Models of Computation

8: Decision problems, undecidability

Encoding objects into strings

- If O is some object (e.g., automaton, TM, polynomial, graph, etc.), we write <O> to be an encoding of O into a string.
- If O₁, O₂,...,O_k is a list of objects then we write
 <O₁, O₂,...,O_k> to be an encoding of them together into a single string.
- Notation for writing Turing machines
- We will use English descriptions of algorithms when we describe TMs, knowing that we could (in principle) convert those descriptions into states, transition function, etc.
- M ="On input w:
- [English description of the algorithm]"

Example

- TM *M* recognizing $L = \{a^k b^k c^k : k \ge 0\}.$
- M = "On input w
 - 1) Check if, $w \in a^*b^*c^*$, reject if not.
 - 2) Count the number of a's, b's, and c's in w.
 - 3) Accept if all counts are equal; reject if not."
- High-level description is ok.
- We do not need to manage tapes, states, etc...

Encoding of TMs

- Assumed that $\Sigma = \{0,1\}$.
- The **code** of a TM *M* (denoted by $\langle M \rangle$) is the following:
- Let $M = (Q, \{0,1\}, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where
 - $Q = \{p_1,...,p_k\}, \Gamma = \{X_1,...,X_m\}, D_1 = R, D_2 = S, D_3 = L,$

•
$$k \ge 3$$
, $p_1 = q_0$, $p_{k-1} = q_{accept}$, $p_k = q_{reject}$,

- $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = _$.
- The code of a transition $\delta(p_i, X_j) = (p_r, X_s, D_t)$ is $0^i 10^j 10^r 10^s 10^t$.
- *<M>* is list of transition codes separated by 11.
- Note: <*M*> starts and ends with 0, does not contain the substring 111.
- <*M*,*w*> := <*M*>111*w*

Acceptance Problem for DFAs

• Let $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA and } B \text{ accepts } w \}$.

Theorem: *A*_{DFA} is decidable.

Proof: Give TM M_{A-DFA} that decides A_{DFA} .

- $M_{A-DFA} = "On input s$
 - check that s has the form <B,w> where B is a DFA and w is a string; reject if not.
 - Simulate the computation of *B* on *w*.
 - If ends in an accept state then accept.
 If not then reject."

Acceptance Problem for NFAs

• Let $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is a NFA and } B \text{ accepts } w \}$.

Theorem: *A*_{DFA} is decidable.

Proof: Give TM M_{A-NFA} that decides A_{NFA} .

- $M_{A-NFA} =$ "On input $\langle B, w \rangle$
 - Convert NFA *B* to equivalent DFA *B'*.
 - Run TM M_{A-DFA} on input $\langle B', w \rangle$. [M_{A-DFA} decides A_{DFA}]
 - Accept if M_{A-DFA} accepts.
 - Reject if not."
- New element: Use conversion construction and previously constructed TM as a subroutine.

Emptiness Problem for DFAs

• Let $E_{DFA} = \{ \langle B \rangle | B \text{ is a DFA and } L(B) = \emptyset \}.$

Theorem: *E*_{DFA} is decidable.

Proof: Give TM M_{E-DFA} that decides E_{DFA} .

- $M_{E-DFA} =$ "On input $\langle B \rangle$ [Idea: Check for a path from start to accept.]
 - Mark start state.
 - Repeat until no new state is marked:
 - Mark every state that has an incoming arrow from a previously marked state.
 - Accept if no accept state is marked.
 - Reject if some accept state is marked."

Equivalence Problem for DFAs

• Let $EQ_{DFA} = \{ \langle A, B \rangle | A, B \text{ are DFAs and } L(A) = L(B) \}$.

Theorem: *EQ*_{DFA} is decidable.

Proof: Give TM M_{EQ-DFA} that decides EQ_{DFA} .

- *M*_{EQ-DFA} = "On input <*A*,*B*>
 [Idea: Make DFA *C* that accepts *w* where *A* and *B* disagree.]
 - Construct DFA *C* where $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$
 - Run M_{E-DFA} on C.
 - Accept if *M*_{E-DFA} accepts.
 - Reject if *M*_{E-DFA} rejects."

