Models of Computation

4: Regular expressions, finite automaton

Applications

- search and replace dialogs of text editors
- search engines
- text processing utilities (e.g. sed and AWK)
- programming languages, lexical analysis
- genom analysis (genom as string)
- spam/malware filter
- …

Let V and $V' = \{\emptyset, \varepsilon, \cdot, +, *, (,)\}$ be disjoint alphabets. A **regular expression** over V is defined recursively as follows:

- 1. \oslash is a regular expression over V,
- 2. ε is a regular expression over V,
- 3. a is a regular expression over V, for every $a \in V$,
- 4. If R is a regular expression over V, then R^* is also a regular expression over V,
- 5. If Q and R are regular expressions over V, then $(Q \cdot R)$ and $(Q + R)$ are also regular expressions over V.
	- * denotes the closure of iteration,
	- · concatenation, and
	- $+$ union.

Each regular expression **represents a regular language**, which is defined as:

- 1. \oslash represents the empty language,
- 2. ε represents the language $\{\epsilon\},$
- 3. Letter $a \in V$) represents the language $\{a\}$,
- 4. if R is a regular expression over V, which represents the language L, then R^* represents L^* ,
- 5. if R and R' are regular expressions over V, s.t. R represents the language L and R' represents the language L' , then $(R \cdot R')$ represents the language LL' , $(R + R')$ represents the language L U L'.

- Parentheses can be omitted when defining precedence on operations. The the usual sequence is: $*,$, $, +$. The following regular expressions are equivalent:
- a^* is the same as $(a)^*$ and represent the language $\{a\}^*$.
- $(a + b)^*$ is the same as $((a) + (b))^*$ and represents the language $\{a, b\}^*$.
- $a^* \cdot b$ is the same as $((a)^*) \cdot (b)$ and represents the language $\{a\}^*b$.
- $b + ab^*$ is the same as $(b) + ((a) \cdot (b)^*)$ and represents the language $\{b\}$ ∪ $\{a\}\{b\}^*$.
- $(a + b) \cdot a^*$ is the same as $((a) + (b)) \cdot ((a)^*)$ and represents the language $\{a, b\}$ $\{a\}^*$.

Let P, Q, an R be regular expressions. Then following hold:

- $P + (Q + R) = (P + Q) + R$
- $P \cdot (Q \cdot R) = (P \cdot Q) \cdot R$
- $P + Q = Q + P$
- $P \cdot (O + R) = P \cdot O + P \cdot R$
- $(P + Q) \cdot R = P \cdot R + Q \cdot R$
- $P^* = \varepsilon + P \cdot P^*$
- ϵ ϵ \cdot $P = P \cdot \epsilon = P$
- $P^* = (\epsilon + P)^*$

Example: The language represented the regular expressions $(a + b)a^*$ and $aa^* + ba^*$ is the same: $\{ aa^n | n \ge 0 \} \cup \{ ba^n | n \ge 0 \}.$

The language represented by $a + ba^*$ is: $\{a, b, ba, ba^2, ba^3, \ldots \}.$

Theorem:

- 1) Every regular expression represents a regular (type 3) language.
- 2) For every regular (type 3) language, there is a regular expression representing the language.

Proof:

1) follows from the fact that the class of regular languages *L*3 is closed for the regular operations.

Proof:

For 2), we show that for every regular language L generated by a grammar $G = (N, T, P, S)$, a regular expression can be constructed, that represents L.

- Let $N = \{A_1, \ldots, A_n\}$, $n \ge 1$, $S = A_1$.
- Assume, each rule of G is of form $A_i \rightarrow aA_j$ or $A_i \rightarrow \varepsilon$, where $a \in T$, $1 \le i, j \le n$.
- We say that a non-terminal A_m is **affected** by the derivation $A_i \Rightarrow^* uA_i$ ($u \in T^*$), if A_m occurs in an intermediate string between A_i and uA_j in the derivation.

Proof (cont.):

- A derivation A_i \Rightarrow^* uA_i is called **k-bounded** if $0 \le m \le k$ holds for all non-terminals A_m occurring in the derivation.
- Let $E_{i,j}^k = \{u \in T^* \mid \exists A_i \Rightarrow^* uA_j \; k\text{-bounded derivation}\}.$
- We show by induction on k , that for language $E_{i,j}$, there is a regular expression representing $E_{i,j}$, $0 \le i, j, k \le n$.

Proof (cont.):

- $k = 0$ (induction start):
	- For *i ≠ j, E^o_{ij}* is eighter empty, or it consists of symbols of T ($a \in E^o{}_{i,j}$ if and only if $A_i \rightarrow aA_j \in P$.)
	- For $i = j$, $E^0_{i,j}$ consists of ε and zero or more elements of T, so $E^0_{i,j}$ can be represented by a regular expression.

