Asynchronous filling by myopic luminous robots

Attila Hideg & Tamás Lukovszki ALGOSENSORS 2020

FILLING, UNIFORM DISPERSION

- Area
 - unknown
 - connected
 - represented by a graph of n vertices
 - for each vertex, adjacent vertices are arranged in a fixed cyclic order
- n Robots
 - enter at "Door" vertices
 - can move on edges
 to neighboring vertices
 - collision must be prevented
- Goal: Robots must occupy all vertices

ROBOTS

- Robots have restricted capabilities
 - homogeneus
 - anonymous
 - limited viewig range
 - limited memory
 - no explicit communication
 - visible lights
 - asynchronous

https://ssr.seas.harvard.edu/

LOOK-COMPUTE-MOVE (LCM) CYCLES

LCM CYCLES

Semi synchronous (SSYNC)

Fully synchronous (FSYNC)

Aynchronous (ASYNC)

Orthogonal

Orthogonal

Orthogonal

Orthogonal

Arbitrary Graph

Orthogonal

Arbitrary Graph

Orthogonal

Arbitrary Graph

COLLISIONLESS DISPERSION

 Fundamental question: how "weak" the robots can be and still be able to solve the problem.

LOWER BOUNDS – COLLISIONLESS DISPERSION

- Visibility range: ≥1 hop
- Time: Ω(n) LCM-rounds
- Memory: $\Omega(1)$ bits [Barrameda et al. 2008]

STATE OF THE ART – COLLISIONLESS DISPERSION

Method	FSYNC/ ASYNC	Doors	Viewing range	Comm. range	Memory bits	Area (Orthogonal/ Arbitrary)
BFLF, DFLF [Hsiang et al. 2004]	FSYNC	Single	2	2	2	0
TALK [Barrameda et al. 2013]	ASYNC	Single	2	2	4	0
MUTE [Barrameda et al. 2013]	ASYNC	Single	6	-	9	0
MULTIPLE [Barrameda et al. 2008]	ASYNC	Multiple	3	- k colors	4	0
Single Door [Hideg, Lukovszki 2017]	FSYNC	Single	1	-	13	Ο
Multiple Door [Hideg, Lukovszki 2017]	FSYNC	Multiple	1	-	13	0
VCM [Hideg, Lukovszki 2018]	FSYNC	Single	1	-	Ο(Δ)	А
MD-VCM [Hideg, Lukovszki 2018]	FSYNC	Multiple	1	-	$O(\Delta \cdot \log k)$	А

LUMINOUS ROBOTS

- Robots are enhanced with VISIBLE LIGHTS
- Can change color
- Model [Peleg 2005]

Pixelbots, Disney & ETH Zürich

 FSYNC ≰ ASYNC^{O(1)} and ASYNC^{O(1)} ≰ FSYNC [D'Emidio et al. 2016]

OUR CONTRIBUTION

Method	FSYNC/ ASYNC	Doors	Viewing range	Runtime #async rounds	Persistent memory bits	Colors	Area (Orthogonal/ Arbitrary)
PACK	ASYNC	Single	1	O(<i>n</i> ²)	O(log ∆)	∆+4	A
Mod-PACK	ASYNC	Single	1	$O(n^2 \log \Delta)$	O(log ∆)	O(1)	А
BLOCK	ASYNC	Single	2	O(<i>n</i>)	O(log Δ)	Δ+4	А
<i>k-</i> Door- BLOCK	ASYNC	Multiple	2	O(<i>n</i>)	$O(\log(\Delta+k))$	$\Delta + k + 4$	Α

First asymptotic bounds for filling in the ASYNC model.

Only termination in finite time has been proven previously.