Acceptance Problem for CFGs

• Let $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG and } G \text{ generates } w \}$.

Theorem: *A*_{CFG} is decidable.

Proof: Give TM M_{A-CFG} that decides A_{CFG} .

- $M_{A-CFG} =$ "On input $\langle G, w \rangle$
 - Convert into CNF.
 - Try all derivations of length max(1, 2|w| 1).
 - Accept if any generate w.
 - Reject if not.

Corollary: Every CFL is decidable.

Proof: Let *L* be a CFL, generated by CFG *G*.

- Construct TM M_G = "on input w
 - Run M_{A-CFG} on $\langle G, w \rangle$.
 - Accept if *M*_{A-CFG} accepts
 - Reject if *M*_{A-CFG} rejects."

 Chomsky Normal Form (CNF) only allows rules:

•
$$A \rightarrow BC$$

•
$$B \rightarrow b$$

- $S \rightarrow \varepsilon$
- Lemma 1: Every CFG can be converted CFG into CNF.
- Lemma 2: If G is in CNF and $w \in L(G)$, then every derivation of w has max(1, 2|w| 1) steps.

Emptiness Problem for CFGs

• Let $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}.$

Theorem: *E*_{CFG} is decidable.

Proof: Give TM M_{E-CFG} that decides E_{CFG} .

- $M_{E-CFG} =$ "On input $\langle G \rangle$ [Idea: work backwards from terminals]
 - Mark all occurrences of terminals in *G*.
 - Repeat until no new variables get marked
 - Mark all occurrences of variable A if $A \rightarrow B_1B_2...B_k$ is a rule and all B_i were already marked.
 - Reject if the start variable is marked.
 - Accept if not."

Equivalence Problem for CFGs

• Let $EQ_{CFG} = \{ \langle G, H \rangle \mid A, B \text{ are CFGs and } L(G) = L(H) \}$.

Theorem: *EQ*_{DFA} is <u>not</u> decidable.

Remark: CF languages is not closed under complementation or intersection.

Proof: s. Sipser, 5.1. exercise

Existence of non-Turing-recognizable languages

- For all $i \ge 1$, let w_i be the *i*-th element of the set $\{0,1\}^*$ ordered by length and lexicograpically, i.e. $\{\varepsilon,0,1,00,01,10,11,000,001,...\}$.
- Let M_i denote the TM encoded by w_i (if w_i does not encode a TM, then M_i is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.

Proof:

- Two different languages cannot be recognized by the same TM.
- The number of TMs is countably infinite (the encoding of TMs is an injection into {0,1}*, whose cardinality is countably infinite).
- The set of languages over $\{0,1\}$ (i.e. $\{L \subseteq \{0,1\}^*\}$) is uncountable (cardinality of continuum).

A non-Turing-recognizable language

Theorem: Let $L_d = \{w_i : w_i \notin L(M_i)\}$. L_d is not Turing-recognizable, i.e. $L_d \notin RE$.

Proof: Georg Cantor's diagonalization method.

- Consider the bit table *T*, for which $T(i,j) = 1 \Leftrightarrow w_j \in L(M_i) \ (i,j \ge 1).$
- Let z be an infinitely long bit string in the diagonal of T and z̄ be the bitwise complement of z.
- For all $i \ge 1$, the *i*-th row of *T* is the characteristic vector of language $L(M_i)$.
- \bar{z} is the characteristic vector of L_d .
- If L_d could be recognized by a TM D, the characteristic vector of D would be a row in T.
- \overline{z} differs from every row of T, so L_d differs from all languages in RE.

T	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	•••	$\langle D \rangle$	•••
M_1	<u>1</u>	0	1		1	
M_2	0	<u>1</u>	1	•••	0	•••
M_3	1	0	<u>0</u>		1	
•		• •		•••		
D	1	0	1		<u>?</u>	
• •		• •				••••

 $\overline{z} = 001...$

Recursive languages *R*

• A language L is **recursive** if L = L(M) for a **decider** TM M.

