
Tamás Lukovszki1Models of Computation

Models of Computation

4: Regular expressions, finite automaton

Tamás Lukovszki2Models of Computation

Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …

Tamás Lukovszki3Models of Computation

Regular expressions

Let V and V’ = { , ∅ , ·, +, * , (,)} be disjoint alphabets. ε
A regular expression over V is defined recursively as follows:

1. ∅ is a regular expression over V,

2. is a regular expression ε over V,

3. a is a regular expression over V, for every a ∈ V,

4. If R is a regular expression over V, then R* is also a regular expression
over V,

5. If Q and R are regular expressions over V, then
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· concatenation, and
+ union.

Tamás Lukovszki4Models of Computation

Regular expressions

Each regular expression represents a regular language, which is defined
as:

1. ∅ represents the empty language,

2. represents the language { }ε ε ,

3. Letter a (∈ V) represents the language {a},

4. if R is a regular expression over V, which represents the language L, then
R* represents L*,

5. if R and R’ are regular expressions over V, s.t.
R represents the language L and
R’ represents the language L’, then
(R · R’) represents the language LL’,
(R + R’) represents the language L U L’.

Tamás Lukovszki5Models of Computation

Regular expressions

Parentheses can be omitted when defining precedence on operations.
The the usual sequence is: *, ·, +. The following regular expressions
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the
language {b} {∪ a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)*) and represents the
language {a, b}{a}*.

Tamás Lukovszki6Models of Computation

Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + (Q + R) = (P + Q) + R

 P · (Q · R) = (P · Q) · R

 P + Q = Q + P

 P · (Q + R) = P · Q + P · R

 (P + Q) · R = P · R + Q · R

 P* = + ε P · P*

 · ε P = P · = ε P

 P* = (+ ε P)*

Tamás Lukovszki7Models of Computation

Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ≥ 0 } { ∪ ban | n ≥ 0 }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.

Tamás Lukovszki8Models of Computation

Expressive power of regular expressions

Theorem:

1) Every regular expression represents a regular
(type 3) language.

2) For every regular (type 3) language, there is a
regular expression representing the language.

Proof:
1) follows from the fact that the class of regular
languages L3 is closed for the regular operations.

Tamás Lukovszki9Models of Computation

Expressive power of regular expressions

Proof:
For 2), we show that for every regular language L
generated by a grammar G = (N, T, P, S), a regular
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1.
 Assume, each rule of G is of form Ai → aAj or Ai , → ε

where a ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the

derivation Ai * ⇒ uAj (u ∈ T*), if Am occurs in an
intermediate string between Ai and uAj in the
derivation.

Tamás Lukovszki10Models of Computation

Expressive power of regular expressions

Proof (cont.):

 A derivation Ai * ⇒ uAj is called k-bounded
if 0 ≤ m ≤ k holds for all non-terminals Am occurring
in the derivation.

 Let Ek
i,j = {u ∈ T* | Ǝ Ai * ⇒ uAj k-bounded derivation}.

 We show by induction on k, that for language Ek
i,j,

there is a regular expression representing Ek
i,j,

0 ≤ i,j,k ≤ n.

Tamás Lukovszki11Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k = 0 (induction start):
 For i ≠ j, E0

i,j is eighter empty, or it consists of
symbols of T (a ∈ E0

i,j if and only if Ai → aAj ∈ P.)
 For i = j, E0

i,j consists of and zero or more ε
elements of T, so E0

i,j can be represented by a
regular expression.

Tamás Lukovszki12Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k-1 → k (induction step):
 Assume that for a fixed k, 0 < k ≤ n, Ek-1

i,j can be
represented by a regular expression.

 Then for all i, j, k it holds that
Ek

i,j = Ek-1
i,j + Ek-1

i,k · (Ek-1
k,k)* · Ek-1

k,j.
 Therefore, Ek

i,j can also be represented by a regular
expression.

