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Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …
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Regular expressions

Let V and V’ = { , ∅ , ·, +, * , (, )} be disjoint alphabets. ε
A regular expression over V is defined recursively as follows:

1.  ∅ is a regular expression over V,

2.  is a regular expression ε over V,

3. a is a regular expression over V, for every a  ∈ V,

4. If R is a regular expression over V, then R* is also a regular expression 
over V,

5. If Q and R are regular expressions over V, then 
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· concatenation, and
+ union.
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Regular expressions

Each regular expression represents a regular language, which is defined 
as:

 

1.  ∅ represents the empty language,

2.  represents the language { }ε ε ,

3. Letter a (  ∈ V ) represents the language {a},

4. if R is a regular expression over V, which represents the language L, then 
R* represents L*,

5. if R and R’ are regular expressions over V, s.t. 
R represents the language L and 
R’ represents the language L’, then 
(R · R’) represents the language LL’, 
(R + R’) represents the language L U L’.
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Regular expressions

Parentheses can be omitted when defining precedence on operations. 
The the usual sequence is: *, ·, +. The following regular expressions 
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the 
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the 
language {b}  {∪ a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)* ) and represents the 
language {a, b}{a}*.
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Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + ( Q + R ) = ( P + Q ) + R

 P · ( Q · R ) = ( P · Q ) · R

 P + Q = Q + P

 P · ( Q + R ) = P · Q + P · R

 (P + Q ) · R = P · R + Q · R

 P* =  + ε P · P*

  · ε P = P ·  = ε P

 P* = (  + ε P )*
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Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ≥ 0 }  { ∪ ban | n ≥ 0 }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.
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Expressive power of regular expressions

Theorem: 

1) Every regular expression represents a regular 
(type 3) language.

2) For every regular (type 3) language, there is a 
regular expression representing the language.

Proof: 
1) follows from the fact that the class of regular 
languages L3 is closed for the regular operations.
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Expressive power of regular expressions

Proof: 
For 2), we show that for every regular language L 
generated by a grammar G = (N, T, P, S), a regular 
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1. 
 Assume, each rule of G is of form Ai  → aAj or Ai  , → ε

where a  ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the 

derivation Ai * ⇒ uAj (u  ∈ T* ), if Am occurs in an 
intermediate string between Ai and uAj in the 
derivation.
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Expressive power of regular expressions

Proof (cont.): 

 A derivation Ai * ⇒ uAj is called k-bounded 
if 0 ≤ m ≤ k holds for all non-terminals Am occurring 
in the derivation.

 Let Ek
i,j = {u  ∈ T* | Ǝ Ai * ⇒ uAj k-bounded derivation}.

 We show by induction on k, that for language Ek
i,j, 

there is a regular expression representing Ek
i,j, 

0 ≤ i,j,k ≤ n.
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Expressive power of regular expressions

Proof (cont.): 

 k = 0 (induction start):
 For i ≠ j, E0

i,j is eighter empty, or it consists of 
symbols of T (a  ∈ E0

i,j if and only if Ai  → aAj  ∈ P.)
 For i = j, E0

i,j consists of  and zero or more ε
elements of T, so E0

i,j can be represented by a 
regular expression.
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Expressive power of regular expressions

Proof (cont.): 

 k-1  → k (induction step):
 Assume that for a fixed k, 0 < k ≤ n, Ek-1

i,j  can be 
represented by a regular expression. 

 Then for all i, j, k it holds that
Ek

i,j = Ek-1
i,j + Ek-1

i,k · (Ek-1
k,k)* · Ek-1

k,j.
 Therefore, Ek

i,j can also be represented by a regular 
expression.

 Let Iε be the set of indices i for which Ai  . → ε
 Then L(G) = Ui∈Iε En

1,i can be representd by a regular 
expression. The claim of the theorem follows.    ⃞
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Finite Automata (FA)

● Identifying formal languages   is also possible 
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while 

automata an analytic one.
● An automaton accepts or rejects an input 

word.
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Finite Automata (FA)

 A finite automaton (FA) performs a sequence of steps in 
discrete time intervals

 The FA starts in the initial state.

 The input word is located on the input tape and the 
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the FA moves the reading head 
to one position to the right, then the state changes, 
regarding the state transition function.

 If the FA has read the input, it stops,
accepts or rejects the input.
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Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:
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Finite Automata (FA)

 Application examples:
 Automatic door control
 Coffee machine
 Pattern recognition
 Markov chains
 Pattern recognition
 Speech processing
 Optical character recognition
 Predictions of share prizes in the stock exchange
 ...
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Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, , qδ 0, F ), 
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T  → Q is the state transition function 

 q0  ∈ Q is the initial state or start state,

 F  ⊆ Q is the set of acceptance states or end 
states.
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Finite Automata (FA)

Remark:

● The function δ can be extended to a function  
δ̂ : Q × T*  → Q as follows:

● δ̂(q, ) = ε q,
● δ̂(q, xa) = δ( δ̂(q, x), a) for all x  ∈ T* and a  ∈ T.
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Finite Automata (FA)

Example:
● Let A = (Q, T, , qδ 1, F) be a FA, where 

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1,  δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2, 
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and 
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:
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Finite Automata (FA)

Example:

● Let T = {a,b,c}.
Define a FA, which accepts the words of length of at most 5.