Theorem: If a *L* is recursive, then \overline{L} is also reccursive.

Proof:

• Let L = L(M) for some TM Mwhich halts for every input. We construct a TM M' with $\overline{L} = L(M')$.

- The accepting states of *M* will be the rejecting states of *M*' (halts without acceptance)
- *M'* has a new accepting state *r* (there is no transition from *r*).
- Consider all pairs (q,a) of non accepting states q of M and input symbol a, for which there is no transition in M (M halts without acceptance). For all such pairs (q,a) add a transition to state r.
- Since *M* is halts with every input word, *M*' also halts with every input word.
- *M*' accepts exatly the words that are not accepted by *M*. *M*' accepts \overline{L} .

Complements of recursively enumerable (*RE*) languages

Theorem: If $L \in RE$ and $\overline{L} \in RE$, then $L \in R$ (and $\overline{L} \in RE$).

Proof:

- Let $L = L(M_1)$ and $\overline{L} = L(M_2)$. M_1 and M_2 are simulated in parallel with a TM M.
- Let *M* be a 2-tape TM.
 - Tape-1 of M simulates the tape of M_1 ,
 - Tape-2 of M simulates the tape of M_2 .
 - The states of *M* correspod to the pairs *Q*₁ x *Q*₂ (pairs of states of *M*₁ and *M*₂).
- If the input w of M is in L, then M₁ accepts it and halts.
 Then M accepts w and halts.
- If the input w of M is in \overline{L} , then M_2 accepts it and halts. Then M rejects w and halts. So M halts with all inputs and L(M) = L.

R and RE

• Universal language: $L_u = \{ \langle M, w \rangle \mid M \text{ is TM and } w \in L(M) \}$.

Theorem: $L_u \in RE \setminus R$.

Proof:

- *L_u* is recursively enumerable (Turing-recognizable)
- We construct a TM U, called the universal TM, to recognize L_u .
- Let *U* be a multitape TM s.t.
 - 1st tape holds the input with the encodings of *M* and *w*.
 We use the encoding of TMs and binary strings from this lecture.
 - 2nd tape is used to simulate *M*'s input tape.
 We initialize the 2nd tape with *w*.
 We move the head on the 2nd tape to the first simulated cell.
 - 3rd tape is used to store *M*'s state.
 We initialize the 3rd tape with the start state of *M*.
 - 4th tape is used as a work tape.

R and RE

Proof (cont.):

- Simulating a transition of *M*:
 - U searches tape 1 for a transition for the current state of M (stored on tape 3) and the current tape symbol of M (stored on tape 2).
 - Then U stores the new state on tape 3,
 U changes the tape symbol on tape 2,
 U moves M's tape head left or right on tape 2 as specified by the transition.
 - If M enters its final state signaling that M accepts w, then U accepts <M,w> and halts.
- Thus, $L(U) = L_u$.
- \Rightarrow $L_u \in RE$

R and RE

Proof (cont.):

• *L_u* is not recursive:

- Suppose for contradiction, L_u were recursive. Then there would exist a TM *M* that accepts \overline{L}_u the complement of L_u .
- Then we can transform M into a TM M' that accepts L_d as follows:
 - *M*' transforms its input string *w* into a pair $\langle w, w \rangle$.
 - M' simulates M on <w,w> assuming the first w is an encoding of a TM M_i and the second w is an encoding of a binary string w_i.
 Since M accepts the complement of L_u, M will accept <w,w> if and only if M_i does not accept w_i.
- Thus, M' accepts w if and only if w is in L_d.
 But we have previously shown that there does not exist a TM that recognizes L_d. Consequently, M does not exist.
- \Rightarrow $L_u \notin R$.

Halting Problem

- In Alan Turing's original formulation of Turing machines acceptance was just by halting not necessarily by halting in a final state.
- We define *H*(*M*) for a TM *M* to be the set of input strings *w* on which *M* halts in either a final or a nonfinal state.
- The halting problem is to he set of pairs HALT = {<M,w> | w is in H(M)}.
- **Theorem**: $HALT \in RE \setminus R$. **Proof**: Similar to the proof of $L_u \in RE \setminus R$.
- A similar argument can be used to show that many practical problems associated with software verification are undecidable. For example, the problem of determining whether a program will ever go into an infinite loop is undecidable.