 Let Iε be the set of indices i for which Ai . → ε
 Then L(G) = Ui∈Iε En

1,i can be representd by a regular
expression. The claim of the theorem follows. ⃞

Tamás Lukovszki13Models of Computation

Finite Automata (FA)

● Identifying formal languages is also possible
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while

automata an analytic one.
● An automaton accepts or rejects an input

word.

Tamás Lukovszki14Models of Computation

Finite Automata (FA)

 A finite automaton (FA) performs a sequence of steps in
discrete time intervals

 The FA starts in the initial state.

 The input word is located on the input tape and the
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the FA moves the reading head
to one position to the right, then the state changes,
regarding the state transition function.

 If the FA has read the input, it stops,
accepts or rejects the input.

Tamás Lukovszki15Models of Computation

Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:

Tamás Lukovszki16Models of Computation

Finite Automata (FA)

 Application examples:
 Automatic door control
 Coffee machine
 Pattern recognition
 Markov chains
 Pattern recognition
 Speech processing
 Optical character recognition
 Predictions of share prizes in the stock exchange
 ...

Tamás Lukovszki17Models of Computation

Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, , qδ 0, F),
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T → Q is the state transition function

 q0 ∈ Q is the initial state or start state,

 F ⊆ Q is the set of acceptance states or end
states.

Tamás Lukovszki18Models of Computation

Finite Automata (FA)

Remark:

● The function δ can be extended to a function
δ̂ : Q × T* → Q as follows:

● δ̂(q,) = ε q,
● δ̂(q, xa) = δ(δ̂(q, x), a) for all x ∈ T* and a ∈ T.

Tamás Lukovszki19Models of Computation

Finite Automata (FA)

Example:
● Let A = (Q, T, , qδ 1, F) be a FA, where

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1, δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2,
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:

Tamás Lukovszki20Models of Computation

Finite Automata (FA)

Example:

● Let T = {a,b,c}.
Define a FA, which accepts the words of length of at most 5.

Solution:

● Formaly:
A=({q0, . . . , q6}, {a, b, c}, δ, q0 , {q0, . . . , q5}),
δ(qi, t) = qi+1, for i = 0, . . . , 5 , t {∈ a, b, c},
δ(q6, t) = q6, for t {∈ a, b, c}

● State transition diagram:

State transition table:

Tamás Lukovszki21Models of Computation

Deterministic and non-deterministic
finite automata

 Deterministic finite automaton (DFA):
Function δ is single-valued, i.e. ∀ (q, a) ∈ Q × T there is
exactly one state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA):
 Function δ is multi-valued, i.e. δ : Q × T 2→ Q.
 Multiple initial states are allowed

(the set of initial states Q0 ⊆ Q).
 It is allowed that δ(q, a) = for some ∅

(q,a), i.e. the machine gets stuck.
 Null (or) move is allowed,ε

i.e. it can move forward without
reading symbols. NFA example

Tamás Lukovszki22Models of Computation

Deterministic and non-deterministic FA

 New features of non-determinism
 Multiple paths are possible (multiple choises at

each step).
 -transition is a “free” move without reading ε

input.
 Accepts the input if some path leads to an

accepting state.

Tamás Lukovszki23Models of Computation

Deterministic and non-deterministic FA

 Alternative notation:

 State transitions can also be given in the form
qa → p, where p ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an
NFA A = (Q, T, , Qδ 0, F).

 If Mδ contains exactly one rule qa → p for each pair
(q,a), then the FA is deterministic, oherwise non-
deterministic.

Tamás Lukovszki24Models of Computation

FA – reduction

 Let A = (Q, T, , Qδ 0, F) be a FA and u,v ∈ QT* words.
The FA A reduces the u in one step (directly) to
v (notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa → p ∈ Mδ (i.e. δ(q, a) = p) and
a word w ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A = (Q, T, , Qδ 0, F) reduces u ∈ QT* to
v ∈ QT* (notation: u ⇒A* v, or short: u *⇒ v, if

 either u = v,
 or Ǝ a word z ∈ QT*, s.t. u * ⇒ z and z ⇒ v.

