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Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …



Tamás Lukovszki3Models of Computation

Regular expressions

Let V and V’ = { , ∅ , ·, +, * , (, )} be disjoint alphabets. A ε regular 
expression over V is defined recursively as follows:

1.  ∅ is a regular expression over V,

2.  is a regular expression over ε V,

3. all a  ∈ V are regular expressions  over V,

4. If R is a regular expression over V, then R* is also a regular 
expression over V,

5. If Q and R are regular expressions over V, then 
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· concatenation, and
+ union.
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Regular expressions

Each regular expression represents a regular language, which is 
defined as:

1.  ∅ represents the empty language,

2.  represents the language { }ε ε ,

3. Letter a (  ∈ V ) represents the language {a},

4. if R is a regular expression over V, which represents the language L, 
then R* represents L*,

5. if R and R’ are regular expressions over V, s.t. 
R represents the language L and 
R’ represents the language L’, then 
(R · R’) represents the language LL’, 
(R + R’) represents the language L U L’.
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Regular expressions

Parentheses can be omitted when defining precedence on operations. 
The the usual sequence is: *, ·, +. The following regular expressions 
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the 
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the 
language {b}  {∪ a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)* ) and represents the 
language {a, b}{a}*.
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Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + ( Q + R ) = ( P + Q ) + R

 P · ( Q · R ) = ( P · Q ) · R

 P + Q = Q + P

 P · ( Q + R ) = P · Q + P · R

 (P + Q ) · R = P · R + Q · R

 P* =  + ε P · P*

  · ε P = P ·  = ε P

 P* = (  + ε P )*
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Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ≥ 0 }  { ∪ ban | n ≥ 0 }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.
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Expressive power of regular expressions

Theorem: 

1) Every regular expression represents a regular 
(type 3) language.

2) For every regular (type 3) language, there is a 
regular expression representing the language.

Proof: 
1) follows from the fact that the class of regular 
languages L3 is closed for the regular operations.
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Expressive power of regular expressions

Proof: 
For 2), we show that for every regular language L 
generated by a grammar G = (N, T, P, S), a regular 
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1. 
 Assume, each rule of G is of form Ai  → aAj or Ai  , → ε

where a  ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the 

derivation Ai * ⇒ uAj (u  ∈ T* ), if Am occurs in an 
intermediate string between Ai and uAj in the 
derivation.
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Expressive power of regular expressions

Proof (cont.): 

 A derivation Ai * ⇒ uAj is called k-bounded 
if 0 ≤ m ≤ k holds for all non-terminals Am occurring 
in the derivation.

 Let Ek
i,j = {u  ∈ T* | Ǝ Ai * ⇒ uAj k-bounded derivation}.

 We show by induction on k, that for language Ek
i,j, 

there is a regular expression representing Ek
i,j, 

0 ≤ i,j,k ≤ n.
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Expressive power of regular expressions

Proof (cont.): 

 k = 0 (induction start):
 For i ≠ j, E0

i,j is eighter empty, or it consists of 
symbols of T (a  ∈ E0

i,j if and only if Ai  → aAj  ∈ P.)
 For i = j, E0

i,j consists of  and zero or more ε
elements of T, so E0

i,j can be represented by a 
regular expression.
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Expressive power of regular expressions

Proof (cont.): 

 k-1  → k (induction step):
 Assume that for a fixed k, 0 < k ≤ n, Ek-1

i,j  can be 
represented by a regular expression. 

 Then for all i, j, k it holds that
Ek

i,j = Ek-1
i,j + Ek-1

i,k · (Ek-1
k,k)* · Ek-1

k,j.
 Therefore, Ek

i,j can also be represented by a regular 
expression.

 Let Iε be the set of indices i for which Ai  . → ε
 Then L(G) = Ui∈Iε En

1,i can be representd by a regular 
expression. The claim of the theorem follows.    ⃞
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Finite Automata (FA)

● Identifying formal languages   is also possible 
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while 

automata an analytic one.
● An automaton accepts or rejects an input 

word.
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Finite Automata (FA)

 A finite automaton (FA) performs a sequence of steps in 
discrete time intervals

 The FA starts in the initial state.