Reducibility - Concept

- If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.
- If A is reducible to B then solving B gives a solution to A.
 - *B* is easy \rightarrow *A* is easy.
 - A is hard \rightarrow B is hard. this is the form we will use

Reducibility

- If we know that some problem is undecidable, we can use that to show other problems are undecidable.
- $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}.$

Theorem: *HALT* is undecidable.

Proof: Showing that L_u is reducible to HALT.

- Assume that *HALT* is decidable and show that *L_u* is decidable.
- Let *R* be a TM deciding *HALT*.
- Construct TM *S* deciding *L*_{*u*}.
- *S* = "On input *<M*,*w>*
 - 1. Use *R* to test if *M* on *w* halts. If not, reject.
 - 2. Simulate *M* on *w* until it halts (as guaranteed by *R*).
 - 3. If *M* has accepted then accept.
 - If *M* has rejected then reject.
- TM S decides L_u is a contradiction. Therefore, HALT is undecidable.

Recursive (Turing-decidable) languages R and \mathcal{L}_1 languages

- A linear bounded automaton (LBA) is a nondeterministic TM, whose
 - input alphabet Σ contains two special symbols \triangleright (left endmarker) and \triangleleft (right endmarker).
 - The inputs are in the form $\triangleright(\Sigma \setminus \{ \triangleright, \triangleleft \})^* \triangleleft$,
 - \triangleright and \lhd cannot be overwritten
 - The head cannot stand to the left of ⊳ or to the right of ⊲.
 - The starting position of the head is the right neighbor of the cell containing ▷.
- An LBA is an NTM that has a limited working area.
- Named after an equivalent model in which the available storage is bounded by a constant multiple of the length of the input.

\triangleright	W 1	W 2						W n	\triangleleft
------------------	------------	------------	--	--	--	--	--	------------	-----------------

Theorem:

- (1) For every type-1 grammar G, a LBA A can be given,
 s.t. L(A) = L(G).
- (2) For every LBA A, a type-1 grammar G can be specified,
 s.t. L(G) = L(A).

Proof:

- (1) In the previous lecture, we saw that all type-0 grammar G an NTM can be constructed recognizing L(G).
- The construction simulates a derivation in *G* non-deterministically on tape 3. At the end of the iterations the NTM checks if the sentence on tape 3 is equal to the the input word *w* on tape 1.
- If G is a type-1 grammar, the length of strings during the derivation are non-decreasing. Therefore, the length of the string on tape 2 never exceeds |w|, so this NTM is an LBA.

Proof (cont.):

- (2) For every LBA A, a type-1 grammar G can be specified,
 s.t. L(G) = L(A).
- We sightly modify the construction of the last lecture.
- Let $\Gamma' := \Gamma \setminus \{ \triangleright, \triangleleft \}$ and $G = ((\Gamma \setminus \Sigma) \cup Q \times \Gamma' \cup \{S,A\}, \Sigma, P, S)$.
 - 1) $S \rightarrow \triangleright A(q_{accept}, a)A \triangleleft | \triangleright A(q_{accept}, a) \triangleleft | \triangleright (q_{accept}, a)A \triangleleft | \triangleright (q_{accept}, a) \triangleleft (\forall a \in \Gamma')$ 2) $A \rightarrow aA | a$ ($\forall a \in \Gamma'$) 3) $b(q',c) \rightarrow (q,a)c$ if $(q',b,R) \in \delta(q,a)$ ($\forall c \in \Gamma'$) 4) $(q',b) \rightarrow (q,a)$ if $(q',b,S) \in \delta(q,a)$ 5) $(q',c)b \rightarrow c(q,a)$ if $(q',b,L) \in \delta(q,a)$ ($\forall c \in \Gamma'$) 6) $\triangleright (q_{0},a) \rightarrow \triangleright a$ ($\forall a \in \Gamma'$)
- 1-2. we generate an arbitrary accepting configuration.
 Since A is an LBA, for accepting a word u, it is enough to generate a configuration of length of at most |u|. After this the length of sentence is fixed.
- 3-5. configuration transitions are simulated in reverse order in the grammar.

