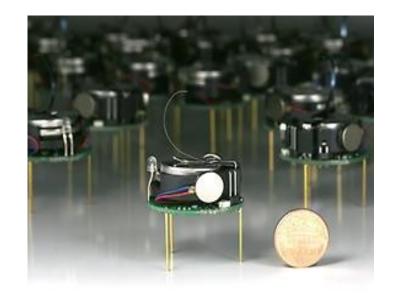
Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots

Tamás Lukovszki and Friedhelm Meyer auf der Heide

Proc. 18th International Conference on Principles of Distributed Systems (OPODIS 2014), LNCS, vol. 8878, 248-262, 2014.

Pattern Formation

- n robots with restricted capabilities
 - Limited viewing range
 - No communication
- 2D plane setting (2D grid)
- They want to form a given connected pattern
 - Special case:
 gather at a given point
 (Point formation)



http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html

Where is it needed?

• Gathering:

. . .

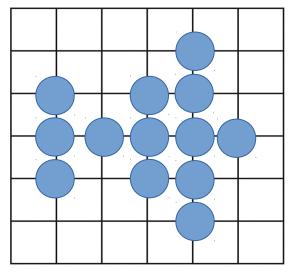
- Exploration Robots
 - To exchange data they need to gather
- Task splitting
 - After gathering the main robot distributes the tasks
- Pattern formation
 - Flight array
 - Self-deploying mobile sensors
 - Self-organizing particle system

Overview

- Model
- Problems
- Related work
- Our contribution
- Summary

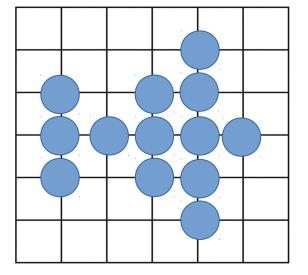
Anonymous Restricted Robots

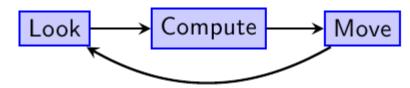
- Identical and anonymous
- Oblivious (for gathering)
 - finite state, i.e. O(1) bits of persistent memory for pattern formation
- No communication
- Limited sight: 2 units
- Represented by disk of unit diameter
- Aware of own position in Z²
- Common coordinate system
- Can move on the edges of the grid



Synchronous Look-Compute-Move (LCM)

- In each time unit each robot can move to a neighboring grid vertex or stay idle
- Collision is not allowed
- Synchronous Look-Compute-Move cycles

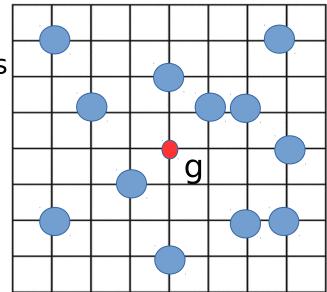




- Look: take snapshot of its 2-hop neighborhood
- **Compute:** decision to move or stay in place
- **Move:** moving or staying in place

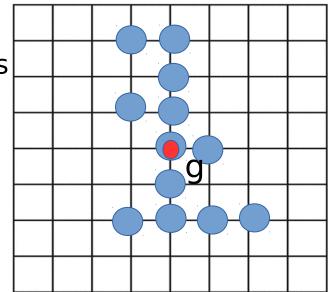
Collisionless Gathering

- Given:
 - n robots on different grid vertices
 - gathering vertex g, known for all robots
- Goal:
 - Form a connected configuration containig g
 - Collision is not allowed

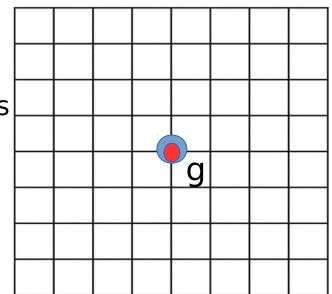


Collisionless Gathering

- Given:
 - n robots on different grid vertices
 - gathering vertex g known for all robots
- Goal:
 - Form a connected configuration containig g
 - Collision is not allowed