- Mimics a DFS traversal of the unknown graph
- Virtual Chain: Path of the current Leader from the Door
 - All not "Finished" robots are on the virtual chain
- Tasks to solve:
 - Prevent collision

- Leader moves to unvisited vertices
- Packed state: Each Follower is immediately behind its predecessor
 - All vertices of the chain are occupied by a robot
- Leader only moves, when packed state is reached
 - No other robot can move in this state
 - Collision-freeness guaranteed

• Δ +4 colors:

- Δ colors (DIR) indicating the direction of the target vertex (relative to the entry direction in cyclic order of neighbors)
- 2 colors (CONF, CONF2) for confirmation
 - Robot can only move if the successor is behind it and the DIR color is confirmed
- 1 color (MOV) during movement
- Light is off (considered as color)
- Leader moves to an unoccupied neighboring vertex if exists.
- If there is no unoccupied neighboring vertex, then
 - the Leader switches to Finished state and
 - the successor becomes the new Leader "Taking the Leadership"

Entry direction

- Leader:
 - Can only move to an unvisited vertex. When it wants to move, it
 - shows the direction: setting the DIR color, and
 - it waits until its successor allows to move by setting its CONF color. During the movement, the Leader shows the MOV color.
 - When its successor sets CONF color, the chain is in Packed state.

• Leader:

- Can only move to an unvisited vertex. When it wants to move, it
- shows the direction: setting the DIR color, and
- it waits until its successor allows to move by setting its CONF color. During the movement, the Leader shows the MOV color.
- When its successor sets CONF color, the chain is in Packed state.

- Follower: Follows its predecessor.
- Follower r sets the CONF color if and only if
 - 1) predecessor of *r* is showing its direction, and
 - 2) successor r'' of r if exists has already set its CONF color (i.e. r'' knows in which direction r will move).
 - This allows the predecessor r' of r to move to its destination knowing:
 - 1) all the robots behind r' have set CONF color, and
 - 2) the robots behind r' will not move until r' moved.
 - When r' is the Leader, the chain is in Packed state.

• Leader target change:

 It might happen that the Leader r chooses a target v, which is unoccupied when r performs its Look operation.

- Leader target change:
 - It might happen that the Leader r chooses a target v, which is unoccupied when r performs its Look operation.
 - When the successor r' of r sets the CONF color, another robot already moved to v.

• Leader target change:

- It might happen that the Leader r chooses a target v, which is unoccupied when r performs its Look operation.
- When the successor r' of r sets the CONF color, another robot already moved to v.
- If r has an unoccupied neighboring vertex then
 - r sets the new DIR color and waits until its successor sets the CONF2 color.
 - r moves to the target.
- Otherwise, *r* switches to Finished state and the Leadership is taken by *r*'.

• Taking the Leadership:

- When the Leader *r* cannot move anymore, its successor has to become the new Leader.
- r sets its DIR color to Δ .
 - color Δ indicates that
 - the Leader cannot move anymore,
 - wants to switch to Finished state,
 - leadership must be taken by its successor.
- successor r' of r sets its CONF color, waits for the previous Leader to turn off its light.
- Then r' becomes the Leader.
 r' tries to move to an unvisited vertex.

• Taking the Leadership:

- When the Leader *r* cannot move anymore, its successor has to become the new Leader.
- r sets its DIR color to Δ .
 - color Δ indicates that
 - the Leader cannot move anymore,
 - wants to switch to Finished state,
 - leadership must be taken by its successor.
- successor r' of r sets its CONF color, waits for the previous Leader to turn off its light.
- Then r' becomes the Leader.
 r' tries to move to an unvisited vertex.

- Lemma 1. Leader only moves to unvisited vertices.
- Lemma 2. There can be at most one Leader at any time.
- Lemma 3. Robots can not collide.
- Lemma 4. PACK fills the area represented by a connected graph.

- Theorem 1. Algorithm PACK fills a connected graph in the ASYNC model by robots having a
 - visibility range of 1 hop,
 - O(log Δ) bits of persistent storage, and
 - Δ + 4 colors, including the color when the light is off.
 - PACK runs in $O(n^2)$ asynchronous rounds.

Proof idea for the running time:

T: time until occupying a new unvisited vertex

a) Leader has an unoccupied neighboring vertex

Proof idea for the running time:

b) Leader has no unoccupied neighboring vertex Taking the leadership : \leq 5 rounds

Each vertex can take the leadership only once. Time for all leadership taking: $\leq 5n$ rounds.

Overall time for PACK: $\leq n (2n + 5) = O(n^2)$ rounds.

