
Tamás Lukovszki1Models of Computation

Models of Computation

5: Regular expressions, finite automaton

Tamás Lukovszki2Models of Computation

Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …

Tamás Lukovszki3Models of Computation

Regular expressions

Let V and V’ = { , ∅ , ·, +, * , (,)} be disjoint alphabets. A ε regular
expression over V is defined recursively as follows:

1. ∅ is a regular expression over V,

2. is a regular expression over ε V,

3. all a ∈ V are regular expressions over V,

4. If R is a regular expression over V, then R* is also a regular
expression over V,

5. If Q and R are regular expressions over V, then
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· concatenation, and
+ union.

Tamás Lukovszki4Models of Computation

Regular expressions

Each regular expression represents a regular language, which is
defined as:

1. ∅ represents the empty language,

2. represents the language { }ε ε ,

3. Letter a (∈ V) represents the language {a},

4. if R is a regular expression over V, which represents the language L,
then R* represents L*,

5. if R and R’ are regular expressions over V, s.t.
R represents the language L and
R’ represents the language L’, then
(R · R’) represents the language LL’,
(R + R’) represents the language L U L’.

Tamás Lukovszki5Models of Computation

Regular expressions

Parentheses can be omitted when defining precedence on operations.
The the usual sequence is: *, ·, +. The following regular expressions
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the
language {b} {∪ a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)*) and represents the
language {a, b}{a}*.

Tamás Lukovszki6Models of Computation

Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + (Q + R) = (P + Q) + R

 P · (Q · R) = (P · Q) · R

 P + Q = Q + P

 P · (Q + R) = P · Q + P · R

 (P + Q) · R = P · R + Q · R

 P* = + ε P · P*

 · ε P = P · = ε P

 P* = (+ ε P)*

Tamás Lukovszki7Models of Computation

Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ≥ 0 } { ∪ ban | n ≥ 0 }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.

Tamás Lukovszki8Models of Computation

Expressive power of regular expressions

Theorem:

1) Every regular expression represents a regular
(type 3) language.

2) For every regular (type 3) language, there is a
regular expression representing the language.

Proof:
1) follows from the fact that the class of regular
languages L3 is closed for the regular operations.

Tamás Lukovszki9Models of Computation

Expressive power of regular expressions

Proof:
For 2), we show that for every regular language L
generated by a grammar G = (N, T, P, S), a regular
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1.
 Assume, each rule of G is of form Ai → aAj or Ai , → ε

where a ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the

derivation Ai * ⇒ uAj (u ∈ T*), if Am occurs in an
intermediate string between Ai and uAj in the
derivation.

Tamás Lukovszki10Models of Computation

Expressive power of regular expressions

Proof (cont.):

 A derivation Ai * ⇒ uAj is called k-bounded
if 0 ≤ m ≤ k holds for all non-terminals Am occurring
in the derivation.

 Let Ek
i,j = {u ∈ T* | Ǝ Ai * ⇒ uAj k-bounded derivation}.

 We show by induction on k, that for language Ek
i,j,

there is a regular expression representing Ek
i,j,

0 ≤ i,j,k ≤ n.

Tamás Lukovszki11Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k = 0 (induction start):
 For i ≠ j, E0

i,j is eighter empty, or it consists of
symbols of T (a ∈ E0

i,j if and only if Ai → aAj ∈ P.)
 For i = j, E0

i,j consists of and zero or more ε
elements of T, so E0

i,j can be represented by a
regular expression.

Tamás Lukovszki12Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k-1 → k (induction step):
 Assume that for a fixed k, 0 < k ≤ n, Ek-1

i,j can be
represented by a regular expression.

 Then for all i, j, k it holds that
Ek

i,j = Ek-1
i,j + Ek-1

i,k · (Ek-1
k,k)* · Ek-1

k,j.
 Therefore, Ek

i,j can also be represented by a regular
expression.

 Let Iε be the set of indices i for which Ai . → ε
 Then L(G) = Ui∈Iε En

1,i can be representd by a regular
expression. The claim of the theorem follows. ⃞

Tamás Lukovszki13Models of Computation

Finite Automata (FA)

● Identifying formal languages is also possible
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while

automata an analytic one.
● An automaton accepts or rejects an input

word.

Tamás Lukovszki14Models of Computation

Finite Automata (FA)

 A finite automaton (FA) performs a sequence of steps in
discrete time intervals

 The FA starts in the initial state.

