Models of Computation

5: Regular expressions, finite automaton

Applications

- search and replace dialogs of text editors
- search engines
- text processing utilities (e.g. sed and AWK)
- programming languages, lexical analysis
- genom analysis (genom as string)
- spam/malware filter
- …

Let V and $V' = \{ \emptyset, \varepsilon, \cdot, +, *, ', ', \}$ be disjoint alphabets. A **regular expression** over V is defined recursively as follows:

- 1. \oslash is a regular expression over V,
- 2. ε is a regular expression over V,
- 3. all $a \in V$ are regular expressions over V ,
- 4. If R is a regular expression over V, then R^* is also a regular expression over V,
- 5. If Q and R are regular expressions over V, then $(Q \cdot R)$ and $(Q + R)$ are also regular expressions over V.
	- * denotes the closure of iteration,
	- · concatenation, and
	- $+$ union.

Each regular expression **represents a regular language**, which is defined as:

- 1. \oslash represents the empty language,
- 2. ε represents the language $\{\epsilon\}$,
- 3. Letter $a \in V$) represents the language $\{a\}$,
- 4. if R is a regular expression over V, which represents the language L , then R^* represents L^* ,
- 5. if R and R' are regular expressions over V, s.t. R represents the language L and R' represents the language L', then $(R \cdot R')$ represents the language LL' , $(R + R')$ represents the language L U L'.

- Parentheses can be omitted when defining precedence on operations. The the usual sequence is: $*,$, $, +$. The following regular expressions are equivalent:
- a^* is the same as $(a)^*$ and represent the language $\{a\}^*$.
- $(a + b)^*$ is the same as $((a) + (b))^*$ and represents the language $\{a, b\}^*$.
- $a^* \cdot b$ is the same as $((a)^*) \cdot (b)$ and represents the language $\{a\}^*b$.
- $b + ab^*$ is the same as $(b) + ((a) \cdot (b)^*)$ and represents the language $\{b\}$ ∪ $\{a\}\{b\}^*$.
- $(a + b) \cdot a^*$ is the same as $((a) + (b)) \cdot ((a)^*)$ and represents the language $\{a, b\}$ $\{a\}^*$.

Let P, Q, an R be regular expressions. Then following hold:

- $P + (Q + R) = (P + Q) + R$
- $P \cdot (Q \cdot R) = (P \cdot Q) \cdot R$
- $P + Q = Q + P$
- $P \cdot (O + R) = P \cdot O + P \cdot R$
- $(P + Q) \cdot R = P \cdot R + Q \cdot R$
- $P^* = \varepsilon + P \cdot P^*$
- ϵ ϵ \cdot $P = P \cdot \epsilon = P$
- $P^* = (\epsilon + P)^*$

Example: The language represented the regular expressions $(a + b)a^*$ and $aa^* + ba^*$ is the same: $\{ aa^n | n \ge 0 \} \cup \{ ba^n | n \ge 0 \}.$

The language represented by $a + ba^*$ is: $\{a, b, ba, ba^2, ba^3, \ldots \}.$

Theorem:

- 1) Every regular expression represents a regular (type 3) language.
- 2) For every regular (type 3) language, there is a regular expression representing the language.

Proof:

1) follows from the fact that the class of regular languages *L*3 is closed for the regular operations.

Proof:

For 2), we show that for every regular language L generated by a grammar $G = (N, T, P, S)$, a regular expression can be constructed, that represents L.

- Let $N = \{A_1, \ldots, A_n\}$, $n \ge 1$, $S = A_1$.
- Assume, each rule of G is of form $A_i \rightarrow aA_j$ or $A_i \rightarrow \varepsilon$, where $a \in T$, $1 \le i, j \le n$.
- We say that a non-terminal A_m is **affected** by the derivation $A_i \Rightarrow^* uA_i$ ($u \in T^*$), if A_m occurs in an intermediate string between A_i and uA_j in the derivation.

Proof (cont.):

- A derivation A_i \Rightarrow^* uA_i is called **k-bounded** if $0 \le m \le k$ holds for all non-terminals A_m occurring in the derivation.
- Let $E_{i,j}^k = \{u \in T^* \mid \exists A_i \Rightarrow^* uA_j \; k\text{-bounded derivation}\}.$
- We show by induction on k , that for language $E_{i,j}$, there is a regular expression representing $E_{i,j}$, $0 \le i, j, k \le n$.