O(1) COLORS – MOD-PACK ALGORITHM

- Idea:
 - Encode the $L = \Delta + 4$ colors by a sequence of $\lceil \log L \rceil$ bits and
 - transmit this sequence by emulating the Alternating Bit Protocol (ABP), also referred to as Stop-and-wait ARQ

- Theorem 2: The modified PACK algorithm fills a connected graph in the ASYNC model by robots having a
 - visibility range of 1 hop,
 - O(log Δ) bits of persistent storage, and
 - O(1) colors.
 - The algorithm needs $O(n^2 \log \Delta)$ asynchronous rounds.

2-HOP VISIBILITY – BLOCK ALGORITHM

• Idea:

- The Leader r sees all robots, that could move to the same target
- The Leader only chooses a vertex v as the target, if the 1 hop neighborhood of v does not contain any other robot with the light turned on
 - except when the light showing direction Δ (wants to switch to Finished state)
- A vertex neighboring to a robot with its light on (except the color Δ) is considered as blocked vertex for the Leader.

VISIBILITY: 2-HOP – BLOCK ALGORITHM

- Theorem 3: Algorithm BLOCK fills the area represented by a connected graph in the ASYNC model by robots having a
 - visibility range of 2 hops,
 - O(log Δ) bits of persistent storage, and using
 - Δ + 4 colors, including the color when the light is off.

MULTIPLE DOORS – *K*-DOOR-BLOCK ALGORITHM

- k Doors, $k \ge 2$
- *k* chains
- Assume, robots entering from different doors have distinct colors.
- Priority protocol:
 - We define a strict total order between these colors, called priority order.
 - Taking leadership: new Leader takes the color of the old (Finished) Leader

r2

MULTIPLE DOORS – K-DOOR-BLOCK ALGORITHM

- Lemma 5. Leader only moves to unvisited vertices.
- Lemma 6. There can be at most k Leader at a time (one Leader per Door).
- Lemma 7. Robots can not collide.
- Lemma 8. BLOCK fills the area represented by a connected graph.

MULTIPLE DOORS – K-DOOR-BLOCK ALGORITHM

- **Theorem 4:** Algorithm BLOCK extended with the Priority protocol solves the *k*-Door Filling problem, $k \ge 2$, in the ASYNC model with robots having a
 - visibility range of 2 hops,
 - O(log Δ) bits of persistent memory and using
 - $\Delta + k + 4$ colors including the color when the light is off.
 - BLOCK needs O(*n*) asynchronous rounds.

Synchronous scheduler Line graph, n = 1,...,20

Synchronous scheduler Star graph, n = 1,...,20

Synchronous scheduler Delaunay graph, vertices distributed uniformly at random in $[0,1]^2$ n = 3,...,20050 runs for each *n*

SUMMARY

Method	FSYNC/ ASYNC	Doors	Viewing range	Runtime #async rounds	Persistent memory bits	Colors	Area (Orthogonal/ Arbitrary)
PACK	ASYNC	Single	1	O(<i>n</i> ²)	O(log ∆)	Δ+4	А
Mod-PACK	ASYNC	Single	1	$O(n^2 \log \Delta)$	O(log ∆)	O(1)	А
BLOCK	ASYNC	Single	2	O(<i>n</i>)	O(log ∆)	Δ+4	А
<i>k</i> -Door- BLOCK	ASYNC	Multiple	2	O(<i>n</i>)	$O(\log(\Delta+k))$	$\Delta + k + 4$	А

First asymptotic bounds for filling in the ASYNC model.

Only termination in finite time has been proven in previous works.

SUMMARY

Method	FSYNC/ ASYNC	Doors	Viewing range	Runtime #async rounds	Persistent memory bits	Colors	Area (Orthogonal/ Arbitrary)
PACK	ASYNC	Single	1	O(<i>n</i> ²)	O(log Δ)	Δ+4	А
Mod-PACK	ASYNC	Single	1	$O(n^2 \log \Delta)$	O(log ∆)	O(1)	А
BLOCK	ASYNC	Single	2	O(<i>n</i>)	O(log ∆)	Δ+4	А
<i>k</i> -Door- BLOCK	ASYNC	Multiple	2	O(<i>n</i>)	$O(\log(\Delta+k))$	$\Delta + k + 4$	А

First asymptotic bounds for filling in the ASYNC model.

Only termination in finite time has been proven in previous works.

Open question:

- Can the runtime be reduced for robots with visibility range 1?

Thank you for your attention!