 The input word is located on the input tape and the
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the FA moves the reading head
to one position to the right, then the state changes,
regarding the state transition function.

 If the FA has read the input, it stops,
accepts or rejects the input.

Tamás Lukovszki15Models of Computation

Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:

Tamás Lukovszki16Models of Computation

Finite Automata (FA)

 Application examples:
 Automatic door control
 Coffee machine
 Pattern recognition
 Markov chains
 Pattern recognition
 Speech processing
 Optical character recognition
 Predictions of share prizes in the stock exchange
 ...

Tamás Lukovszki17Models of Computation

Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, , qδ 0, F),
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T → Q is the state transition function

 q0 ∈ Q is the initial state or start state,

 F ⊆ Q is the set of acceptance states or end
states.

Tamás Lukovszki18Models of Computation

Finite Automata (FA)

Remark:

● The function δ can be extended to a function
δ̂ : Q × T* → Q as follows:

● δ̂(q,) = ε q,
● δ̂(q, xa) = δ(δ̂(q, x), a) for all x ∈ T* and a ∈ T.

Tamás Lukovszki19Models of Computation

Finite Automata (FA)

Example:
● Let A = (Q, T, , qδ 1, F) be a FA, where

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1, δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2,
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:

Tamás Lukovszki20Models of Computation

Finite Automata (FA)

Example:

● Let T = {a,b,c}.
Define a FA, which accepts the words of length of at most 5.

Solution:

● Formaly:
A=({q0, . . . , q6}, {a, b, c}, δ, q0 , {q0, . . . , q5}),
δ(qi, t) = qi+1, for i = 0, . . . , 5 , t {∈ a, b, c},
δ(q6, t) = q6, for t {∈ a, b, c}

● State transition diagram:

State transition table:

Tamás Lukovszki21Models of Computation

Deterministic and non-deterministic
finite automata

 Deterministic finite automaton (DFA):
Function δ is single-valued, i.e. ∀ (q, a) ∈ Q × T there is
exactly one state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA):
 Function δ is multi-valued, i.e. δ : Q × T 2→ Q.
 Multiple initial states are allowed

(the set of initial states Q0 ⊆ Q).
 It is allowed that δ(q, a) = for some ∅

(q,a), i.e. the machine gets stuck.
 Null (or) move is allowed,ε

i.e. it can move forward without
reading symbols. NFA example

Tamás Lukovszki22Models of Computation

Deterministic and non-deterministic FA

 New features of non-determinism
 Multiple paths are possible (multiple choises at

each step).
 -transition is a “free” move without reading ε

input.
 Accepts the input if some path leads to an

accepting state.

Tamás Lukovszki23Models of Computation

Deterministic and non-deterministic FA

 Alternative notation:

 State transitions can also be given in the form
qa → p, where p ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an
NFA A = (Q, T, , Qδ 0, F).

 If Mδ contains exactly one rule qa → p for each pair
(q,a), then the FA is deterministic, oherwise non-
deterministic.

Tamás Lukovszki24Models of Computation

FA – reduction

 Let A = (Q, T, , Qδ 0, F) be a FA and u,v ∈ QT* words.
The FA A reduces the u in one step (directly) to
v (notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa → p ∈ Mδ (i.e. δ(q, a) = p) and
a word w ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A = (Q, T, , Qδ 0, F) reduces u ∈ QT* to
v ∈ QT* (notation: u ⇒A* v, or short: u *⇒ v, if

 either u = v,
 or Ǝ a word z ∈ QT*, s.t. u * ⇒ z and z ⇒ v.

 Remark: * is the reflexive, transitive closure of .⇒ ⇒

Tamás Lukovszki25Models of Computation

FA – accepted language

 The language accepted/recognized by the FA
A = (Q, T, , Qδ 0, F) is:
L(A) = {u ∈ T* | q0u * ⇒ p for some q0 ∈ Q0
and p ∈ F}

 For a DFA A, there is one single start state
Q0={q0}. The language accepted by DFA A is:
L(A) = {u ∈ T* | q0u * ⇒ p for some p ∈ F}

Tamás Lukovszki26Models of Computation

NFA accepting L
1
 U L

2

A
2

q
0

F
1

q
f

ε

ε

ε

ε

Theorem: If L1 and L2 are regular languages, then L1U L2 is
also a regular language.