 The input word is located on the input tape and the 
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the FA moves the reading head 
to one position to the right, then the state changes, 
regarding the state transition function.

 If the FA has read the input, it stops,
accepts or rejects the input.
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Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:
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Finite Automata (FA)

 Application examples:
 Automatic door control
 Coffee machine
 Pattern recognition
 Markov chains
 Pattern recognition
 Speech processing
 Optical character recognition
 Predictions of share prizes in the stock exchange
 ...



Tamás Lukovszki17Models of Computation

Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, , qδ 0, F ), 
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T  → Q is the state transition function 

 q0  ∈ Q is the initial state or start state,

 F  ⊆ Q is the set of acceptance states or end 
states.
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Finite Automata (FA)

Remark:

● The function δ can be extended to a function  
δ̂ : Q × T*  → Q as follows:

● δ̂(q, ) = ε q,
● δ̂(q, xa) = δ( δ̂(q, x), a) for all x  ∈ T* and a  ∈ T.
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Finite Automata (FA)

Example:
● Let A = (Q, T, , qδ 1, F) be a FA, where 

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1,  δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2, 
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and 
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:
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Finite Automata (FA)

Example:

● Let T = {a,b,c}.
Define a FA, which accepts the words of length of at most 5.

Solution:

● Formaly: 
A=({q0, . . . , q6}, {a, b, c}, δ, q0 , {q0, . . . , q5}),
δ(qi, t) = qi+1, for i = 0, . . . , 5 , t  {∈ a, b, c},
δ(q6, t) = q6, for t  {∈ a, b, c}

● State transition diagram:

State transition table:
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Deterministic and non-deterministic 
finite automata

 Deterministic finite automaton (DFA): 
Function δ is single-valued, i.e. ∀ (q, a)  ∈ Q × T there is 
exactly one state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA):
 Function δ is multi-valued, i.e. δ : Q × T  2→ Q. 
 Multiple initial states are allowed 

(the set of initial states Q0  ⊆ Q). 
 It is allowed that δ(q, a) =  for some ∅

(q,a), i.e. the machine gets stuck.
 Null (or ) move is allowed,ε

i.e. it can move forward without 
reading symbols. NFA example
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Deterministic and non-deterministic FA

 New features of non-determinism
 Multiple paths are possible (multiple choises at 

each step).
 -transition is a “free” move without reading ε

input.
 Accepts the input if some path leads to an 

accepting state.
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Deterministic and non-deterministic FA

 Alternative notation: 

 State transitions can also be given in the form 
qa  → p, where p  ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an 
NFA A = (Q, T, , Qδ 0, F).

 If Mδ contains exactly one rule qa  → p for each pair 
(q,a), then the FA is deterministic, oherwise non-
deterministic.
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FA – reduction

 Let A = (Q, T, , Qδ 0, F) be a FA and u,v  ∈ QT* words. 
The FA A reduces the u in one step (directly) to 
v (notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa  → p  ∈ Mδ (i.e. δ(q, a) = p) and 
a word w  ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A =  (Q, T, , Qδ 0, F) reduces u  ∈ QT* to
v  ∈ QT* (notation: u ⇒A* v, or short: u *⇒  v, if

 either u = v,
 or  Ǝ a word z  ∈ QT*, s.t. u * ⇒ z and z  ⇒ v.

 Remark: * is the reflexive, transitive closure of .⇒ ⇒
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FA – accepted language

 The language accepted/recognized by the FA  
A = (Q, T, , Qδ 0, F) is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some q0  ∈ Q0 
and p  ∈ F}

 For a DFA A, there is one single start state 
Q0={q0}. The language accepted by DFA A is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some p  ∈ F}
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NFA accepting L
1
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Theorem: If L1 and L2 are regular languages, then L1U L2 is 
also a regular language.

Proof (sketch): Let A1 be a DFA, accepting L1 and
A2 a DFA accepting L2. Then the following NFA accepts 
L1U L2.
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NFA accepting L
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Theorem: If L1 and L2 regular languages, then L1L2 is also 
a regular language.