Proof (cont.):

- $k = 0$ (induction start):
	- For *i ≠ j, E^o_{ij}* is eighter empty, or it consists of symbols of T ($a \in E^o{}_{i,j}$ if and only if $A_i \rightarrow aA_j \in P$.)
	- For $i = j$, $E^0_{i,j}$ consists of ε and zero or more elements of T, so E^0 _{i,j} can be represented by a regular expression.

Proof (cont.):

- $k-1 \rightarrow k$ (induction step):
	- Assume that for a fixed $k, 0 < k \le n$, E^{k-1} _{i,j} can be represented by a regular expression.
	- Then for all i, j, k it holds that $E^{k}{}_{i,j} = E^{k-1}{}_{i,j} + E^{k-1}{}_{i,k} \cdot (E^{k-1}{}_{k,k})^* \cdot E^{k-1}{}_{k,j}.$
	- Therefore, $E_{i,j}$ can also be represented by a regular expression.
	- Let I_{ε} be the set of indices *i* for which $A_i \rightarrow \varepsilon$.
	- Then $L(G) = U_{i \in I_{\epsilon}} E^{n}$, can be representd by a regular expression. The claim of the theorem follows.

- Identifying formal languages is also possible with recognition devices, *i.e.* by automata.
- An automaton can process and identify words.
- Grammars use a synthesizing approach, while automata an analytic one.
- An automaton accepts or rejects an input word.

- A finite automaton (FA) performs a sequence of steps in discrete time intervals
- The FA starts in the initial state.
- The input word is located on the input tape and the reading head is on the leftmost symbol of an input word.
- After reading a symbol, the FA moves the reading head to one position to the right, then the state changes, regarding the state transition function.
- If the FA has read the input, it stops, accepts or rejects the input.

Example: automatic door control

- Application examples:
	- Automatic door control
	- Coffee machine
	- Pattern recognition
	- Markov chains
	- Pattern recognition
	- Speech processing
	- Optical character recognition
	- Predictions of share prizes in the stock exchange

...

 \bullet

- A finite automaton is a 5-tuple $A = (Q, T, \delta, q_0, F)$, where
- Q is a finite, nonempty set of **states**,
- T is the finite **alphabet of input symbols**,
- \bullet 6 : Q \times T \rightarrow Q is the **state transition function**
- $q_0 \in Q$ is the **initial state** or **start state**,
- F ⊆ Q is the set of **acceptance states** or **end states**.

Remark:

• The function δ can be extended to a function $\hat{\delta}: Q \times T^* \rightarrow Q$ as follows:

$$
\bullet \quad \hat{\delta}(q, \, \varepsilon) = q,
$$

 $\hat{\delta}(q, x_a) = \delta(\hat{\delta}(q, x), a)$ for all $x \in T^*$ and $a \in T$.

Example:

Let $A = (Q, T, \delta, q_1, F)$ be a FA, where $Q = \{q_1, q_2, q_3\}, T = \{0, 1\}, F = \{q_2\}, \text{and}$ $\delta(q_1, 0) = q_1, \ \delta(q_1, 1) = q_2, \delta(q_2, 0) = q_3, \delta(q_2, 1) = q_2,$ $\delta(q_3, 0) = \delta(q_3, 1) = q_2.$

State transition diagram: State transition table:

The accepted language is $L(A)=\{w \mid w \text{ contains at least one 1 and } \}$ the last 1 is not followed by an odd number of 0s}

Example:

Let $T = \{a,b,c\}$. Define a FA, which accepts the words of length of at most 5.

Solution:

- Formaly: $A=(\{q_0, \ldots, q_6\}, \{a, b, c\}, \delta, q_0, \{q_0, \ldots, q_5\}),$ $\delta(q_i, t) = q_{i+1}$, for $i = 0, \ldots, 5$, $t \in \{a, b, c\}$, $\delta(q_6, t) = q_6$, for $t \in \{a, b, c\}$
- State transition diagram:

State transition table:

Deterministic and non-deterministic finite automata

 Deterministic finite automaton (DFA): Function δ is single-valued, i.e. \forall (q, a) $\in Q \times T$ there is exactly one state s, s.t. $\delta(q, a) = s$.