Proof (sketch): Let A1 be a DFA, accepting L1 and
A2 a DFA accepting L2. Then the following NFA accepts
L1U L2.

A
1

F
2

Tamás Lukovszki27Models of Computation

NFA accepting L
1
L

2

A
2A

1

F
1 F

2ε
q

f
ε

u
v

u

u

v
?

Theorem: If L1 and L2 regular languages, then L1L2 is also
a regular language.

Proof (sketch): Let A1 be a DFA accepting L1,
A2 egy DFA accepting L2.
The following NVA accepts L1L2.

Tamás Lukovszki28Models of Computation

NFA accepting L*

A

F

ε

ε

u
u1 u2 uk

q
0 ε

Theorem: If L is a regular language, then L* is also a
regular language.

Proof. (sketch): Let A be a DFA accepting L.
The fillowing NFA accepts L*-t.

Tamás Lukovszki29Models of Computation

Computing power of NFA

 Theorem: For all NFA A = (Q, T, , Qδ 0, F) a
DFA A’ = (Q’, T, ’, q’δ 0, F’) can be constructed, s.t.
L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible
states in NFA

 Remark: In worst case |Q’| = 2|Q|.

Tamás Lukovszki30Models of Computation

Computing power of NFA

Proof:

 Let Q’= 2Q be the set of all subsets of the set Q.
(the number of elements of Q’ is 2|Q|).

 Let ’δ : Q’ × T → Q’ be the function defined as:
δ’(q’, a) = Uq∈q’ δ(q, a).

 Let q’0 = Q0 and F’ = {q’ ∈ Q’ | q’ ∩ F ≠ }∅

 To prove L(A) ⊆ L(A’) we prove Lemma 1,
to L(A’) ⊆ L(A) we prove Lemma 2.

 First, an example (next slide)

Tamás Lukovszki31Models of Computation

NFA – DFA

Example:

 Let A = (Q,T, ,Qδ 0,F) be a NFA, where
Q = {q0, q1, q2}, T = {a, b}, Q0 = {q0}, F = {q2}.
δ is defined as:
δ(q0, a) = {q0, q1}, δ(q0, b) = {q1},
δ(q1, a) = , ∅ δ(q1, b) = {q2},
δ(q2, a) = {q0, q1, q2}, δ(q2, b) = {q1}.
Construct a DFA A’ quivalent with A.

Solution:

 DFA: A’ = (Q’,T, ’,q’δ 0,F’), where
Q’ = { ,{∅ q0},{q1},{q2},{q0, q1},{q0,q2},{q1,q2},{q0,q1,q2}},
q’0 = {q0},
F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}},
’ δ next slide

Tamás Lukovszki32Models of Computation

NFA – DFA

Example (cont.):

 δ:

 ’δ :

Tamás Lukovszki33Models of Computation

NFA – DFA

Example (cont.):
NFA

F = {q2}

DFA

F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}}

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a

Tamás Lukovszki34Models of Computation

Computing power of NFA

Lemma 1:

 For all p,q ∈ Q, q’ ∈ Q’ and u,v ∈ T*,
if qu *⇒ A pv and q ∈ q’,
then Ǝ p’ ∈ Q’, s.t.
q’u *⇒ A’ p’v and p ∈ p’.

Proof:

 Induction over the number of
reduction steps n in qu *⇒ A pv.

 For n=0: the claim holds trivially, p’=q’.

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a

Tamás Lukovszki35Models of Computation

Computing power of NFA

Proof (Lemma 1, cont.):

 For n → n+1: Assume, the claim holds
for all reductions of ≤ n steps.

 Let qu *⇒ A pv be a reduction of n + 1 steps.
Then for some q1 ∈ Q and u1 ∈ T* holds that
qu ⇒A q1u1 *⇒ A pv.

 Therefore, Ǝ a ∈ T, s.t. u = au1 and q1 ∈ δ(q, a).

 Since δ(q, a) ⊆ ’δ (q’, a), for q ∈ q’,
q’1 can be choosen as q’1 = ’δ (q’, a).

 Consequently, q’u ⇒A’ q’1u1, where q1 ∈ q’1.