Proof (sketch): Let A1 be a DFA accepting L1,
A2 egy DFA accepting L2.
The following NVA accepts L1L2.
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NFA accepting L*

A

F

ε

ε

u
u1 u2 uk

q
0 ε

Theorem: If L is a regular language, then L* is also a 
regular language.

Proof. (sketch): Let A be a DFA accepting L.
The fillowing NFA accepts L*-t.
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Computing power of NFA

 Theorem: For all NFA A = (Q, T, , Qδ 0, F) a 
DFA A’ = (Q’, T, ’, q’δ 0, F’) can be constructed, s.t. 
L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible 
states in NFA

 Remark: In worst case |Q’| = 2|Q|.



Tamás Lukovszki30Models of Computation

Computing power of NFA

Proof: 

 Let Q’= 2Q be the set of all subsets of the set Q. 
(the number of elements of Q’ is 2|Q|). 

 Let ’δ  : Q’ × T  → Q’ be the function defined as:
δ’(q’, a) = Uq∈q’ δ(q, a).

 Let q’0 = Q0 and F’ = {q’  ∈ Q’ | q’  ∩ F ≠ }∅

 To prove L(A)  ⊆ L(A’) we prove Lemma 1,
to L(A’)  ⊆ L(A) we prove Lemma 2.

 First, an example (next slide)
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NFA – DFA

Example: 

 Let A = (Q,T, ,Qδ 0,F) be a NFA, where
Q = {q0, q1, q2}, T = {a, b}, Q0 = {q0}, F = {q2}. 
δ is defined as:
δ(q0, a) = {q0, q1}, δ(q0, b) = {q1},
δ(q1, a) = , ∅ δ(q1, b) = {q2},
δ(q2, a) = {q0, q1, q2}, δ(q2, b) = {q1}.
Construct a DFA A’ quivalent with A.

Solution:

 DFA: A’ = (Q’,T, ’,q’δ 0,F’), where
Q’ = { ,{∅ q0},{q1},{q2},{q0, q1},{q0,q2},{q1,q2},{q0,q1,q2}},
q’0 = {q0},
F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}},
’ δ next slide
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NFA – DFA

Example (cont.): 

 δ:

 ’δ :
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NFA – DFA

Example (cont.):
NFA 

F = {q2}

DFA

 

F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}}

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a
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Computing power of NFA

Lemma 1: 

 For all p,q  ∈ Q, q’  ∈ Q’ and u,v  ∈ T*, 
if qu *⇒ A pv and q  ∈ q’, 
then  Ǝ p’  ∈ Q’, s.t.
q’u *⇒ A’ p’v and p  ∈ p’.

Proof:

 Induction over the number of 
reduction steps n in qu *⇒ A pv.

 For n=0: the claim holds trivially, p’=q’.

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a
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Computing power of NFA

Proof (Lemma 1, cont.): 

 For n → n+1: Assume, the claim holds 
for all reductions of ≤ n steps.

 Let qu *⇒ A pv be a reduction of n + 1 steps. 
Then for some q1  ∈ Q and u1  ∈ T* holds that 
qu ⇒A q1u1 *⇒ A pv.

 Therefore, Ǝ a  ∈ T, s.t. u = au1 and q1  ∈ δ(q, a).

 Since δ(q, a)  ⊆ ’δ (q’, a), for q  ∈ q’,
q’1 can be choosen as q’1 = ’δ (q’, a).

 Consequently, q’u ⇒A’ q’1u1, where q1  ∈ q’1.

 By the induction assumption, 
Ǝ p’  ∈ Q’, s.t. q’1u1 *⇒ A’ p’v and p  ∈ p’, 
which proves the claim. ⃞

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a
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Computing power of NFA

Proof (Theorem, cont.): 

 Let u  ∈ L(A), i.e. q0u *⇒ A p, for some q0  ∈ Q0, p  ∈ F.