Nondeterministic finite automaton (NFA):

- Function δ is multi-valued, i.e. δ : $Q \times T \rightarrow 2^{\circ}$.
- Multiple initial states are allowed (the set of initial states $Q_0 \subseteq Q$).
- It is allowed that $\delta(q, a) = \varnothing$ for som (q,a), i.e. the machine gets stuck.
- Null (or ε) move is allowed, i.e. it can move forward without reading symbols. NFA example

Deterministic and non-deterministic FA

- New features of non-determinism
	- Multiple paths are possible (multiple choises at each step).
	- ε-transition is a "free" move without reading input.
	- Accepts the input if some path leads to an accepting state.

Deterministic and non-deterministic FA

- Alternative notation:
- State transitions can also be given in the form $qa \rightarrow p$, where $p \in \delta(q, a)$.
- Let M_{δ} be set of rules of the state transition of an NFA $A = (Q, T, \delta, Q_0, F)$.
- If M_{δ} contains exactly one rule $qa \rightarrow p$ for each pair (q, a) , then the FA is deterministic, oherwise nondeterministic.

FA – reduction

- Let $A = (Q, T, \delta, Q_0, F)$ be a FA and $u, v \in QT^*$ words. The FA A **reduces** the u **in one step** (**directly**) to v (notation: $u \Rightarrow_A v$, or short: $u \Rightarrow v$), if there are a rule $qa \rightarrow p \in M_{\delta}$ (i.e. $\delta(q, a) = p$) and a word $w \in T^*$, s.t. $u = qaw$ and $v = pw$ hold.
- The FA $A = (Q, T, \delta, Q_0, F)$ **reduces** $u \in QT^*$ to $v \in QT^*$ (notation: $u \Rightarrow A^* v$, or short: $u \Rightarrow^* v$, if
	- either $u = v$,
	- or \exists a word $z \in QT^*$, s.t. $u \Rightarrow^* z$ and $z \Rightarrow v$.
- Remark: \Rightarrow^* is the reflexive, transitive closure of \Rightarrow .

FA – accepted language

- The **language accepted/recognized** by the FA $A = (Q, T, \delta, Q_0, F)$ is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } q_0 \in Q_0\}$ and $p \in F$ }
- For a DFA A, there is one single start state $Q_0 = \{q_0\}$. The language accepted by DFA A is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } p \in F\}$

```
NFA accepting L1
 U L2
```
Theorem: If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof (sketch): Let A_1 be a DFA, accepting L_1 and A_2 a DFA accepting L_2 . Then the following NFA accepts $L_1 \cup L_2$.


```
NFA accepting L1
L2
```
Theorem: If L_1 and L_2 regular languages, then L_1L_2 is also a regular language.

Proof (sketch): Let A_1 be a DFA accepting L_1 , A_2 egy DFA accepting L_2 . The following NVA accepts L_1L_2 .

NFA accepting *L**

Theorem: If L is a regular language, then L^{*} is also a regular language.

A **Proof. (sketch)**: Let A be a DFA accepting L. The fillowing NFA accepts L^* -t.

Theorem: For all NFA $A = (Q, T, \delta, Q_0, F)$ a DFA $A' = (Q', T, \delta', q'_{0}, F')$ can be constructed, s.t. $L(A) = L(A')$ holds.

- Idea: DFA keeps track of the subset of possible states in NFA
- Remark: In worst case $|Q'| = 2^{|Q|}$.