 Remark: * is the reflexive, transitive closure of .⇒ ⇒

Tamás Lukovszki25Models of Computation

FA – accepted language

 The language accepted/recognized by the FA
A = (Q, T, , Qδ 0, F) is:
L(A) = {u ∈ T* | q0u * ⇒ p for some q0 ∈ Q0
and p ∈ F}

 For a DFA A, there is one single start state
Q0={q0}. The language accepted by DFA A is:
L(A) = {u ∈ T* | q0u * ⇒ p for some p ∈ F}

Tamás Lukovszki26Models of Computation

NFA accepting L
1
 U L

2

A
2

q
0

F
1

q
f

ε

ε

ε

ε

Theorem: If L1 and L2 are regular languages, then L1U L2 is
also a regular language.

Proof (sketch): Let A1 be a DFA, accepting L1 and
A2 a DFA accepting L2. Then the following NFA accepts
L1U L2.

A
1

F
2

Tamás Lukovszki27Models of Computation

NFA accepting L
1
L

2

A
2A

1

F
1 F

2ε
q

f
ε

u
v

u

u

v
?

Theorem: If L1 and L2 regular languages, then L1L2 is also
a regular language.

Proof (sketch): Let A1 be a DFA accepting L1,
A2 egy DFA accepting L2.
The following NVA accepts L1L2.

Tamás Lukovszki28Models of Computation

NFA accepting L*

A

F

ε

ε

u
u1 u2 uk

q
0 ε

Theorem: If L is a regular language, then L* is also a
regular language.

Proof. (sketch): Let A be a DFA accepting L.
The fillowing NFA accepts L*-t.

Tamás Lukovszki29Models of Computation

Computing power of NFA

 Theorem: For all NFA A = (Q, T, , Qδ 0, F) a
DFA A’ = (Q’, T, ’, q’δ 0, F’) can be constructed, s.t.
L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible
states in NFA

 Remark: In worst case |Q’| = 2|Q|.

Tamás Lukovszki30Models of Computation

Computing power of NFA

Proof:

 Let Q’= 2Q be the set of all subsets of the set Q.
(the number of elements of Q’ is 2|Q|).

 Let ’δ : Q’ × T → Q’ be the function defined as:
δ’(q’, a) = Uq∈q’ δ(q, a).

 Let q’0 = Q0 and F’ = {q’ ∈ Q’ | q’ ∩ F ≠ }∅

 To prove L(A) ⊆ L(A’) we prove Lemma 1,
to L(A’) ⊆ L(A) we prove Lemma 2.

 First, an example (next slide)

Tamás Lukovszki31Models of Computation

NFA – DFA

Example:

 Let A = (Q,T, ,Qδ 0,F) be a NFA, where
Q = {q0, q1, q2}, T = {a, b}, Q0 = {q0}, F = {q2}.
δ is defined as:
δ(q0, a) = {q0, q1}, δ(q0, b) = {q1},
δ(q1, a) = , ∅ δ(q1, b) = {q2},
δ(q2, a) = {q0, q1, q2}, δ(q2, b) = {q1}.
Construct a DFA A’ quivalent with A.

Solution:

 DFA: A’ = (Q’,T, ’,q’δ 0,F’), where
Q’ = { ,{∅ q0},{q1},{q2},{q0, q1},{q0,q2},{q1,q2},{q0,q1,q2}},
q’0 = {q0},
F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}},
’ δ next slide

Tamás Lukovszki32Models of Computation

NFA – DFA

Example (cont.):

 δ:

 ’δ :

Tamás Lukovszki33Models of Computation

NFA – DFA

Example (cont.):
NVA

F = {q2}

DVA

F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}}

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a

Tamás Lukovszki34Models of Computation

Computing power of NFA

Lemma 1:

 For all p,q ∈ Q, q’ ∈ Q’ és u,v ∈ T*,
if qu *⇒ A pv and q ∈ q’,
then Ǝ p’ ∈ Q’, s.t.
q’u *⇒ A’ p’v and p ∈ p’.