Solution:

● Formaly: 
A=({q0, . . . , q6}, {a, b, c}, δ, q0 , {q0, . . . , q5}),
δ(qi, t) = qi+1, for i = 0, . . . , 5 , t  {∈ a, b, c},
δ(q6, t) = q6, for t  {∈ a, b, c}

● State transition diagram:

State transition table:
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Deterministic and non-deterministic 
finite automata

 Deterministic finite automaton (DFA): 
Function δ is single-valued, i.e. ∀ (q, a)  ∈ Q × T there is 
exactly one state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA):
 Function δ is multi-valued, i.e. δ : Q × T  2→ Q. 
 Multiple initial states are allowed 

(the set of initial states Q0  ⊆ Q). 
 It is allowed that δ(q, a) =  for some ∅

(q,a), i.e. the machine gets stuck.
 Null (or ) move is allowed,ε

i.e. it can move forward without 
reading symbols. NFA example
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Deterministic and non-deterministic FA

 New features of non-determinism
 Multiple paths are possible (multiple choises at 

each step).
 -transition is a “free” move without reading ε

input.
 Accepts the input if some path leads to an 

accepting state.
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Deterministic and non-deterministic FA

 Alternative notation: 

 State transitions can also be given in the form 
qa  → p, where p  ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an 
NFA A = (Q, T, , Qδ 0, F).

 If Mδ contains exactly one rule qa  → p for each pair 
(q,a), then the FA is deterministic, oherwise non-
deterministic.



Tamás Lukovszki24Models of Computation

FA – reduction

 Let A = (Q, T, , Qδ 0, F) be a FA and u,v  ∈ QT* words. 
The FA A reduces the u in one step (directly) to 
v (notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa  → p  ∈ Mδ (i.e. δ(q, a) = p) and 
a word w  ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A =  (Q, T, , Qδ 0, F) reduces u  ∈ QT* to
v  ∈ QT* (notation: u ⇒A* v, or short: u *⇒  v, if

 either u = v,
 or  Ǝ a word z  ∈ QT*, s.t. u * ⇒ z and z  ⇒ v.

 Remark: * is the reflexive, transitive closure of .⇒ ⇒
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FA – accepted language

 The language accepted/recognized by the FA  
A = (Q, T, , Qδ 0, F) is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some q0  ∈ Q0 
and p  ∈ F}

 For a DFA A, there is one single start state 
Q0={q0}. The language accepted by DFA A is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some p  ∈ F}
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NFA accepting L
1
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Theorem: If L1 and L2 are regular languages, then L1U L2 is 
also a regular language.

Proof (sketch): Let A1 be a DFA, accepting L1 and
A2 a DFA accepting L2. Then the following NFA accepts 
L1U L2.

A
1

F
2



Tamás Lukovszki27Models of Computation

NFA accepting L
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Theorem: If L1 and L2 regular languages, then L1L2 is also 
a regular language.

Proof (sketch): Let A1 be a DFA accepting L1,
A2 egy DFA accepting L2.
The following NVA accepts L1L2.



Tamás Lukovszki28Models of Computation

NFA accepting L*

A

F

ε

ε

u
u1 u2 uk

q
0 ε

Theorem: If L is a regular language, then L* is also a 
regular language.

Proof. (sketch): Let A be a DFA accepting L.
The fillowing NFA accepts L*-t.



Tamás Lukovszki29Models of Computation

Computing power of NFA

 Theorem: For all NFA A = (Q, T, , Qδ 0, F) a 
DFA A’ = (Q’, T, ’, q’δ 0, F’) can be constructed, s.t. 
L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible 
states in NFA

 Remark: In worst case |Q’| = 2|Q|.
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Computing power of NFA

Proof: 

 Let Q’= 2Q be the set of all subsets of the set Q. 
(the number of elements of Q’ is 2|Q|). 

 Let ’δ  : Q’ × T  → Q’ be the function defined as:
δ’(q’, a) = Uq∈q’ δ(q, a).

 Let q’0 = Q0 and F’ = {q’  ∈ Q’ | q’  ∩ F ≠ }∅

 To prove L(A)  ⊆ L(A’) we prove Lemma 1,
to L(A’)  ⊆ L(A) we prove Lemma 2.