Proof:

- Let $Q' = 2^{\circ}$ be the set of all subsets of the set Q. (the number of elements of Q' is $2^{|Q|}$).
- Let δ' : $Q' \times T \rightarrow Q'$ be the function defined as: $\delta'(q', a) = \bigcup_{q \in q'} \delta(q, a).$
- Let $q'_{0} = Q_{0}$ and $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$
- To prove $L(A) \subseteq L(A')$ we prove Lemma 1, to $L(A') \subseteq L(A)$ we prove Lemma 2.
- First, an example (next slide)

NFA – DFA

Example:

\n- Let
$$
A = (Q, T, \delta, Q_0, F)
$$
 be a NFA, where $Q = \{q_0, q_1, q_2\}$, $T = \{a, b\}$, $Q_0 = \{q_0\}$, $F = \{q_2\}$.
\n- δ is defined as:\n $\delta(q_0, a) = \{q_0, q_1\}$, $\delta(q_0, b) = \{q_1\}$,\n $\delta(q_1, a) = \emptyset$, $\delta(q_1, b) = \{q_2\}$,\n $\delta(q_2, a) = \{q_0, q_1, q_2\}$, $\delta(q_2, b) = \{q_1\}$.\n Construct a DFA A' equivalent with A .
\n

Solution:

\n- DFA:
$$
A' = (Q', T, \delta', q', F')
$$
, where $Q' = \{ \emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$, $q'_0 = \{q_0\}$, $F' = \{ \{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$, δ' next slide
\n

NFA – DFA

Example (cont.):

• 6:
$$
\delta(q_0, a) = \{q_0, q_1\}, \quad \delta(q_0, b) = \{q_1\}, \quad \delta(q_1, a) = \emptyset, \quad \delta(q_1, b) = \{q_2\}, \quad \delta(q_2, a) = \{q_0, q_1, q_2\}, \quad \delta(q_2, b) = \{q_1\}.
$$

\n
$$
\delta'((\emptyset, a) = \emptyset, \quad \delta'((\{q_0\}, a) = \{q_0, q_1\}, \quad \delta'((\{q_0\}, b) = \emptyset, \quad \delta'((\{q_1\}, a) = \emptyset, \quad \delta'((\{q_1\}, b) = \{q_1\}, \quad \delta'((\{q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_1\}, b) = \{q_2\}, \quad \delta'((\{q_0, q_1\}, a) = \{q_0, q_1\}, \quad \delta'((\{q_0, q_1\}, b) = \{q_1\}, \quad \delta'((\{q_0, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_0, q_1\}, b) = \{q_1, q_2\}, \quad \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_0, q_2\}, b) = \{q_1\}, \quad \delta'((\{q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_1, q_2\}, b) = \{q_1, q_2\}, \quad \delta'((\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \quad \delta'((\{q_0, q_1, q_2\}, b) = \{q_1, q_2\}.\n \end{array}
$$
\n

NFA – DFA

Lemma 1:

For all $p,q \in Q$, $q' \in Q'$ and $u,v \in T^*$, if $qu \Rightarrow^*_{A} pv$ and $q \in q'$, then $\exists p' \in Q'$, s.t. $q'u \Rightarrow^*_{A'} p'v$ and $p \in p'$.

Proof:

- Induction over the number of reduction steps n in $qu \Rightarrow^*_{A} pv$.
- For $n=0$: the claim holds trivially, $p'=q'$.

Proof (Lemma 1, cont.):

- For $n \to n+1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $qu \Rightarrow^*_{A} pv$ be a reduction of $n + 1$ steps. Then for some $q_1 \in Q$ and $u_1 \in T^*$ holds that $qu \Rightarrow_A q_1u_1 \Rightarrow_A^* pv.$
- Therefore, $\exists a \in T$, s.t. $u = au_1$ and $q_1 \in \delta(q, a)$.
- Since $\delta(q, a) \subseteq \delta'(q', a)$, for $q \in q'$, q'_1 can be choosen as $q'_1 = \delta'(q', a)$.
- Consequently, $q'u \Rightarrow_{A'} q'_{1}u_{1}$, where $q_1 \in q'_{1}$.
- By the induction assumption, $\exists p' \in Q'$, s.t. $q'_{1}u_{1} \Rightarrow^{*} q'p'v$ and $p \in p'$, which proves the claim. \square

Proof (Theorem, cont.):

- Let $u \in L(A)$, i.e. $q_0u \Rightarrow^* A p$, for some $q_0 \in Q_0$, $p \in F$.
- By Lemma 1, $\exists p'$, s.t. $q'_{0}u \Rightarrow^{*}{}_{A'}p'$, where $p \in p'$.
- By definition of F', $p \in p'$ and $p \in F$ imply that $p' \in F'$, which proves $L(A) \subseteq L(A')$.
- For $L(A') \subseteq L(A)$, we prove Lemma 2.