 By Lemma 1, Ǝ p’, s.t. q’0u *⇒ A’ p’, where p  ∈ p’.

 By definition of F’,  p  ∈ p’ and p  ∈ F imply that 
p’  ∈ F’, which proves L(A)  ⊆ L(A’).

 For L(A’)  ⊆ L(A), we prove Lemma 2.
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Computing power of NFA

Lemma 2: 
 For all p’, q’  ∈ Q’, p  ∈ Q and u, v  ∈ T*,

 if q’u *⇒ A’ p’v and p  ∈ p’,
 then Ǝ q  ∈ Q, s.t. 

qu *⇒ A pv and q  ∈ q’.

Proof: 
 Induction over the number of 

reduction steps n.
 For n = 0: The claim holds trivially.

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a
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Computing power of NFA

Proof (Lemma 2, cont.): 

 For n → n + 1: Assume, the claim holds 
for all reductions of ≤ n steps.

 Let q’u *⇒ A’ p’v be a reduction of n + 1 steps. 
Then q’u *⇒ A’ p’1v1 ⇒A’ p’v, where v1 = av,
for some p’1  ∈ Q’ and a  ∈ T. 

 Then,  p  ∈ p’ = ’δ (p’1, a) = Up1  ∈ p’1 δ(p1, a).

 Consequently, Ǝ p1  ∈ p’1, s.t. p  ∈ δ(p1, a).

 For this p1, it holds that p1v1 ⇒A pv.

 By the induction assumption, qu *⇒ A p1v1, 
for some q  ∈ q0, which implies the claim. ⃞

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a
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Computing power of NFA

Proof (Theorem, cont.): 

 Let q’0u *⇒ A’ p’ and p’  ∈ F .

 By the definition of F’,  Ǝ p  ∈ p’ , s.t. p  ∈ F.

 Then, by Lemma 2, for some q0  ∈ q’0, holds that 
q0u *⇒ A p.

 This proves the claim of the theorem. ⃞
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Corollaries

Corollary 1: 

 The class of regular languages L3 is closed for the 
complement operation.

Proof:

 Let L be a language, recognized by a FA 
A = (Q,T, ,qδ 0,F)

 Then L = T* − L can be recognized by a FA 
A = (Q,T, ,qδ 0,Q−F) 
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Corollaries

Corollary 2: 

 The class of regular languages L3 is closed for the 
intersection operation.

Proof:

 We know, that L3 is closed for the union operation.

 L1  ∩ L2 = L1  ∪ L2.

 By Corollary 1, the claim follows.
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FA – Myhill-Nerode Theorem

 Let L be a language over the alphabet T. The relation EL 
induced by language L is a binary relation on T*, for which it 
holds that

 ∀ u, v  ∈ T*, uELv, if and only if  ∄ w  ∈ T*, s.t. exatly one of 
the words uw and vw is an element of L 
(i.e.  ∀ w  ∈ T* : uw  ∈ L if and only if vw  ∈ L).

 EL is an equivalence relation and it is right-invariant. (Right-
invariant: if uELv, then uwELvw holds for every word w  ∈ T*.)

 The index of the EL is the number of its equivalence classes.

Theorem (Myhill-Nerode): L  ⊆ T* can be recognized by a 
deterministic FA if and only if EL has a finite index.
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FA – Myhill-Nerode Theorem

Theorem (Myhill-Nerode): L  ⊆ T* can be recognized 
by a DFA if and only if EL has a finite index.

 This index is equal to the number of states in the 
minimal DFA recognizing L. 
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DFA with minimum number of states

 The DFA A has a minimum number of states 
(minimal DFA), if there is no DFA A’, which 
recognizes the same language as A, but the 
number of states of A’ is smaller than the number 
of states of A. 

Theorem: The minimal DFA accepting the regular 
language L is unique, up to isomorphism.
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DFA with minimum number of states

Theorem: The minimal DFA accepting the regular language L is unique, 
up to isomorphism.