Proof:

 Induction over the number of reduction steps n in
qu *⇒ A pv.

 For n=0: the claim holds trivially, p’=q’.

Tamás Lukovszki35Models of Computation

Computing power of NFA

Proof (Lemma 1, cont.):

 For n → n+1: Assume, the claim holds for all reductions of ≤ n
steps.

 Let qu *⇒ A pv be a reduction of n + 1 steps.
Then for some q1 ∈ Q and u1 ∈ T* holds that
qu ⇒A q1u1 *⇒ A pv.

 Therefore, Ǝ a ∈ T, s.t. u = au1 and q1 ∈ δ(q, a).

 Since δ(q, a) ⊆ ’δ (q’, a), for q ∈ q’,
q’1 can be choosen as q’1 = ’δ (q’, a).

 Consequently, q’u ⇒A’ q’1u1, where q1 ∈ q’1.

 By the induction assumption,
Ǝ p’ ∈ Q’, s.t. q’1u1 *⇒ A’ p’v and p ∈ p’, which proves the claim. ⃞

Tamás Lukovszki36Models of Computation

Computing power of NFA

Proof (Theorem, cont.):

 Let u ∈ L(A), i.e. q0u *⇒ A p, for some q0 ∈ Q0, p ∈ F.

 By Lemma 1, Ǝ p’, s.t. q’0u *⇒ A’ p’, where p ∈ p’.

 By definition of F’, p ∈ p’ and p ∈ F imply that
p’ ∈ F’, which proves L(A) ⊆ L(A’).

 For L(A’) ⊆ L(A), we prove Lemma 2.

Tamás Lukovszki37Models of Computation

Computing power of NFA

Lemma 2:
 For all p’, q’ ∈ Q’ , p ∈ Q and u, v ∈ T*,

 if q’u *⇒ A’ p’v and p ∈ p’,
 then Ǝ q ∈ Q, s.t. qu *⇒ A pv and q ∈ q’.

Proof:
 Induction over the number of steps n in the

reduction.
 For n = 0: The claim holds trivially.

Tamás Lukovszki38Models of Computation

Computing power of NFA

Proof (Lemma 2, cont.):

 For n → n+1: Assume, the claim holds for all reductions
of ≤ n steps.

 Let q’u *⇒ A’ p’v be a reduction of n + 1 steps.
Then q’u *⇒ A’ p’1v1 ⇒A’ p’v, where v1 = av,
for some p’1 ∈ Q’ and a ∈ T.

 Then, p ∈ p’ = ’δ (p’1, a) = Up1 ∈ p’1 δ(p1, a).

 Consequently, Ǝ p1 ∈ p’1, s.t. p ∈ δ(p1, a).

 For this p1, it holds that p1v1 ⇒A pv.

 By the induction assumption, qu *⇒ A p1v1 , for some q ∈ q0,
which implies the claim. ⃞

Tamás Lukovszki39Models of Computation

Computing power of NFA

Proof (Theorem, cont.):

 Let q’0u *⇒ A’ p’ and p’ ∈ F .

 By the definition of F’, Ǝ p ∈ p’ , s.t. p ∈ F.

 Then, by Lemma 2, for some q0 ∈ q’0, holds that
q0u *⇒ A p.

 This proves the claim of the theorem. ⃞

Tamás Lukovszki40Models of Computation

Corollaries

Corollary 1:

 The class of regular languages L3 is closed for the
complement operation.

Proof:

 Let L be a language, recognized by a FA
A = (Q,T, ,qδ 0,F)

 Then L = T* − L can be recognized by a FA
A = (Q,T, ,qδ 0,Q−F)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