Lemma 2:

- For all p' , $q' \in Q'$, $p \in Q$ and $u, v \in T^*$,
	- if $q'u \Rightarrow^*_{A'} p'v$ and $p \in p'$,
	- then $\exists q \in Q$, s.t. $qu \Rightarrow^*_{A} pv$ and $q \in q'$.

Proof:

- \bullet Induction over the number of reduction steps n.
- For $n = 0$: The claim holds trivially.

Proof (Lemma 2, cont.):

- For $n \to n + 1$: Assume, the claim holds for all reductions of $\leq n$ steps.
- Let $q'u \Rightarrow^*_{A'} p'v$ be a reduction of $n + 1$ steps. Then $q'u \Rightarrow_{A'} p'w_1 \Rightarrow_{A'} p'v$, where $v_1 = av$, for some $p'_1 \in Q'$ and $a \in T$.
- Then, $p \in p' = \delta'(p'_{1}, a) = \bigcup_{p_1 \in p'_{1}} \delta(p_1, a)$.
- Consequently, $\exists p_1 \in p'_1$, s.t. $p \in \delta(p_1, a)$.
- For this p_1 , it holds that $p_1v_1 \Rightarrow_A pv$.
- By the induction assumption, $qu \Rightarrow^*_{A} p_1v_1$, for some $q \in q_0$, which implies the claim.

Proof (Theorem, cont.):

- Let $q'_{0}u \Rightarrow^{*}{}_{A'} p'$ and $p' \in F$.
- By the definition of F' , $\exists p \in p'$, s.t. $p \in F$.
- Then, by Lemma 2, for some $q_0 \in q'_0$, holds that $q_0u \Rightarrow^*_{A} p$.
- This proves the claim of the theorem.

Corollaries

Corollary 1:

 The class of regular languages *L*3 is closed for the complement operation.

Proof:

- Let L be a language, recognized by a FA $A = (Q, T, \delta, q_0, F)$
- Then $L = T^* L$ can be recognized by a FA $A = (Q, T, \delta, q_0, Q-F)$

Corollaries

Corollary 2:

 The class of regular languages *L*3 is closed for the intersection operation.

Proof:

- We know, that L_3 is closed for the union operation.
- $L_1 \cap L_2 = \overline{L}_1 \cup \overline{L}_2$.
- By Corollary 1, the claim follows.

FA – Myhill-Nerode Theorem

- Let L be a language over the alphabet T. The **relation E^L induced by language L** is a binary relation on T*, for which it holds that
	- $\forall u, v \in T^*$, $uE_t v$, if and only if $\exists w \in T^*$, s.t. exatly one of the words uw and vw is an element of Γ (i.e. $\forall w \in T^* : uw \in L$ if and only if $vw \in L$).
- **•** E_L is an **equivalence relation** and it is **right-invariant**. (Rightinvariant: if $uE_{L}v$, then $uwe_{L}vw$ holds for every word $w \in T^*$.)
- **The index of the** E_L is the number of its equivalence classes.

Theorem (Myhill-Nerode): $L \subseteq T^*$ can be recognized by a deterministic FA if and only if E_L has a finite index.

FA – Myhill-Nerode Theorem

Theorem (Myhill-Nerode): $L \subseteq T^*$ can be recognized by a DFA if and only if E_L has a finite index.

 This index is equal to the number of states in the minimal DFA recognizing L.

 The DFA A has a minimum number of states (**minimal DFA**), if there is no DFA A', which recognizes the same language as A, but the number of states of A' is smaller than the number of states of A.

Theorem: The minimal DFA accepting the regular language L is unique, up to isomorphism.

Theorem: The minimal DFA accepting the regular language L is unique, up to isomorphism.