Proof (cont.):

- $k-1 \rightarrow k$ (induction step):
	- Assume that for a fixed $k, 0 < k \le n$, E^{k-1} _{i,j} can be represented by a regular expression.
	- Then for all i, j, k it holds that $E^{k}{}_{i,j} = E^{k-1}{}_{i,j} + E^{k-1}{}_{i,k} \cdot (E^{k-1}{}_{k,k})^* \cdot E^{k-1}{}_{k,j}.$
	- Therefore, $E_{i,j}$ can also be represented by a regular expression.
	- Let I_{ε} be the set of indices *i* for which $A_i \rightarrow \varepsilon$.
	- Then $L(G) = U_{i \in I_{\epsilon}} E^{n}$, can be representd by a regular expression. The claim of the theorem follows.

- Identifying formal languages is also possible with recognition devices, *i.e.* by automata.
- An automaton can process and identify words.
- Grammars use a synthesizing approach, while automata an analytic one.
- An automaton accepts or rejects an input word.

- A finite automaton (FA) performs a sequence of steps in discrete time intervals
- The FA starts in the initial state.
- The input word is located on the input tape and the reading head is on the leftmost symbol of an input word.
- After reading a symbol, the FA moves the reading head to one position to the right, then the state changes, regarding the state transition function.
- If the FA has read the input, it stops, accepts or rejects the input.

Example: automatic door control

- Application examples:
	- Automatic door control
	- Coffee machine
	- Pattern recognition
	- Markov chains
	- Pattern recognition
	- Speech processing
	- Optical character recognition
	- Predictions of share prizes in the stock exchange

...

 \bullet

- A finite automaton is a 5-tuple $A = (Q, T, \delta, q_0, F)$, where
- Q is a finite, nonempty set of **states**,
- T is the finite **alphabet of input symbols**,
- \bullet 6 : Q \times T \rightarrow Q is the **state transition function**
- $q_0 \in Q$ is the **initial state** or **start state**,
- F ⊆ Q is the set of **acceptance states** or **end states**.

Remark:

• The function δ can be extended to a function $\hat{\delta}: Q \times T^* \rightarrow Q$ as follows:

$$
\bullet \quad \hat{\delta}(q, \, \varepsilon) = q,
$$

 $\hat{\delta}(q, x_a) = \delta(\hat{\delta}(q, x), a)$ for all $x \in T^*$ and $a \in T$.

Example:

Let $A = (Q, T, \delta, q_1, F)$ be a FA, where $Q = \{q_1, q_2, q_3\}, T = \{0, 1\}, F = \{q_2\}, \text{and}$ $\delta(q_1, 0) = q_1, \ \delta(q_1, 1) = q_2, \delta(q_2, 0) = q_3, \delta(q_2, 1) = q_2,$ $\delta(q_3, 0) = \delta(q_3, 1) = q_2.$

State transition diagram: State transition table:

The accepted language is $L(A)=\{w \mid w \text{ contains at least one 1 and } \}$ the last 1 is not followed by an odd number of 0s}

Example:

Let $T = \{a,b,c\}$. Define a FA, which accepts the words of length of at most 5.

Solution:

- Formaly: $A=(\{q_0, \ldots, q_6\}, \{a, b, c\}, \delta, q_0, \{q_0, \ldots, q_5\}),$ $\delta(q_i, t) = q_{i+1}$, for $i = 0, \ldots, 5$, $t \in \{a, b, c\}$, $\delta(q_6, t) = q_6$, for $t \in \{a, b, c\}$
- State transition diagram:

State transition table:

Deterministic and non-deterministic finite automata

 Deterministic finite automaton (DFA): Function δ is single-valued, i.e. \forall (q, a) $\in Q \times T$ there is exactly one state s, s.t. $\delta(q, a) = s$.

Nondeterministic finite automaton (NFA):

- Function δ is multi-valued, i.e. δ : $Q \times T \rightarrow 2^{\circ}$.
- Multiple initial states are allowed (the set of initial states $Q_0 \subseteq Q$).
- It is allowed that $\delta(q, a) = \varnothing$ for som (q,a), i.e. the machine gets stuck.
- Null (or ε) move is allowed, i.e. it can move forward without reading symbols. NFA example

Deterministic and non-deterministic FA

- New features of non-determinism
	- Multiple paths are possible (multiple choises at each step).
	- ε-transition is a "free" move without reading input.
	- Accepts the input if some path leads to an accepting state.