 By the induction assumption,
Ǝ p’ ∈ Q’, s.t. q’1u1 *⇒ A’ p’v and p ∈ p’,
which proves the claim. ⃞

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a

Tamás Lukovszki36Models of Computation

Computing power of NFA

Proof (Theorem, cont.):

 Let u ∈ L(A), i.e. q0u *⇒ A p, for some q0 ∈ Q0, p ∈ F.

 By Lemma 1, Ǝ p’, s.t. q’0u *⇒ A’ p’, where p ∈ p’.

 By definition of F’, p ∈ p’ and p ∈ F imply that
p’ ∈ F’, which proves L(A) ⊆ L(A’).

 For L(A’) ⊆ L(A), we prove Lemma 2.

Tamás Lukovszki37Models of Computation

Computing power of NFA

Lemma 2:
 For all p’, q’ ∈ Q’, p ∈ Q and u, v ∈ T*,

 if q’u *⇒ A’ p’v and p ∈ p’,
 then Ǝ q ∈ Q, s.t.

qu *⇒ A pv and q ∈ q’.

Proof:
 Induction over the number of

reduction steps n.
 For n = 0: The claim holds trivially.

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a

Tamás Lukovszki38Models of Computation

Computing power of NFA

Proof (Lemma 2, cont.):

 For n → n + 1: Assume, the claim holds
for all reductions of ≤ n steps.

 Let q’u *⇒ A’ p’v be a reduction of n + 1 steps.
Then q’u *⇒ A’ p’1v1 ⇒A’ p’v, where v1 = av,
for some p’1 ∈ Q’ and a ∈ T.

 Then, p ∈ p’ = ’δ (p’1, a) = Up1 ∈ p’1 δ(p1, a).

 Consequently, Ǝ p1 ∈ p’1, s.t. p ∈ δ(p1, a).

 For this p1, it holds that p1v1 ⇒A pv.

 By the induction assumption, qu *⇒ A p1v1,
for some q ∈ q0, which implies the claim. ⃞

q0

q2 a

a

q1

a,b

a
a,b

b

{q0}

∅ a,b

{q1}b

{q0,q1}

a

a

{q2}
b

b

{q0,q1,q2}

aa {q1,q2}

b

{q0,q2}

b

a

b

ab

a

Tamás Lukovszki39Models of Computation

Computing power of NFA

Proof (Theorem, cont.):

 Let q’0u *⇒ A’ p’ and p’ ∈ F .

 By the definition of F’, Ǝ p ∈ p’ , s.t. p ∈ F.

 Then, by Lemma 2, for some q0 ∈ q’0, holds that
q0u *⇒ A p.

 This proves the claim of the theorem. ⃞

Tamás Lukovszki40Models of Computation

Corollaries

Corollary 1:

 The class of regular languages L3 is closed for the
complement operation.

Proof:

 Let L be a language, recognized by a FA
A = (Q,T, ,qδ 0,F)

 Then L = T* − L can be recognized by a FA
A = (Q,T, ,qδ 0,Q−F)

Tamás Lukovszki41Models of Computation

Corollaries

Corollary 2:

 The class of regular languages L3 is closed for the
intersection operation.

Proof:

 We know, that L3 is closed for the union operation.

 L1 ∩ L2 = L1 ∪ L2.

 By Corollary 1, the claim follows.

Tamás Lukovszki43Models of Computation

FA – Myhill-Nerode Theorem

 Let L be a language over the alphabet T. The relation EL
induced by language L is a binary relation on T*, for which it
holds that

 ∀ u, v ∈ T*, uELv, if and only if ∄ w ∈ T*, s.t. exatly one of
the words uw and vw is an element of L
(i.e. ∀ w ∈ T* : uw ∈ L if and only if vw ∈ L).

 EL is an equivalence relation and it is right-invariant. (Right-
invariant: if uELv, then uwELvw holds for every word w ∈ T*.)

 The index of the EL is the number of its equivalence classes.

Theorem (Myhill-Nerode): L ⊆ T* can be recognized by a
deterministic FA if and only if EL has a finite index.

Tamás Lukovszki44Models of Computation

FA – Myhill-Nerode Theorem

Theorem (Myhill-Nerode): L ⊆ T* can be recognized
by a DFA if and only if EL has a finite index.

 This index is equal to the number of states in the
minimal DFA recognizing L.

Tamás Lukovszki45Models of Computation

DFA with minimum number of states

 The DFA A has a minimum number of states
(minimal DFA), if there is no DFA A’, which
recognizes the same language as A, but the
number of states of A’ is smaller than the number
of states of A.

