) $b\left(q^{\prime}, c\right) \rightarrow(q, a) c$ if $\left(q^{\prime}, b, R\right) \in \delta(q, a)$
($\forall c \in \Gamma^{\prime}$)
4) $\left(q^{\prime}, b\right) \rightarrow(q, a)$ if $\left(q^{\prime}, b, S\right) \in \delta(q, a)$
5) $\left(q^{\prime}, c\right) b \rightarrow c(q, a)$ if $\left(q^{\prime}, b, L\right) \in \delta(q, a)$
6) $\triangleright\left(q_{0}, a\right) \rightarrow \triangleright a$

- 6. Since the grammar does not decrease the length, technically we need symbols from $Q \times \Gamma^{\prime}$. Until the last step, the sentence contains exactly one of that symbols.
- For all $a \in \Sigma \backslash\{\triangleright, \triangleleft\}, w \in(\Sigma \backslash\{\triangleright, \triangleleft\})^{*}$ or $a=, w=\varepsilon$, it can be shown by induction on the length of the derivation that
- for $x \in \Gamma^{\prime}, \alpha, \beta \in\left(\Gamma^{\prime}\right)^{*}: \triangleright q_{0} a w \triangleleft \vdash^{*} \triangleright \alpha q_{\text {accept }} x \beta \triangleleft$ if and only if

$$
S \Rightarrow * \triangleright \alpha\left(q_{\text {accept }}, x\right) \beta \triangleleft \Rightarrow * \triangleright\left(q_{0}, a\right) w \triangleleft \Rightarrow \triangleright a w \triangleleft .
$$

R and L_{1}

Theorem: If A is LBA, then $L(A)$ is decidable.

Proof:

- Let w be an input word, $|w|=n$. Due to the linear bound, the number of possible configurations of A for an input w is at most $m(w)=|Q| \cdot n \cdot|\Gamma|^{n}$.
- Every computation longer than $m(w)$ leads to an infinite loop.
- Let M^{\prime} be the TM, s.t. on input $\langle A, w\rangle$, where A is an LBA and w a string

1) Run A on w for $\leq m(w)+1$ transitions
2) If A accepts/rejects before this point, accept/reject as A.
3) Otherwise, reject.

- Obviously, $L\left(M^{\prime}\right)=L(A)$ and M^{\prime} decides $L(A)$.

R and L_{1}

Theorem: $\mathcal{L}_{1} \subset R$.

Proof:

- Based on the previous 2 theorems, $\mathcal{L}_{1} \subseteq R$.
- Let $L_{d, L B A}=\{<A>: A$ is a LBA and $<A>\notin L(A)\}$.
- $L_{d, L B A}$ can be decided as follows:
- For LBA A, let S be a TM which goes in state

- $q_{\text {accept }}$ if $\langle A>\notin L(A)$ and
- $q_{\text {reject }}$ if $\langle A>\in L(A)$.

Since $L(A)$ decidable, S always halts. $\Rightarrow L_{d, L \text { LBA }} \in R$.

- $L_{d, \text { LBA }}$ is not recognizable with LBA ($\Rightarrow L_{d, \text { LBA }} \notin \mathcal{L}_{1}$)
- By Cantor's diagonalization method.
- For contradiction, assume that $L_{d, L B A}$ is recognized by an LBA S.
- if $<S>\in L_{d, \text { LBA }}$, then S recognizes $<S>$, so $<S>\notin L_{d, \text { LBA }}$, contradiction,
- if $<S>\notin L_{d, \text { LbA }}$, then S does not recognizes $<S>$, so $<S>\in L_{d, \text { LBA }}$, contradiction.

References

- Michael Sipser: Introduction to the Theory of Computation. 3rd edition, 2012.