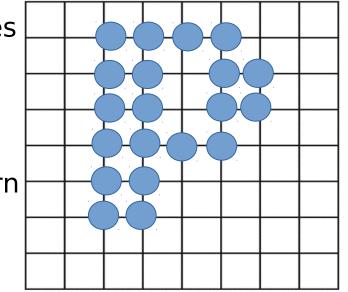


- Helpful intermediate gathering problem:
 Lemmings Problem
 - Given:
 - n robots on different grid vertices
 - vertex g, known for all robots
 - Goal:
 - All robots must occupy g
 - Collision is only allowed at the single vertex g



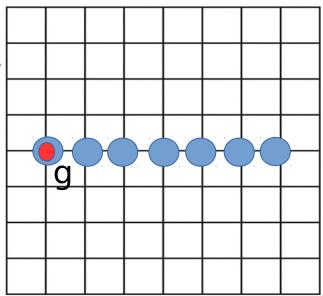
Formation of a connected pattern F

- Given:
 - n robots on different grid vertices
 - pattern P, known for all robots
 - as set of vertices, or
 - partially described,
 e.g. build a connected pattern with minimum diameter
- Goal:
 - Form P
 - Collision is not allowed

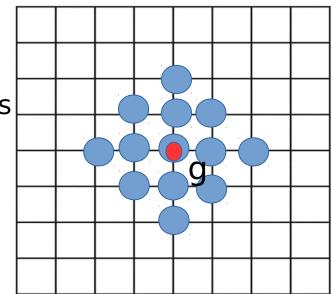


Special case of pattern formation: Axis parallel line segment formation

- Given:
 - n robots on different grid vertices
 - vertex gknown for all robots
- Goal:
 - Form an axis parallel line segment with end point g



- Special case of pattern formation: **Focused coverage** [
 - Given:
 - n robots on different grid vertices
 - vertex g (Point-of-Interest, POI), known for all robots
 - Goal:
 - Cover all vertices of an area with maximum radius around the POI without holes
 - Collision is not allowed



Related work

- Survey on gathering by oblivious robots [Cileiebak et al. SICOMP 2012]
- Asynchronous gathering of oblivious point-like robots with infinite visibility in LCM model in finite time [Cohen Peleg, SICOMP 2005]
- Gathering of fat robots with infinite visibility in finite time [Czyzowicz et al., TCS 2009]
- Gathering of fat robots on the grid with limited visbility at a given point in time O(nD) time [Chord-Landwehr et al. 2009]
- Formation of geometric patterns by anonymous robots with infinite visibility [Suzuki,Yamashita, SICOMP 1999]
- Pattern formation by robots with limited visbility [Suzuki, Yamashita, SIROCCO 2013]
- Focused coverage by self deploying mobile sensors in finite time [Li et al. TMC 2011]
- Focused coverage in O(nD) time [Blazovics, Lukovszki ALGOSENSORS 2013]

Our Contribution (1)

Lemmings Problem:

 Algorithm for oblivious robots with visibility range of 2 units solving the problem in

2n + D - 1 time steps,

- D is the maximum initial distance of a robot from g
- Lower bound: $\Omega(n + D)$
 - Holds also for robots with infinite visibility range
- Optimal up to a constant factor

Our Contribution (2)

Collisionless Gathering:

- Algorithm for oblivious robots with visibility range of 2 units solving the problem in
 n + D - 1 time steps
- Improves previous upper bound of O(nD) [Chord-Landwehr et al. 2011]

Our Contribution (3)

- Formation of an axis parallel line segment
 - Algorithm for finite state robots solving the problem in

3n + D + 3 steps

Only 2 bits of persistent memory

Our Contribution (4)

- Formation of a connected pattern F:
 - Algorithm for finite state robots solving the problem in

O(n + D*) time steps,

- where D* is the diameter of the initial scene
 - consisting of F and the initial positions of the robots

Our Contribution (5)

Focused Coverage:

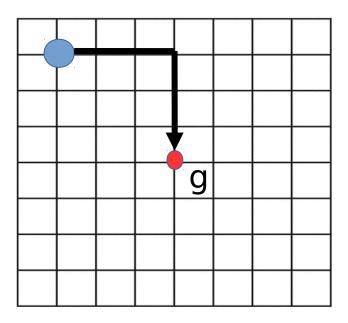
 Algorithm for finite state robots solving the problem in

O(n + D) time steps

 Improves previous upper bound of O(S), where S is the sum of initial distances of the nodes from g [Blazovics, Lukovszki, 2013]

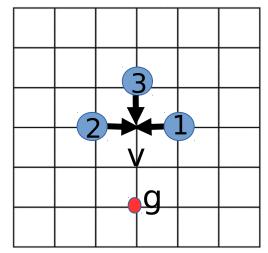
X-Y-Routing

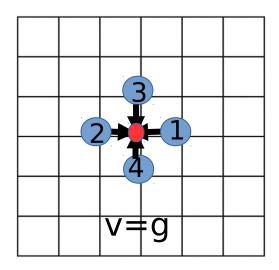
- In each time step each robot wants to decrease its hop distance to g:
 - it moves horizontally until it has the same x-coordinate as g
 - then it moves vertically until it reaches g
- If the next vertex of the x-y-path is occupied, then stay idle



X-Y-Routing

- If 2 or more robots wants to move to the same vertex v:
 - the robot with highest priority moves to v
 - the other robots stay in place





- Collision free
- Each robot knows its 2-hop neighborhood
 => robots can decide locally, which one can move
- Oblivious

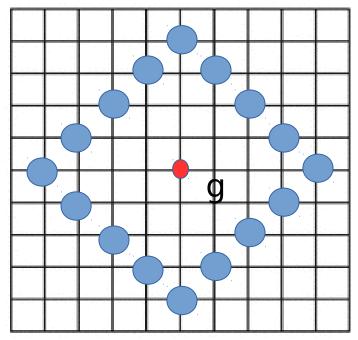
X-Y-Routing

Algorithm 1 x-y-routing(r)

while r has not yet reached g do $p \leftarrow nexthop(r,t)$ if p is unoccupied and \nexists another robot r' with nexthop(r',t) = p, s.t. r' has higher priority than r then r moves to p else r stays in place end if $t \leftarrow t+1$ end while

Lemmings Problem – Lower Bound

- Each robot must arrive at g ==> at least D steps
- In each time step at most 1 robots can reach g ==> at least n steps



Theorem 1: Let R be a set of n robots with infinite visibility placed on different vertices of Z².
 Each algorithm solving the synchronous lemmings problem needs Ω(n + D) time steps.

Lemmings Problem – Upper Bound

Perform the x-y-routing algorithm with the modification: treat g as it woud be always an unoccupied one

Theorem 2: Let R be a set of n oblivious robots placed at different vertices of Z². Let g be the gathering vertex. By performing the x-y-routing algorithm, all robots reach g in

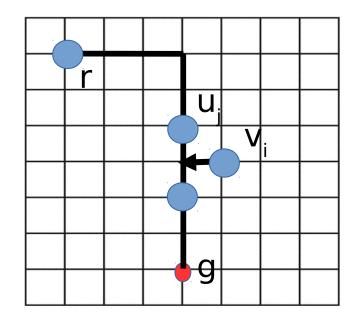
2n + D - 1 time steps,

where D is the maximum initial distance of a robot from g.

Lemmings Problem – Upper Bound

Proof strategy:

- Asume first, all robots are placed on the same x-y-path P terminating at g
- Show by induction: by x-y routing, all robots reach g within n+D-1 time
- Consider the robot r arriving at g as the last one
- Let P be the x-y-path from the initial position of r to g
- Let $U = \{u_1, \dots, u_k\}$, $u_k = r$ be the robots on P
- If we remove all robots R\U, all robots of U would arrive at g within k+D'-1 steps
- Show that each v_i in R\U can increase the arrival time of r by at most 2 time steps