Theorem: The minimal DFA accepting the regular
language L is unique, up to isomorphism.

Tamás Lukovszki46Models of Computation

DFA with minimum number of states

Theorem: The minimal DFA accepting the regular language L is unique,
up to isomorphism.

 Let A = (Q, T, , qδ 0, F) be a DFA. Define a relation R ⊆ Q x Q, s.t.
pRq if ∀ input word x ∈ T* it holds that
px *⇒ A r if and only if qx *⇒ A r’ for some r, r’ ∈ F states. (r = r’ is
possible).

 States p and q are distinguishable if
 Ǝ x ∈ T*, s.t. either px *⇒ A r, r ∈ F, or qx *⇒ A r’, r’ ∈ F ,

but both reductions are not possible.
Otherwise, p and q are indistinguishable.

 If p and q are indistinguishable, then δ(p, a) = s and δ(q, a) = t are
indistinguishable for any a ∈ T.

 If δ(p, a) = s and δ(q, a) = t are distinguishable for x ∈ T*,
then p and q are distinguishable also for ax.

Tamás Lukovszki47Models of Computation

DFA with minimum number of states

 Let A = (Q, T, , qδ 0, F) be a DFA. State q is reachable from the initial
state if there is a reduction q0x * ⇒ q, where x is some word over T.

 The DFA A = (Q, T, , qδ 0, F) is connected, if all its states are
reachable from the initial state.

 We define the set H of reachabele states as follows:
Let H0 = {q0}, Hi+1 = Hi {∪ r | δ(q, a) = r , q ∈ Hi , a ∈ T}, i = 1, 2,
Then Ǝ k ≥ 0 : Hk = Hl , for all l ≥ k. Let H = Hk.

 We define the DFA A’ = (Q’, T, ’, qδ 0, F’) with
Q’ = H, F’ = F ∩ H and ’δ : H × T → H s.t. ’δ (q, a) = δ(q, a),
if q ∈ H.

 It can be shown that A’ is connected and accepts the same language
as A. A’ is the largest connected subautomaton of A.

Tamás Lukovszki48Models of Computation

DFA with minimum number of states

Computing_Reachable_States
(from: https://en.wikipedia.org/wiki/DFA_minimization)

 let reachable_states := {q0}

 let new_states := {q0}

 do {

 temp := the empty set

 for each q in new_states do

 for each c in T do

 temp := temp {p such that p = (q,c)}∪ δ

 new_states := temp \ reachable_states

 reachable_states := reachable_states new_states∪

 } while (new_states ≠ the empty set)

 unreachable_states := Q \ reachable_states

Tamás Lukovszki49Models of Computation

DFA with minimum number of states

● Computing the minimal DFA
(Hopcroft’s partition refinement):

● Determine, whether the automaton is
connected or not.

● If it is not connected, then consider the
largest connected subautomaton.
In the following, we assume, that the DFA
is connected.

● Partition the set of states according to
distinguishability (states are divided into
equivalence classes) (Steps 1-3)

Tamás Lukovszki50Models of Computation

DFA with minimum number of states

● Step 1:
● Divide the set of states into two partitions: F and Q − F .

(The states in F can be distinguished from the states in
Q − F by the empty word).

● Repeat splitting of the partitions (Step 2) into additional
partitions as long as the number of partitions remains the
same.

● Step 2:
● Consider an arbitrary partition P of states. Take an input

symbol a and consider δ(p, a) for each state p ∈ P.
If the obtained states belong to different partitions, then split
P into as many new partitions as arosing in this way.

● Perform this procedure for each input symbol and each
partition, until no new partition is created.

Tamás Lukovszki51Models of Computation

DFA with minimum number of states

● Step 3:
● Determine the DFA with the minimum number of

states:
● For each partition Bi, consider a representative state bi.
● Construct a DFA A’ = (Q’, T, ’, qδ 0, F’), where

● Q’ is set of representatives of the partitions,
● q’0 is the representative of the partition

containing q0,
● ’δ (bi, a) = bj, if Ǝ qi ∈ Bi and qj ∈ Bj, s.t.

δ(qi, a) = qj.
● F’ = {bf} is the representative of the partition

that contains the elements of F.