 Let A = (Q, T, , qδ 0, F ) be a DFA. Define a relation R  ⊆ Q x Q, s.t. 
pRq if ∀ input word x  ∈ T* it holds that 
px *⇒ A r if and only if qx *⇒ A r’ for some r, r’   ∈ F states. (r = r’ is 
possible).

 States p and q are distinguishable if 
 Ǝ x  ∈ T*, s.t. either px *⇒ A r, r  ∈ F, or qx *⇒ A r’, r’  ∈ F , 

but both reductions are not possible. 
Otherwise, p and q are indistinguishable.

 If p and q are indistinguishable, then δ(p, a) = s and δ(q, a) = t are  
indistinguishable for any a  ∈ T. 

 If δ(p, a) = s and δ(q, a) = t are distinguishable for x  ∈ T*, 
then p and q are distinguishable also for ax.
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DFA with minimum number of states

 Let A = (Q, T, , qδ 0, F) be a DFA. State q is reachable from the initial 
state if there is a reduction q0x * ⇒ q, where x is some word over T.

 The DFA A = (Q, T, , qδ 0, F) is connected, if all its states are 
reachable from the initial state.

 We define the set H of reachabele states as follows: 
Let H0 = {q0}, Hi+1 = Hi  {∪ r | δ(q, a) = r , q  ∈ Hi , a  ∈ T}, i = 1, 2, .... 
Then Ǝ k ≥ 0 : Hk = Hl , for all l ≥ k. Let H = Hk.

 We define the DFA A’ = (Q’, T, ’, qδ 0, F’) with 
Q’ = H, F’ = F  ∩ H and ’δ  : H × T  → H s.t. ’δ (q, a) = δ(q, a),
if q  ∈ H.

 It can be shown that A’ is connected and accepts the same language 
as A. A’ is the largest connected subautomaton of A.
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DFA with minimum number of states

Computing_Reachable_States
(from: https://en.wikipedia.org/wiki/DFA_minimization)

 let reachable_states := {q0}

 let new_states := {q0}

 do {

     temp := the empty set

     for each q in new_states do

         for each c in T do

             temp := temp  {p such that p = (q,c)}∪ δ

     new_states := temp \ reachable_states

     reachable_states := reachable_states  new_states∪

 } while (new_states ≠ the empty set)

 unreachable_states := Q \ reachable_states
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DFA with minimum number of states

● Computing the minimal DFA
(Hopcroft’s partition refinement):

● Determine, whether the automaton is 
connected or not. 

● If it is not connected, then consider the 
largest connected subautomaton. 
In the following, we assume, that the DFA 
is connected.

● Partition the set of states according to 
distinguishability (states are divided into 
equivalence classes) (Steps 1-3)
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DFA with minimum number of states

● Step 1:  
● Divide the set of states into two partitions: F and Q − F .

(The states in F can be distinguished from the states in 
Q − F by the empty word).

● Repeat splitting of the partitions (Step 2) into additional 
partitions as long as the number of partitions remains the 
same.

● Step 2:
● Consider an arbitrary partition P of states. Take an input 

symbol a and consider δ(p, a) for each state p ∈ P. 
If the obtained states belong to different partitions, then split 
P into as many new partitions as arosing in this way.

● Perform this procedure for each input symbol and each 
partition, until no new partition is created.
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DFA with minimum number of states

● Step 3: 
● Determine the DFA with the minimum number of 

states:
● For each partition Bi, consider a representative state bi.
● Construct a DFA A’ = (Q’, T, ’, qδ 0, F’), where

● Q’ is set of representatives of the partitions,
● q’0 is the representative of the partition 

containing q0, 
● ’δ (bi, a) = bj, if Ǝ qi  ∈ Bi and qj  ∈ Bj, s.t. 

δ(qi, a) = qj.
● F’ = {bf} is the representative of the partition 

that contains the elements of F.
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Pumping lemma for regular languages

● A necessary condition for regular languages
(i.e. recognizable by a FA).