- Let $A = (Q, T, \delta, q_0, F)$ be a DFA. Define a relation $R \subseteq Q \times Q$, s.t. pRq if \forall input word $x \in T^*$ it holds that $px \Rightarrow^*_{A} r$ if and only if $qx \Rightarrow^*_{A} r'$ for some r, $r' \in F$ states. ($r = r'$ is possible).
- States p and q are **distinguishable** if $\exists x \in T^*$, s.t. either $px \Rightarrow^*_{A} r$, $r \in F$, or $qx \Rightarrow^*_{A} r'$, $r' \in F$, but both reductions are not possible. Otherwise, p and q are **indistinguishable**.
- If p and q are indistinguishable, then $\delta(p, a) = s$ and $\delta(q, a) = t$ are indistinguishable for any $a \in T$.
- If $\delta(p, a) = s$ and $\delta(q, a) = t$ are distinguishable for $x \in T^*$, then p and q are distinguishable also for ax .

- Let $A = (Q, T, \delta, q_0, F)$ be a DFA. State q is **reachable** from the initial state if there is a reduction $q_0x \rightarrow^* q$, where x is some word over T.
- The DFA $A = (Q, T, \delta, q_0, F)$ is **connected**, if all its states are reachable from the initial state.
- We define the **set H of reachabele states** as follows: Let $H_0 = \{q_0\}$, $H_{i+1} = H_i \cup \{r \mid \delta(q, a) = r, q \in H_i, a \in T\}$, $i = 1, 2, ...$ Then $\exists k \geq 0 : H_k = H_l$, for all $l \geq k$. Let $H = H_k$.
- We define the DFA $A' = (Q', T, \delta', q_0, F')$ with $Q' = H$, $F' = F \cap H$ and $\delta' : H \times T \rightarrow H$ s.t. $\delta'(q, a) = \delta(q, a)$, if $q \in H$.
- \cdot It can be shown that A' is connected and accepts the same language as A. A' is the **largest connected subautomaton** of A.

Computing_Reachable_States

(from: https://en.wikipedia.org/wiki/DFA_minimization)

- let reachable_states := ${q0}$
- let new_states $:= \{q0\}$
- do {
- $temp := the empty set$
- for each q in new_states do
- for each c in T do
- temp := temp \cup {p such that $p = \delta(q,c)$ }
- $new_states := temp \ (read to be \ (states \)$
- reachable states := reachable states $∪$ new states
- } while (new states \neq the empty set)
- unreachable_states $:= Q \setminus$ reachable_states

- Computing the minimal DFA (Hopcroft's partition refinement):
	- Determine, whether the automaton is connected or not.
		- If it is not connected, then consider the largest connected subautomaton. In the following, we assume, that the DFA is connected.
	- Partition the set of states according to distinguishability (states are divided into equivalence classes) (Steps 1-3)

● **Step 1**:

- Divide the set of states into two partitions: F and $Q F$. (The states in F can be distinguished from the states in $Q - F$ by the empty word).
- Repeat splitting of the partitions (Step 2) into additional partitions as long as the number of partitions remains the same.
- **Step 2**:
	- Consider an arbitrary partition P of states. Take an input symbol a and consider $\delta(p, a)$ for each state $p \in P$. If the obtained states belong to different partitions, then split P into as many new partitions as arosing in this way.
	- Perform this procedure for each input symbol and each partition, until no new partition is created.

● **Step 3**:

- Determine the DFA with the minimum number of states:
- For each partition B_i , consider a representative state b_i .
- Construct a DFA $A' = (Q', T, \delta', q_0, F')$, where
	- \bullet Q' is set of representatives of the partitions,
	- \bullet q' ₀ is the representative of the partition containing q_0 ,
	- $\delta'(b_i, a) = b_i$, if $\exists q_i \in B_i$ and $q_i \in B_i$, s.t. $\delta(q_i, a) = q_i$.
	- \bullet $F' = \{b_f\}$ is the representative of the partition that contains the elements of F.

Pumping lemma for regular languages

- A necessary condition for regular languages (i.e. recognizable by a FA).
- **Theorem** (pumping lemma for regular languages): For every regular language L there exists a natural number n, s.t. for all words $z \in L$ with $|z| > n$, holds that z can be written as $z = uvw$, satisfying the following conditions:

1.
$$
|uv| \le n
$$
,
2. $|v|>0$,
3. $uv^iw \in L$, for all $i \ge 0$.