Deterministic and non-deterministic FA

- Alternative notation:
- State transitions can also be given in the form $qa \rightarrow p$, where $p \in \delta(q, a)$.
- Let M_{δ} be set of rules of the state transition of an NFA $A = (Q, T, \delta, Q_0, F)$.
- If M_{δ} contains exactly one rule $qa \rightarrow p$ for each pair (q,a) , then the FA is deterministic, oherwise nondeterministic.

FA – reduction

- Let $A = (Q, T, \delta, Q_0, F)$ be a FA and $u, v \in QT^*$ words. The FA A **reduces** the u **in one step** (**directly**) to v (notation: $u \Rightarrow_A v$, or short: $u \Rightarrow v$), if there are a rule $qa \rightarrow p \in M_{\delta}$ (i.e. $\delta(q, a) = p$) and a word $w \in T^*$, s.t. $u = qaw$ and $v = pw$ hold.
- The FA $A = (Q, T, \delta, Q_0, F)$ **reduces** $u \in QT^*$ to $v \in QT^*$ (notation: $u \Rightarrow A^* v$, or short: $u \Rightarrow^* v$, if
	- either $u = v$,
	- or \exists a word $z \in QT^*$, s.t. $u \Rightarrow^* z$ and $z \Rightarrow v$.
- Remark: \Rightarrow^* is the reflexive, transitive closure of \Rightarrow .

FA – accepted language

- The **language accepted/recognized** by the FA $A = (Q, T, \delta, Q_0, F)$ is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } q_0 \in Q_0\}$ and $p \in F$ }
- For a DFA A, there is one single start state $Q_0 = \{q_0\}$. The language accepted by DFA A is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } p \in F\}$

```
NFA accepting L1
 U L2
```
Theorem: If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof (sketch): Let A_1 be a DFA, accepting L_1 and A_2 a DFA accepting L_2 . Then the following NFA accepts $L_1 \cup L_2$.


```
NFA accepting L1
L2
```
Theorem: If L_1 and L_2 regular languages, then L_1L_2 is also a regular language.

Proof (sketch): Let A_1 be a DFA accepting L_1 , A_2 egy DFA accepting L_2 . The following NVA accepts L_1L_2 .

NFA accepting *L**

Theorem: If L is a regular language, then L^{*} is also a regular language.

A **Proof. (sketch)**: Let A be a DFA accepting L. The fillowing NFA accepts L^* -t.

Theorem: For all NFA $A = (Q, T, \delta, Q_0, F)$ a DFA $A' = (Q', T, \delta', q'_{0}, F')$ can be constructed, s.t. $L(A) = L(A')$ holds.

- Idea: DFA keeps track of the subset of possible states in NFA
- Remark: In worst case $|Q'| = 2^{|Q|}$.

Proof:

- Let $Q' = 2^{\circ}$ be the set of all subsets of the set Q. (the number of elements of Q' is $2^{|Q|}$).
- Let δ' : $Q' \times T \rightarrow Q'$ be the function defined as: $\delta'(q', a) = \bigcup_{q \in q'} \delta(q, a).$
- Let $q'_{0} = Q_{0}$ and $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$
- To prove $L(A) \subseteq L(A')$ we prove Lemma 1, to $L(A') \subseteq L(A)$ we prove Lemma 2.
- First, an example (next slide)

NFA – DFA

Example:

\n- Let
$$
A = (Q, T, \delta, Q_0, F)
$$
 be a NFA, where $Q = \{q_0, q_1, q_2\}$, $T = \{a, b\}$, $Q_0 = \{q_0\}$, $F = \{q_2\}$.
\n- δ is defined as:\n $\delta(q_0, a) = \{q_0, q_1\}$, $\delta(q_0, b) = \{q_1\}$,\n $\delta(q_1, a) = \emptyset$, $\delta(q_1, b) = \{q_2\}$,\n $\delta(q_2, a) = \{q_0, q_1, q_2\}$, $\delta(q_2, b) = \{q_1\}$.\n Construct a DFA A' equivalent with A .
\n

Solution:

\n- DFA:
$$
A' = (Q', T, \delta', q', F')
$$
, where $Q' = \{ \emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$, $q'_0 = \{q_0\}$, $F' = \{ \{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$, δ' next slide
\n

NFA – DFA

Example (cont.):

• 6:
$$
\delta(q_0, a) = \{q_0, q_1\}, \quad \delta(q_0, b) = \{q_1\}, \quad \delta(q_1, a) = \emptyset, \quad \delta(q_1, b) = \{q_2\}, \quad \delta(q_2, a) = \{q_0, q_1, q_2\}, \quad \delta(q_2, b) = \{q_1\}.
$$

