
Tamás Lukovszki1Models of Computation

Models of Computation

6: Probabilistic automata, Pushdown automata, Context-
free languages

Tamás Lukovszki2Models of Computation

Probabilistic automaton

 Let S={s1, . . . ,sn}be the set of states of the probabilistic
automaton PA. Reading an input symbol x in state s the automaton
PA goes to state si with probability pi(s,x), where for every s and x:

 Instead of the initial state, there is a distribution of initial states,
i.e. every state is an initial state with a fixed probability.

 The accepted language L(PA, Sf, η) depends on
● the final states Sf and
● the cutting point η, 0 ≤ η < 1.

 The accepted language L(PA, Sf, η) is the set of words, for which PA
reaches a state in Sf with a probability greater than η.

Tamás Lukovszki3Models of Computation

Probabilistic automaton

 An n-dimensional stochastic matrix (pij)1≤i,j≤n
is a square matrix, for which

 An n-dimensional stochastic row vector (column
vector) is an n-dimensional row vector (column vector)
whose components are are non-negative and the sum of
the components is 1.

 If only one component of the stochastic row vector is 1,
then it is called a coordinate vector.

 The n-dimensional unit matrix En is a stochastic matrix.

Tamás Lukovszki4Models of Computation

Probabilistic automaton

● A finite probabilistic automaton over an alphabet V
is a triple PA = (S, s0, M), where

● S = {s1 , . . . , sn} is a finite, nonempty set of
states,

● s0 is a n-dimensional stochastic row vector, the
distribution of the initial states

● M is a mapping that maps V to the set of n-
dimensional stochastic matrices.

● For x ∈ V, the (i,j)-th element of the matrix M(x) is
pj(si,x), it is the probability that reading x in state si, PA
goes to state state sj.

Tamás Lukovszki5Models of Computation

Probabilistic automaton

● Example: Consider the following probabilistic automaton:
PA = ({s1, s2}, (1,0), M) over the alphabet {x,y}, where

● The initial distribution shows that the initial state is s1.

● The state transition digram:

Tamás Lukovszki6Models of Computation

Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton
over alphabet V. The function M on V can be
extended to V* as follows:

● M̂() := ε En

● M̂(x1 ... xn) := M(x1)M(x2)...M(xn) , where n≥2 , xi∈V.
● Instead of M̂, we write M hereafter.
● For a word w ∈ V*, the (i,j)-th element of M(w) is the

probability pj(si, w) that processing w in state si the
automaton PA goes to state sj.

Tamás Lukovszki7Models of Computation

Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton
over an alphabet V, and w ∈ V*. The stochastic row
vector s0M(w), denoted by PA(w), is the state
distribution resulting from w.

● Note: PA() = ε s0.

Tamás Lukovszki8Models of Computation

Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton over an
alphabet V, 0 ≤ η < 1, and s̄f an n-dimensional column vector,
s.t. all elements of s̄f are either 0 or 1.
(s̄f can be understood as a membership function for the final
states Sf, Sf S⊆ .)

● The language accepted by PA with cut point η is:
L(PA, s̄f, η) = { w ∈ V* | s0M(w)s̄f > η}.

● A language L is called η-stochastic if Ǝ probabilistic finite
automaton PA = (S, s0, M) and column vector s̄f, s.t.
L = L(PA, s̄f, η) holds.

● A language L is called stochastic if it is η-stochastic for a
0 ≤ η < 1.

Tamás Lukovszki9Models of Computation

Probabilistic automaton

● Example: Let PA = ({s1, s2}, (1,0), M) over the alphabet {x,y} with

● Then
● PA(xn) = (1, 0)M(xn) = (1, 0), if n is even,
● PA(xn) = (0, 1), if n is odd, and
● PA(w) = (1/2, 1/2) if w contains at least one y.

● Thus, for

● Thus, V* − (xx)* is, e.g., a 1/3-stochastic language,
while x(xx)* is, e.g, a 2/3-stochastic language.
Therfore, both are stochastic languages.

Tamás Lukovszki10Models of Computation

Regular and (η-)stochastic languages

● Theorem 1 [Rabin 1963]: All regular languages are
stochastic, but not all stochastic language is regular.

● Theorem 2 [Rabin 1963]: All 0-stochastic languages
are regular.

Tamás Lukovszki11Models of Computation

Pushdown automaton (PDA)

● A pushdown automaton (PDA) is a generalization of a
finite automaton with (potentially) infinite stack and
finite control.

● The new data is
added to the top
of the stack,
and removed
in reverse order.

● The stack is a
last in, first out
(LIFO) data structure.

Tamás Lukovszki12Models of Computation

Pushdown automata

● A pushdown automaton (PDA) is a 7-tuple
A = (Z, Q, T, δ, z0, q0, F), where

● Z is a finite set of stack symbols (stack alphabet),
● Q is a finite set of states,
● T is the finite set of input symbols (input alphabet),
● δ : Z × Q × (T { }) ∪ ε → P(Z* × Q) is the transition

function,
● where P(X) is set of finite subsets of X.

(example: δ(z,q,a) = {(z’,q’), (z’’,q’’)},
note: non-deterministic by default).

● z0 ∈ Z is the initial stack symbol,
● q0 ∈ Q is the initial state,
● F ⊆ Q is the set of accepting states or final states.

Tamás Lukovszki13Models of Computation

PDA

● The symbol at the top of the stack, the current state, and
the input symbol determine the transition.