Pumping lemma for regular languages

● **Proof.**:

- Let L be a regular language and $A=(Q, T, \delta, q_0, F)$ be a minimal DFA, s.t. $L(A)=L$.
- Let $n=|Q|+1$. Let $z\in L$ be an arbitrary word with $|z|>n$.
- Consider A with input Z . There must be a state q that A visits at least twice during the processing of z. Such a state q must already exist during the first n state transitions.
- Let u be the prefix of z processed by A up to the first occurrence of q , and let v be the subword of z processed between the first and second occurrences of q. Then $|uv| \le n$.

Pumping lemma for regular languages

- **Proof** (cont.):
	- Since at least one state transition has occurred in A between two occurrences of q, i.e. at least one symbol has been read, therefore $|v|>0$.
	- \bullet If A starts from the state q and reads the word w, it reaches the accepting end state. Accordingly, A accepts uw.
	- Similarly, A accepts all words of the form uvⁱw, i≥0, since after reading u, A goes to state q , starting from q after reading $vⁱ$, A returns to state q, finally after reading w, A reaches an accepting end state. This completes the proof.

Application of the pumping lemma

Claim: The language $L = \{a^j b^j \mid j \ge 1\}$ is not regular.

Proof: Assume that G is a regular grammar generating L. Then, by the regular pumping lemma, \exists $n \geq 0$, s.t. \forall $z \in L$ words with $|z| > n$, z can be written as $z = uvw$, satisfying $|uv| \le n$, $|v| > 0$, and $uv^i w \in L$, for all $i \ge 0$. Consider a word a^mb^m , where $m>n$. Since $|uv| \le n$, uv contains a symbols. Since $|v|>0$, for $i \ge 2$, $uv^i w$ contains more a symbols than b symbols. Conseqently, $uv^i w \notin L$.

A context-free grammar generating L: $S \rightarrow ab$, $S \rightarrow aSb$.

Transforming Regular Grammars to Equivalent FA

- 1)Construct an ε-free regular grammar G' from G (see next slide);
- 2) Create a FA M, with a state for every non-terminal in G'. Set the state representing the start symbol S' in G' to be the start state;
- 3)Add a new state F , which is final state;
- 4)If the production $S' \rightarrow \varepsilon$ is in G' ,
	- set the state representing S' to be final state;
- 5)For every production $A\rightarrow aB$ in G',
	- \bullet add a transition from state A to state B labelled with *a*;
- 6)For every production $A\rightarrow a$ in G' ,
	- \bullet add a transition from A to the final state F.

Example:

- \bullet G:
- $S \rightarrow a |aA|bB|\varepsilon$
- \bullet A→aA|aS
- \cdot B \rightarrow cS|ε
- \bullet G' :
	- $S' \rightarrow a|b|$ a $A|bB| \varepsilon$
	- $S\rightarrow a|b|aA|bB$
	- $A \rightarrow a |aA|aS$
	- \bullet B \rightarrow c|cS

Making a Regular Grammar ε**-Free**

A regular grammar G is ε -free if it has no ε -productions except for $S\rightarrow\epsilon$, where S is the start symbol, and S does not appear on the right hand side of the production rules.

Making a regular grammar G ε-free:

- 1) Copy all non ε-productions from G to G' . Let S be the start symbol in G' ;
- 2)For any non-terminal N which can become ε (While $\exists N : N \rightarrow \varepsilon$ is a production do),
	- copy every rule in which N appears on the right hand side both with and without N;

3)If $S\rightarrow \varepsilon$ was in the original set of rules,

- add a new start symbol S' in G' ,
- add the rule $S' \rightarrow \varepsilon$ and
- copy all the production rules with S on the left hand side to ones with S' on the left hand side.

Example:

 \bullet G: • $S \rightarrow aA \mid bB \mid \varepsilon$ \bullet A \rightarrow aA | a | ε \bullet B \rightarrow bB | b | ε \bullet 1) • $S \rightarrow aA \mid bB$ • $A \rightarrow aA \mid a$ • $B \rightarrow bB \mid b$ ● 2) • $S \rightarrow aA \mid bB \mid a \mid b$ • $A \rightarrow aA \mid a$ \bullet B \rightarrow bB | b ● 3) \bullet S' \rightarrow aA | bB | a | b | ε \bullet S \rightarrow aA | bB | a | b • $A \rightarrow aA \mid a$ • $B \rightarrow bB \mid b$