● Theorem (pumping lemma for regular languages): 
For every regular language L there exists a natural 
number n, s.t. for all words z  ∈ L with |z|>n, holds 
that z can be written as z=uvw, satisfying the 
following conditions:
1. |uv| ≤ n, 
2. |v|>0, 
3. uviw  ∈ L, for all i ≥ 0. 
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Pumping lemma for regular languages

● Proof.: 
● Let L be a regular language and 

A=(Q, T, , qδ 0, F) be a minimal DFA, s.t. 
L(A)=L.

● Let n=|Q|+1. Let z  ∈ L be an arbitrary word 
with |z|>n.

● Consider A with input z. There must be a 
state q that A visits at least twice during 
the processing of z. Such a state q must 
already exist during the first n state 
transitions.

● Let u be the prefix of z processed by A up to 
the first occurrence of q, and let v be the 
subword of z processed between the first 
and second occurrences of q. Then |uv|≤n.

u v w

q q

qu

v

w
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Pumping lemma for regular languages

● Proof (cont.):
● Since at least one state transition has 

occurred in A between two occurrences 
of q, i.e. at least one symbol has been 
read, therefore |v|>0.

● If A starts from the state q and reads the 
word w, it reaches the accepting end 
state. Accordingly, A accepts uw. 

● Similarly, A accepts all words of the form 
uviw, i≥0, since after reading u, A goes 
to state q, starting from q after reading 
vi, A returns to state q, finally after 
reading w, A reaches an accepting end 
state. This completes the proof.  ⃞

u v w

q q

qu

v

w

q

v
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Application of the pumping lemma

Claim: The language L={ajbj | j ≥ 1} is not regular.

Proof: Assume that G is a regular grammar generating L. 
Then, by the regular pumping lemma, 
∃ n≥0, s.t.  ∀ z  L∈  words with |z|>n,
z can be written as z=uvw, satisfying 
|uv| ≤ n, |v|>0, and uviw  L∈ , for all i ≥ 0. 
Consider a word ambm, where m>n. 
Since |uv| ≤ n, uv contains a symbols. 
Since |v|>0, for i ≥ 2, uviw contains more
a symbols than b symbols. 
Conseqently, uviw  L∉ .           ⃞

A context-free grammar generating L:
S  ab→ , S  aSb→ .

{ajbj | j ≥ 1}

L3 

L2 
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Transforming Regular Grammars to 
Equivalent FA

1)Construct an ε-free regular grammar G’ from G 
(see next slide);

2)Create a FA M, with a state for every non-terminal in 
G’. Set the state representing the start symbol S’ in 
G’ to be the start state;

3)Add a new state F, which is final state;

4)If the production S’→ε is in G’, 
● set the state representing S’ to be final state;

5)For every production A→aB in G’, 
● add a transition from state A to state B labelled 

with a;

6)For every production A→a in G’, 
● add a transition from A to the final state F.

Example:

● G:
● S→a|aA|bB|ε 
● A→aA|aS
● B→cS|ε

● G’:
● S’→a|b|aA|bB|ε
● S→a|b|aA|bB
● A→a|aA|aS
● B→c|cS

S’ B

SA

F bca

b

a
a

b
a

a
b

a

c

a
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Making a Regular Grammar ε-Free

A regular grammar G is ε-free if it has no ε-productions 
except for S→ε, where S is the start symbol, and S does 
not appear on the right hand side of the production rules.

Making a regular grammar G ε-free:

1)Copy all non ε-productions from G to G’. 
Let S be the start symbol in G’;

2)For any non-terminal N which can become ε 
(While ƎN : N→ε is a production do), 

● copy every rule in which N appears on the right 
hand side both with and without N;

3)If S→ε was in the original set of rules, 
● add a new start symbol S’ in G’, 
● add the rule S’→ε and 
● copy all the production rules with S on the left hand 

side to ones with S’ on the left hand side.

Example:

● G:
● S →aA | bB | ε
● A →aA | a | ε
● B →bB | b | ε

● 1)
● S →aA | bB 
● A →aA | a
● B →bB | b

● 2)
● S aA | bB | a | b→
● A aA | a→
● B bB | b→

● 3)
● S’ →aA | bB | a | b | ε
● S →aA | bB | a | b
● A →aA | a
● B →bB | b
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Transforming FA to Regular Grammar

Transforming FA A to a regular grammar G:

1)Let T be the terminal alphabet of the grammar G 
– the same as that of A.