\n
$$
\delta'((\emptyset, a) = \emptyset, \quad \delta'((\{q_0\}, a) = \{q_0, q_1\}, \quad \delta'((\{q_0\}, b) = \emptyset, \quad \delta'((\{q_1\}, a) = \emptyset, \quad \delta'((\{q_1\}, b) = \{q_1\}, \quad \delta'((\{q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_1\}, b) = \{q_2\}, \quad \delta'((\{q_0, q_1\}, a) = \{q_0, q_1\}, \quad \delta'((\{q_0, q_1\}, b) = \{q_1\}, \quad \delta'((\{q_0, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_0, q_1\}, b) = \{q_1, q_2\}, \quad \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_0, q_2\}, b) = \{q_1\}, \quad \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \quad \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}.\n \end{array}
$$
\n

NFA – DFA

Lemma 1:

For all $p,q \in Q$, $q' \in Q'$ és $u,v \in T^*$, if $qu \Rightarrow^*_{A} pv$ and $q \in q'$, then $\exists p' \in Q'$, s.t. $q'u \Rightarrow^*_{A'} p'v$ and $p \in p'$.

Proof:

- Induction over the number of reduction steps n in $qu \Rightarrow^*_{A} pv$.
- For $n=0$: the claim holds trivially, $p'=q'$.

Proof (Lemma 1, cont.):

- For $n \to n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $qu \Rightarrow^*_{A} pv$ be a reduction of $n + 1$ steps. Then for some $q_1 \in Q$ and $u_1 \in T^*$ holds that $qu \Rightarrow_A q_1u_1 \Rightarrow^*_{A} pv$.
- Therefore, $\exists a \in T$, s.t. $u = au_1$ and $q_1 \in \delta(q, a)$.
- Since $\delta(q, a) \subseteq \delta'(q', a)$, for $q \in q'$, q'_1 can be choosen as $q'_1 = \delta'(q', a)$.
- Consequently, $q'u \Rightarrow_{A'} q'_{1}u_{1}$, where $q_{1} \in q'_{1}$.
- By the induction assumption, $\exists p' \in Q'$, s.t. $q'_{1}u_{1} \Rightarrow^{*} q'p'v$ and $p \in p'$, which proves the claim. \Box

Proof (Theorem, cont.):

- Let $u \in L(A)$, i.e. $q_0u \Rightarrow^* A p$, for some $q_0 \in Q_0$, $p \in F$.
- By Lemma 1, $\exists p'$, s.t. $q'_{0}u \Rightarrow^{*}{}_{A'}p'$, where $p \in p'$.
- By definition of F', $p \in p'$ and $p \in F$ imply that $p' \in F'$, which proves $L(A) \subseteq L(A')$.
- For $L(A') \subseteq L(A)$, we prove Lemma 2.

Lemma 2:

- For all p' , $q' \in Q'$, $p \in Q$ and $u, v \in T^*$,
	- if $q'u \Rightarrow^*_{A'} p'v$ and $p \in p'$,
	- then $\exists q \in Q$, s.t. $qu \Rightarrow^*_{A} pv$ and $q \in q'$.

Proof:

- Induction over the number of steps n in the reduction.
- For $n = 0$: The claim holds trivially.

Proof (Lemma 2, cont.):

- For $n \to n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $q'u \Rightarrow^*_{A'} p'v$ be a reduction of $n + 1$ steps. Then $q'u \Rightarrow_{A'} p'w_1 \Rightarrow_{A'} p'v$, where $v_1 = av$, for some $p'_1 \in Q'$ and $a \in T$.
- Then, $p \in p' = \delta'(p'_{1}, a) = \bigcup_{p_1 \in p'_{1}} \delta(p_1, a)$.
- Consequently, $\exists p_1 \in p'_1$, s.t. $p \in \delta(p_1, a)$.
- For this p_1 , it holds that $p_1v_1 \Rightarrow_A pv$.
- By the induction assumption, $qu \Rightarrow^*_{A} p_1v_1$, for some $q \in q_0$, which implies the claim. \Box

Proof (Theorem, cont.):

- Let $q'_{0}u \Rightarrow^{*}{}_{A'} p'$ and $p' \in F$.
- By the definition of F' , $\exists p \in p'$, s.t. $p \in F$.
- Then, by Lemma 2, for some $q_0 \in q'_0$, holds that $q_0u \Rightarrow^*_{A} p$.
- This proves the claim of the theorem.

Corollaries

Corollary 1:

 The class of regular languages *L*3 is closed for the complement operation.

Proof:

- Let L be a language, recognized by a FA $A = (Q, T, \delta, q_0, F)$
- Then $L = T^* L$ can be recognized by a FA $A = (Q, T, \delta, q_0, Q-F)$