Collisionless Gathering

Perform the (original) x-y-routing algorithm

Theorem 3: Let R be a set of n oblivious robots placed on different vertices of Z². Let g be the gathering vertex. By performing the x-y-routing algorithm, the robots form a connected configuration containing g in

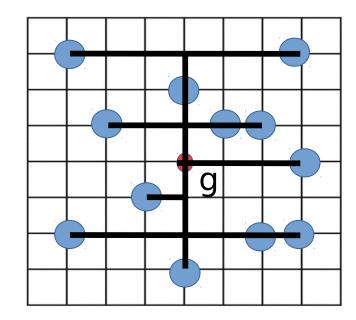
n + D - 1 time steps,

where D is the maximum initial distance of a robot from g.

Collisionless Gathering

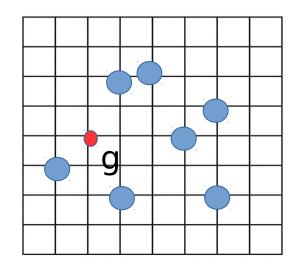
Proof strategy:

- For each robot r, let
 - p_r* be closest point of r to g during the algorithm,
 - $-P_r^*$ be the x-y path from p_r^* to g
- Let $T^* = U_r P_r^*$
- Show that
 - (i) T* contains g
 - (ii) T* has no unoccupied vertex, i. e.
 - T* is connected
 - (iii) each vertex of T* becomes occupied in n+D-1 steps
 - By induction, prove that after i+D steps all vertices of T* with hop distance at most i from g are occupied



Axis-Parallel Line Segment Formation

1)Each robot with y-coordinate $> g_y$ moves one step upwards Each robot with y-coordinate $<= g_y$ moves one step downwards



Axis-Parallel Line Segment Formation

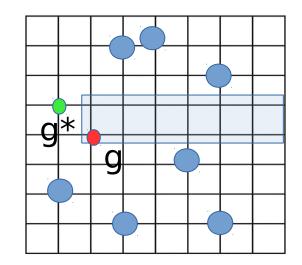
1)Each robot with y-coordinate $> g_y$ moves one step upwards Each robot with y-coordinate $<= g_y$ moves one step downwards

2)Let $g^* = (g_x - 1, g_y + 1)$.

Execute the Lemmings algorithm with sink g*.

When a robot r occupies g* in step t,

r moves one hop to the right in step t+1



Forming Axis-Parallel Line Segment

1)Each robot with y-coordinate $> g_v$

moves one step upwards

Each robot with y-coordinate $\leq g_v$

moves one step downwards 2)Let $g^* = (g_x - 1, g_y + 1)$.

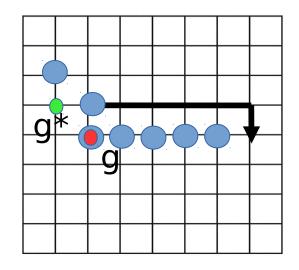
Execute the Lemmings algorithm with sink g*.

When a robot r occupies g* in step t,

r moves one hop to the right in step t+1

3)Build the line segment L as follows:

Until the vertex v bellow the current position of a robot is occupied move to the right. Otherwise, occupy v and terminate the algoritm of that robot



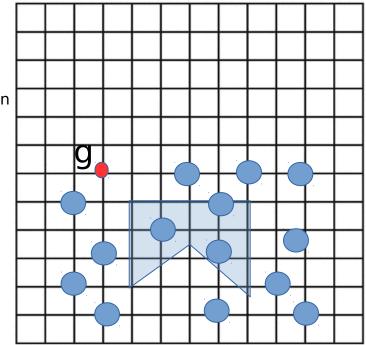
Axis-Parallel Line Segment Formation

Theorem 4: Let R be a set of n finite state robots placed on different vertices of Z^2 . Let g be a point, known for all robots. Then by the above algorithm the robots form a horizontal line segment with left end point g in

3n + D + 3 time steps,

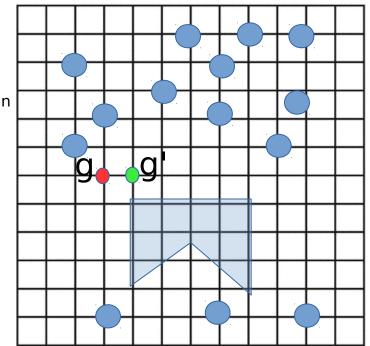
where D is the maximum initial distance of a robot from g.