2)The set of non-terminals in G is set to be Q – the set of 
states of A.

3)The start state S of A will be the start symbol of G be.

4)Initially, let the set of rules in G be  ∅
For every transition (q,a)→q' of A,

a)add the production q→aq';
b)if q' is a final state also add the production q→a.

5)If S is a final state of A add the production rule S→ε.

6)If grammar is not ε-free, make it ε-free 
(see previous slide).

Example:

● A=(Q,T,δ,S,{S,C}) with δ:
● (S,a)→A,
● (S,b)→B,
● (A,a)→B,
● (A,a)→C,
● (B,b)→A,
● (B,b)→C,
● (C,c)→C.

● 4)
● S aA | bB,→
● A aB | aC | a,→
● B bA | bC | b,→
● C cC | c.→

● 5)
● S→aA | bB | ε
● A→aB | aC | a
● B→bA | bC | b
● C→cC | c.
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Transforming FA to Regular Expression

Idea: Assume, states of FA A are enumerated: 1,…,n, 
start state: 1. 
We compute regular expressions T(i,j,k) that describe all 
strings that take us from state i to j through states {1,2,…,k}. 
The language L(A) is the union of all strings that take us from 
state 1 to a final state f∈F through any state: 
L(A) = Uf∈F T(1,f,n) .

Calculating T(i,j,k)

1)Base case, k=0:
a)If i=j: T(i,i,0) = ε+a+...+z, where a to z are the labels on 

transition arcs going from state i to itself. 
If no such arcs exist, T(i,i,0) = ε.

b)If i≠j: T(i,j,0) = a+...+z, where a to z are the labels on 
transition arcs going from state i to state j 
If no such arcs exist, T(i,j,0) = ∅.

2)Inductive case, k > 0:
T(i,j,k) = T(i,j,k-1) + T(i,k,k-1)(T(k,k,k-1)*T(k,j,k-1)

Example:

● T(1,1,0) = ε
T(2,2,0) = ε+b
T(1,2,0) = a
T(2,1,0) = a

● T(1,1,1) = ε+ε(ε)*ε =ε
T(2,2,1) = ε+b+a(ε)*a = ε+b+aa
T(1,2,1) = a+ε(ε)*a = a
T(2,1,1) = a+a(ε)*ε = a

● T(1,1,2) = ...
T(2,2,2) = ...
T(1,2,2) = 
a+a(ε+b+aa)*(ε+b+aa) = 
a+a(ε+b+aa)+ = 
a+a(b+aa)* = 
a(b+aa)*
T(2,1,2) = ...

21
a

a

b
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Transforming Regular Expression into an NFA

Transforming Regular Expression R 
into a NFA N:

1. If R = a, for a  T,∈  then L(R) = {a}

2. If R = , then ε L(R) = { }ε

3. If R = . Then ∅ L(R) = ∅

4. R = R1  ∪ R2

5. R = R1 · R2

6. R = R1*

NFA recognizes L(R)
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Transforming Regular Expression into an NFA

1. If R = a, for a  T,∈  then L(R) = {a}
2. If R = , then ε L(R) = { }ε
3. If R = . Then ∅ L(R) = ∅
4. R = R1  ∪ R2 

5. R = R1 · R2

6. R = R1*
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Transforming Regular Expression into an NFA

1. If R = a, for a  T,∈  then L(R) = {a}
2. If R = , then ε L(R) = { }ε
3. If R = . Then ∅ L(R) = ∅
4. R = R1  ∪ R2 
5. R = R1 · R2

6. R = R1*
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Transforming Regular Expression into an NFA

1. If R = a, for a  T,∈  then L(R) = {a}
2. If R = , then ε L(R) = { }ε
3. If R = . Then ∅ L(R) = ∅
4. R = R1  ∪ R2 
5. R = R1 · R2

6. R = R1*
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