Tamás Lukovszki53Models of Computation

Pumping lemma for regular languages

● A necessary condition for regular languages
(i.e. recognizable by a FA).

● Theorem (pumping lemma for regular languages):
For every regular language L there exists a natural
number n, s.t. for all words z ∈ L with |z|>n, holds
that z can be written as z=uvw, satisfying the
following conditions:
1. |uv| ≤ n,
2. |v|>0,
3. uviw ∈ L, for all i ≥ 0.

Tamás Lukovszki54Models of Computation

Pumping lemma for regular languages

● Proof.:
● Let L be a regular language and

A=(Q, T, , qδ 0, F) be a minimal DFA, s.t.
L(A)=L.

● Let n=|Q|+1. Let z ∈ L be an arbitrary word
with |z|>n.

● Consider A with input z. There must be a
state q that A visits at least twice during
the processing of z. Such a state q must
already exist during the first n state
transitions.

● Let u be the prefix of z processed by A up to
the first occurrence of q, and let v be the
subword of z processed between the first
and second occurrences of q. Then |uv|≤n.

u v w

q q

qu

v

w

Tamás Lukovszki55Models of Computation

Pumping lemma for regular languages

● Proof (cont.):
● Since at least one state transition has

occurred in A between two occurrences
of q, i.e. at least one symbol has been
read, therefore |v|>0.

● If A starts from the state q and reads the
word w, it reaches the accepting end
state. Accordingly, A accepts uw.

● Similarly, A accepts all words of the form
uviw, i≥0, since after reading u, A goes
to state q, starting from q after reading
vi, A returns to state q, finally after
reading w, A reaches an accepting end
state. This completes the proof. ⃞

u v w

q q

qu

v

w

q

v

Tamás Lukovszki56Models of Computation

Application of the pumping lemma

Claim: The language L={ajbj | j ≥ 1} is not regular.

Proof: Assume that G is a regular grammar generating L.
Then, by the regular pumping lemma,
∃ n≥0, s.t. ∀ z L∈ words with |z|>n,
z can be written as z=uvw, satisfying
|uv| ≤ n, |v|>0, and uviw L∈ , for all i ≥ 0.
Consider a word ambm, where m>n.
Since |uv| ≤ n, uv contains a symbols.
Since |v|>0, for i ≥ 2, uviw contains more
a symbols than b symbols.
Conseqently, uviw L∉ . ⃞

A context-free grammar generating L:
S ab→ , S aSb→ .

{ajbj | j ≥ 1}

L3

L2

Tamás Lukovszki57Models of Computation

Transforming Regular Grammars to
Equivalent FA

1)Construct an ε-free regular grammar G’ from G
(see next slide);

2)Create a FA M, with a state for every non-terminal in
G’. Set the state representing the start symbol S’ in
G’ to be the start state;

3)Add a new state F, which is final state;

4)If the production S’→ε is in G’,
● set the state representing S’ to be final state;

5)For every production A→aB in G’,
● add a transition from state A to state B labelled

with a;

6)For every production A→a in G’,
● add a transition from A to the final state F.

Example:

● G:
● S→a|aA|bB|ε
● A→aA|aS
● B→cS|ε

● G’:
● S’→a|b|aA|bB|ε
● S→a|b|aA|bB
● A→a|aA|aS
● B→c|cS

S’ B

SA

F bca

b

a
a

b
a

a
b

a

c

a

Tamás Lukovszki58Models of Computation

Making a Regular Grammar ε-Free

A regular grammar G is ε-free if it has no ε-productions
except for S→ε, where S is the start symbol, and S does
not appear on the right hand side of the production rules.

Making a regular grammar G ε-free:

1)Copy all non ε-productions from G to G’.
Let S be the start symbol in G’;

2)For any non-terminal N which can become ε
(While ƎN : N→ε is a production do),

● copy every rule in which N appears on the right
hand side both with and without N;

3)If S→ε was in the original set of rules,
● add a new start symbol S’ in G’,
● add the rule S’→ε and
● copy all the production rules with S on the left hand

side to ones with S’ on the left hand side.

Example:

● G:
● S →aA | bB | ε
● A →aA | a | ε
● B →bB | b | ε

● 1)
● S →aA | bB
● A →aA | a
● B →bB | b

● 2)
● S aA | bB | a | b→
● A aA | a→
● B bB | b→

● 3)
● S’ →aA | bB | a | b | ε
● S →aA | bB | a | b
● A →aA | a
● B →bB | b

Tamás Lukovszki59Models of Computation

Transforming FA to Regular Grammar

Transforming FA A to a regular grammar G:

1)Let T be the terminal alphabet of the grammar G
– the same as that of A.