 First, an example (next slide)
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NFA – DFA

Example: 

 Let A = (Q,T, ,Qδ 0,F) be a NFA, where
Q = {q0, q1, q2}, T = {a, b}, Q0 = {q0}, F = {q2}. 
δ is defined as:
δ(q0, a) = {q0, q1}, δ(q0, b) = {q1},
δ(q1, a) = , ∅ δ(q1, b) = {q2},
δ(q2, a) = {q0, q1, q2}, δ(q2, b) = {q1}.
Construct a DFA A’ quivalent with A.

Solution:

 DFA: A’ = (Q’,T, ’,q’δ 0,F’), where
Q’ = { ,{∅ q0},{q1},{q2},{q0, q1},{q0,q2},{q1,q2},{q0,q1,q2}},
q’0 = {q0},
F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}},
’ δ next slide
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NFA – DFA

Example (cont.): 

 δ:

 ’δ :
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NFA – DFA

Example (cont.):
NVA 

F = {q2}

DVA

 

F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}}

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a
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Computing power of NFA

Lemma 1: 

 For all p,q  ∈ Q, q’  ∈ Q’ és u,v  ∈ T*, 
if qu *⇒ A pv and q  ∈ q’, 
then  Ǝ p’  ∈ Q’, s.t.
q’u *⇒ A’ p’v and p  ∈ p’.

Proof:

 Induction over the number of reduction steps n in 
qu *⇒ A pv.

 For n=0: the claim holds trivially, p’=q’.
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Computing power of NFA

Proof (Lemma 1, cont.): 

 For n → n+1: Assume, the claim holds for all reductions of ≤ n 
steps.

 Let qu *⇒ A pv be a reduction of n + 1 steps. 
Then for some q1  ∈ Q and u1  ∈ T* holds that 
qu ⇒A q1u1 *⇒ A pv.

 Therefore, Ǝ a  ∈ T, s.t. u = au1 and q1  ∈ δ(q, a).

 Since δ(q, a)  ⊆ ’δ (q’, a), for q  ∈ q’,
q’1 can be choosen as q’1 = ’δ (q’, a).

 Consequently, q’u ⇒A’ q’1u1, where q1  ∈ q’1.

 By the induction assumption, 
Ǝ p’  ∈ Q’, s.t. q’1u1 *⇒ A’ p’v and p  ∈ p’, which proves the claim. ⃞
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Computing power of NFA

Proof (Theorem, cont.): 

 Let u  ∈ L(A), i.e. q0u *⇒ A p, for some q0  ∈ Q0, p  ∈ F.

 By Lemma 1, Ǝ p’, s.t. q’0u *⇒ A’ p’, where p  ∈ p’.

 By definition of F’,  p  ∈ p’ and p  ∈ F imply that 
p’  ∈ F’, which proves L(A)  ⊆ L(A’).

 For L(A’)  ⊆ L(A), we prove Lemma 2.
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Computing power of NFA

Lemma 2: 
 For all p’, q’  ∈ Q’ , p  ∈ Q and u, v  ∈ T*,

 if q’u *⇒ A’ p’v and p  ∈ p’,
 then Ǝ q  ∈ Q, s.t. qu *⇒ A pv and q  ∈ q’.

Proof: 
 Induction over the number of steps n in the 

reduction.
 For n = 0: The claim holds trivially.
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Computing power of NFA

Proof (Lemma 2, cont.): 

 For n → n+1: Assume, the claim holds for all reductions 
of ≤ n steps.

 Let q’u *⇒ A’ p’v be a reduction of n + 1 steps. 
Then q’u *⇒ A’ p’1v1 ⇒A’ p’v, where v1 = av,
for some p’1  ∈ Q’ and a  ∈ T. 

 Then,  p  ∈ p’ = ’δ (p’1, a) = Up1  ∈ p’1 δ(p1, a).

 Consequently, Ǝ p1  ∈ p’1, s.t. p  ∈ δ(p1, a).

 For this p1, it holds that p1v1 ⇒A pv.

 By the induction assumption, qu *⇒ A p1v1 , for some q  ∈ q0, 
which implies the claim. ⃞
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Computing power of NFA

Proof (Theorem, cont.): 

 Let q’0u *⇒ A’ p’ and p’  ∈ F .

 By the definition of F’,  Ǝ p  ∈ p’ , s.t. p  ∈ F.

 Then, by Lemma 2, for some q0  ∈ q’0, holds that 
q0u *⇒ A p.

 This proves the claim of the theorem. ⃞
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Corollaries

Corollary 1: 

 The class of regular languages L3 is closed for the 
complement operation.

Proof:

 Let L be a language, recognized by a FA 
A = (Q,T, ,qδ 0,F)

 Then L = T* − L can be recognized by a FA 
A = (Q,T, ,qδ 0,Q−F) 
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