Transforming FA to Regular Grammar

Transforming FA A to a regular grammar G:

- 1) Let T be the terminal alphabet of the grammar G – the same as that of A.
- 2) The set of non-terminals in G is set to be Q the set of states of A.
- 3) The start state S of A will be the start symbol of G be.
- 4)Initially, let the set of rules in G be \emptyset For every transition $(q,a) \rightarrow q'$ of A,
	- a)add the production $q\rightarrow aq'$;
	- b) if q' is a final state also add the production $q\rightarrow a$.
- 5)If S is a final state of A add the production rule $S\rightarrow \varepsilon$.
- **6)**If grammar is not $ε$ -free, make it $ε$ -free (see previous slide).

Example:

- \bullet A=(Q,T, δ ,S, $\{S,C\}$) with δ :
	- \bullet $(S,a) \rightarrow A$,
	- \bullet $(S,b) \rightarrow B$,
	- \bullet $(A,a) \rightarrow B$,
	- $•$ $(A,a)→C$,
	- \bullet $(B,b) \rightarrow A$,
	- $•$ (B,b) → C ,
	- \bullet $(C, c) \rightarrow C$.
	- $S \rightarrow aA \mid bB$,
	- $A \rightarrow aB \mid aC \mid a$,
	- \bullet B \rightarrow bA | bC | b,
	- $C \rightarrow CC \mid c$.
- 5)

 \bullet 4)

- $S \rightarrow aA \mid bB \mid \varepsilon$
- \bullet A→aB | aC | a
- \bullet B \rightarrow bA | bC | b
- $C \rightarrow CC \mid c$.

Transforming FA to Regular Expression

Idea: Assume, states of FA A are enumerated: 1,…,n, start state: 1.

We compute regular expressions $T(i,j,k)$ that describe all strings that take us from state *i* to *j* through states $\{1,2,...,k\}$. The language $L(A)$ is the union of all strings that take us from state 1 to a final state $f \in F$ through any state: $L(A) = U_{\text{fGF}} T(1.f.n)$.

Calculating $T(i,j,k)$

1) Base case, $k=0$:

a)If $i=j$: $T(i,i,0) = \varepsilon+a+...+z$, where a to z are the labels on transition arcs going from state i to itself. If no such arcs exist, $T(i,i,0) = ε$.

b)If $i\neq j$: $T(i,j,0) = a + ... + z$, where a to z are the labels on transition arcs going from state i to state j If no such arcs exist, $T(i,j,0) = \emptyset$.

2)Inductive case, $k > 0$:

 $T(i,i,k) = T(i,i,k-1) + T(i,k,k-1)(T(k,k,k-1)*T(k,i,k-1)$

- $T(1,1,0) = ε$ $T(2,2,0) = ε + b$ $T(1,2,0) = a$ $T(2,1,0) = a$
- $T(1,1,1) = \varepsilon + \varepsilon(\varepsilon)^* \varepsilon = \varepsilon$ *T*(2,2,1) = ε+*b*+a(ε)*a = ε+*b+aa T*(1,2,1) = $a + ε(ε)*a = a$ *T*(2,1,1) = $a+a(ε)*ε = a$
- $T(1,1,2) = ...$ $T(2,2,2) = ...$ $T(1,2,2) =$ *a*+*a*(ε+*b+aa*)*(ε+*b+aa*) *= a*+*a*(ε+*b+aa*) + *= a*+*a*(*b+aa*)* *= a(b+aa)** $T(2,1,2) = ...$

Transforming Regular Expression R into a NFA N:

1. If $R = a$, for $a \in T$, then $L(R) = \{a\}$

- 2. If $R = \varepsilon$, then $L(R) = {\varepsilon}$
- 3. If $R = \emptyset$. Then $L(R) = \emptyset$

4. $R = R_1 \cup R_2$

5. $R = R_1 \cdot R_2$

1. If
$$
R = a
$$
, for $a \in T$, then $L(R) = \{a\}$
\n2. If $R = \varepsilon$, then $L(R) = \{\varepsilon\}$
\n3. If $R = \emptyset$. Then $L(R) = \emptyset$

6. $R = R_1^*$