1)Let y_{min} and y_{max} be the minimum and maximum y-coordinate of F. Each robot with y-coordinate >= y_{min} moves y_{max} - y_{min} + 2 steps upwards



1)Let y_{min} and y_{max} be the minimum and maximum y-coordinate of F. Each robot with y-coordinate $>= y_{min}$ moves y_{max} - y_{min} + 2 steps upwards 2)Let $g=(g_x-1,y_{min}-1), g'=(g_x,y_{min}-1).$ Execute the Lemmings algorithm with sink g. When a robot r occupies g in step t,

r moves to g' step t+1



1)Let y_{min} and y_{max} be the minimum and maximum y-coordinate of F. Each robot with y-coordinate >= y_{min}

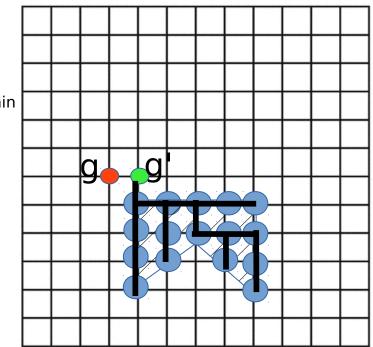
moves y_{max} - y_{min} + 2 steps upwards

2)Let $g=(g_x-1,y_{min}-1), g'=(g_x,y_{min}-1)$. Execute the Lemmings algorithm

with sink g.

When a robot r occupies g in step t, r moves to g' step t+1.

3)Let T be a spanning tree of F. Build F from source g' by DFS filling of T, using the arrivals of the robots in g during the Lemmings algorithm as input stream



Theorem 5: Let R be a set of n finite state robots placed on different vertices of Z². Let F be a connected formation, known for all robots. Then the robots form F in time

$O(n + D^*),$

where D* is the diameter of the point set containing F and the initial positions of the robots.

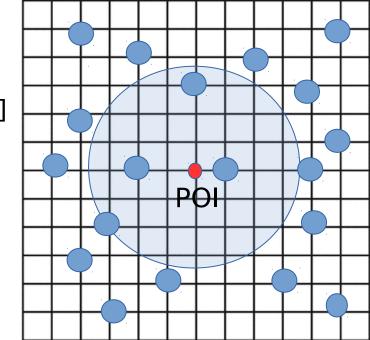
Focused Coverage

- Self deploying mobile sensors
- Solution by oblivious nodes in finite time [Li et al., 2009, 2011]
- O(nD) time [Blazovics, Lukovszki, 2013]

Assume n is known for all nodes

Focused Coverage:

1)All robots compute the disc C centered at the POI with maximum radius, which can be covered by n nodes
2)Perform the pattern formation algorithm for C



Focused Coverage

Corollary: Let R be a set of n finite state mobile nodes placed on different vertices of Z². Assume n is known for all nodes. Then the nodes form F in time

O(n + D),

where D is the maximum initial distance of a node from the POI.

Summary

- Introduced the Lemmings problem in the 2D grid
 - helpful tool for Pattern formation
 - Solved by oblivious robots with visibility range of 2 units in 2n + D - 1 time step
 - Lower bound of $\Omega(n + D)$ shown
- Collisionless gathering problem by oblivious robots in the 2D grid in n + D 1 time steps
 - Improves previous bound of O(nD)
- Axis parallel line segment formation by finite state robots in
 3n + D + 3 time steps
- Formation of an arbitrary connected pattern by finite state robots in O(n + D*) time steps
- Focused coverage by finite state nodes in O(n+D) time
 - Improves previous bound of O(nD)

Thank you!

Tamás Lukovszki lukovszki@inf.elte.hu