2)The set of non-terminals in G is set to be Q – the set of
states of A.

3)The start state S of A will be the start symbol of G be.

4)Initially, let the set of rules in G be ∅
For every transition (q,a)→q' of A,

a)add the production q→aq';
b)if q' is a final state also add the production q→a.

5)If S is a final state of A add the production rule S→ε.

6)If grammar is not ε-free, make it ε-free
(see previous slide).

Example:

● A=(Q,T,δ,S,{S,C}) with δ:
● (S,a)→A,
● (S,b)→B,
● (A,a)→B,
● (A,a)→C,
● (B,b)→A,
● (B,b)→C,
● (C,c)→C.

● 4)
● S aA | bB,→
● A aB | aC | a,→
● B bA | bC | b,→
● C cC | c.→

● 5)
● S→aA | bB | ε
● A→aB | aC | a
● B→bA | bC | b
● C→cC | c.

Tamás Lukovszki60Models of Computation

Transforming FA to Regular Expression

Idea: Assume, states of FA A are enumerated: 1,…,n,
start state: 1.
We compute regular expressions T(i,j,k) that describe all
strings that take us from state i to j through states {1,2,…,k}.
The language L(A) is the union of all strings that take us from
state 1 to a final state f∈F through any state:
L(A) = Uf∈F T(1,f,n) .

Calculating T(i,j,k)

1)Base case, k=0:
a)If i=j: T(i,i,0) = ε+a+...+z, where a to z are the labels on

transition arcs going from state i to itself.
If no such arcs exist, T(i,i,0) = ε.

b)If i≠j: T(i,j,0) = a+...+z, where a to z are the labels on
transition arcs going from state i to state j
If no such arcs exist, T(i,j,0) = ∅.

2)Inductive case, k > 0:
T(i,j,k) = T(i,j,k-1) + T(i,k,k-1)(T(k,k,k-1)*T(k,j,k-1)

Example:

● T(1,1,0) = ε
T(2,2,0) = ε+b
T(1,2,0) = a
T(2,1,0) = a

● T(1,1,1) = ε+ε(ε)*ε =ε
T(2,2,1) = ε+b+a(ε)*a = ε+b+aa
T(1,2,1) = a+ε(ε)*a = a
T(2,1,1) = a+a(ε)*ε = a

● T(1,1,2) = ...
T(2,2,2) = ...
T(1,2,2) =
a+a(ε+b+aa)*(ε+b+aa) =
a+a(ε+b+aa)+ =
a+a(b+aa)* =
a(b+aa)*
T(2,1,2) = ...

21
a

a

b

Tamás Lukovszki63Models of Computation

Transforming Regular Expression into an NFA

Transforming Regular Expression R
into a NFA N:

1. If R = a, for a T,∈ then L(R) = {a}

2. If R = , then ε L(R) = { }ε

3. If R = . Then ∅ L(R) = ∅

4. R = R1 ∪ R2

5. R = R1 · R2

6. R = R1*

NFA recognizes L(R)

Tamás Lukovszki64Models of Computation

Transforming Regular Expression into an NFA

1. If R = a, for a T,∈ then L(R) = {a}
2. If R = , then ε L(R) = { }ε
3. If R = . Then ∅ L(R) = ∅
4. R = R1 ∪ R2

5. R = R1 · R2

6. R = R1*

Tamás Lukovszki65Models of Computation

Transforming Regular Expression into an NFA

1. If R = a, for a T,∈ then L(R) = {a}
2. If R = , then ε L(R) = { }ε
3. If R = . Then ∅ L(R) = ∅
4. R = R1 ∪ R2
5. R = R1 · R2

6. R = R1*

Tamás Lukovszki66Models of Computation

Transforming Regular Expression into an NFA

1. If R = a, for a T,∈ then L(R) = {a}
2. If R = , then ε L(R) = { }ε
3. If R = . Then ∅ L(R) = ∅
4. R = R1 ∪ R2
5. R = R1 · R2

6. R = R1*

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 63
	Slide 64
	Slide 65
	Slide 66