Proof (cont.):

1) $S \rightarrow \triangleright A(q_{accept}, a)A \triangleleft \mid \triangleright A(q_{accept}, a) \triangleleft \mid \triangleright (q_{accept}, a)A \triangleleft \mid \triangleright (q_{accept}, a)A \triangleleft \mid \triangleright (q_{accept}, a)A \triangleleft \mid \geq (q_{accept}, a)A \mid \geq (q_{acce$	(∀ <i>a</i> ∈Г′)
2) $A \rightarrow aA \mid a$	(∀a∈Г′)
3) $b(q',c) \rightarrow (q,a)c$ if $(q',b,R) \in \delta(q,a)$	$(\forall c \in \Gamma')$
4) $(q',b) \rightarrow (q,a)$ if $(q',b,S) \in \delta(q,a)$	
5) $(q',c)b \rightarrow c(q,a)$ if $(q',b,L) \in \delta(q,a)$	$(\forall c \in \Gamma')$
6) $\triangleright(q_0,a) \rightarrow \triangleright a$	(∀ <i>a</i> ∈Г′)

- 6. Since the grammar does not decrease the length, technically we need symbols from Q × Γ'. Until the last step, the sentence contains exactly one of that symbols.
- For all $a \in \Sigma \setminus \{ \triangleright, \triangleleft \}$, $w \in (\Sigma \setminus \{ \triangleright, \triangleleft \})^*$ or $a = _$, $w = \varepsilon$, it can be shown by induction on the length of the derivation that
 - for $x \in \Gamma'$, $\alpha, \beta \in (\Gamma')^* : \triangleright q_0 aw \triangleleft \vdash^* \triangleright \alpha q_{accept} x \beta \triangleleft$ if and only if $S \Rightarrow^* \triangleright \alpha(q_{accept}, x) \beta \triangleleft \Rightarrow^* \triangleright (q_0, a) w \triangleleft \Rightarrow \triangleright aw \triangleleft$.

Theorem: If A is LBA, then L(A) is decidable.

Proof:

- Let w be an input word, |w|=n. Due to the linear bound, the number of possible configurations of A for an input w is at most m(w) = |Q| · n · |Γ|ⁿ.
- Every computation longer than m(w) leads to an infinite loop.
- Let M' be the TM, s.t.
 on input <A,w>, where A is an LBA and w a string

1) Run A on w for $\leq m(w) + 1$ transitions

2) If A accepts/rejects before this point, accept/reject as A.

3)Otherwise, reject.

• Obviously, L(M') = L(A) and M' decides L(A).

R and L_1

Theorem: $\mathcal{L}_1 \subset R$.

Proof:

- Based on the previous 2 theorems, $\mathcal{L}_1 \subseteq R$.
- Let $L_{d,LBA} = \{ \langle A \rangle : A \text{ is a LBA and } \langle A \rangle \notin L(A) \}$.
- *L*_{*d*,LBA} can be decided as follows:
 - For LBA A, let S be a TM which goes in state
 - q_{accept} if $\langle A \rangle \notin L(A)$ and
 - q_{reject} if $\langle A \rangle \in L(A)$.

Since L(A) decidable, S always halts. $\Rightarrow L_{d,LBA} \in R$.

- $L_{d,LBA}$ is not recognizable with LBA ($\Rightarrow L_{d,LBA} \notin L_1$)
 - By Cantor's diagonalization method.
 - For contradiction, assume that $L_{d,LBA}$ is recognized by an LBA S.
 - if $\langle S \rangle \in L_{d,LBA}$, then S recognizes $\langle S \rangle$, so $\langle S \rangle \notin L_{d,LBA}$, contradiction,
 - if <S> ∉ L_{d,LBA}, then S does not recognizes <S>, so <S> ∈ L_{d,LBA}, contradiction.

References

• Michael Sipser: Introduction to the Theory of Computation. 3rd edition, 2012.