● At each step, the automaton takes one element from the
top of the stack (pop) and writes several symbols
(0, 1, 2, . . .) instead (push).

● If δ(z, q,) is not empty, then so-called ε -transitionε
(-step, -movement) can be performed, which allows to ε ε
change the state and modify the top of the stack without
reading a symbol from the input tape.

● -transition is possible ε even before reading the first input
symbol or even after reading the last input symbol.

Tamás Lukovszki14Models of Computation

PDA

● The configuration of the PDA is a word of a form of zqw, where
● z ∈ Z* is the current content of the stack,
● q ∈ Q is the current state, and
● w ∈ T* is the unprocessed part of the input.

● z has its first letter at the bottom of the stack, and its last letter at the
top of the stack.

● The reading head is on the first letter w.
● The symbol on the left of q is the symbol on the top of the stack and

the symbol on the right of q is the next letter of the input to be
processed.

● The initial configuration of the PDA A=(Z,Q,T, ,zδ 0,q0,F) for input w ∈ T*
is z0q0w.

Tamás Lukovszki15Models of Computation

PDA – operations

● Let t ∈ T { }, ∪ ε q,r ∈ Q and z ∈ Z
● (, ε r) ∈ δ(z, q, t): element z can be removed from the stack (POP

operation)
● (z, r) ∈ δ(z, q, t): the contents of the stack may remain

unchanged
● (z’, r) ∈ δ(z, q, t): z can be replaced with z’ at the top of the

stack
● (zz’, r) ∈ δ(z, q, t): we can put z’ on top of the stack (PUSH

operation)
● Other possibilities:

● (zz’z’’, r) ∈ δ(z, q, t): we can put z’z’’ on top of the stack,
z’’ will be on top (z’’, z’ ∈ Z) .

● In general, (w, r) ∈ δ(z, q, t), where w ∈ Z*.
The symbol z is replaced by the word w, s.t. the last letter
of w is on the top of the stack.

Tamás Lukovszki16Models of Computation

PDA – reduction

● The PDA A reduces the configuration α ∈ Z*QT* to a configuration β
 ∈ Z*QT* in one step, denoted by α ⇒A β, if

Ǝ z ∈ Z, q,p ∈ Q, a ∈ T { }, ∪ ε x,y ∈ Z*, and w ∈ T*, s.t.
(y,p) ∈ δ(z,q,a) and = xα zqaw and = xβ ypw.

● Examples:
● if δ(c,q1,a) = {(dd, q2), (, ε q4)} and z0cddcq1 is a configuration,

then
● z0cddcq1ababba ⇒A z0cddddq2babba and
● z0cddcq1ababba ⇒A z0cddq4babba also holds.

● if δ(c, q3,) = {(ε dd, q2)} and z0cddcq3ababba is a configuration,
then

● z0cddcq3ababba ⇒A z0cddddq2ababba
● if δ(c, q5,) = and ε ∅ δ(c, q5, a) = , then ∅

● ∄ configuration C s.t. z0ccq5aab ⇒A C.

Tamás Lukovszki17Models of Computation

PDA – reduction

● The PDA A reduces the configuration α ∈ Z*QT* to a
configuration β ∈ Z*QT*, denoted by α *⇒ A β, if
● either = α β,
● or Ǝ α1, . . . , αn a finite sequence of words, s.t.

 = α α1 , = β αn and αi ⇒A αi + 1, 1 ≤ i ≤ n − 1.

● The relation *⇒ A ⊆ Z*QT* × Z*QT* is the reflexive and transitive
closure of relation ⇒A.

● Example:
● If δ(d, q6, b) = {(, ε q5)} and δ(d, q5,) = {(ε dd, q2), (, ε q4)} then

● #cddq6bab ⇒A #cdq5ab ⇒A #cddq2ab and
● #cddq6bab ⇒A #cdq5ab ⇒A #cq4ab.
● So, #cddq6bab *⇒ A #cddq2ab and #cddq6bab *⇒ A #cq4ab.

Tamás Lukovszki18Models of Computation

PDA – reduction

● The accepted language with accepting state
(or with final state) by a PDA A is:

L(A) = {w ∈ T* | z0q0w *⇒ A xp, where x ∈ Z*, p ∈ F}.

Tamás Lukovszki19Models of Computation

PDA

A PDA A can be alternatively given by
● Rewriting rules

● The set of rules is denoted by Mδ.
Using this alternative notation:

● zqa up→ ∈ Mδ (⇐⇒ u, p) ∈ δ(z, q, a),
● zq up→ ∈ Mδ (⇐⇒ u, p) ∈ δ(z, q, ε).
● (p, q Q , a T , z Z , u Z*∈ ∈ ∈ ∈)

● State transition diagram
● For p,q Q, a T∈ ∈ {∪ ε}, z Z, u Z*∈ ∈ :

(u, p) ∈ δ(z, q, a) ⇐⇒

● Final states are indicated by double circle.
● The start state is indicated by . →

Tamás Lukovszki20Models of Computation

Deterministic PDA

● The PDA A = (Z, Q, T, δ, z0, q0, F) is deterministic if for
all (z, q, a) ∈ Z × Q × T it holds that
|δ(z, q, a)| + | (δ z, q,)| = 1.ε

● So, for all q ∈ Q and z ∈ Z
● either δ(z, q, a) contains exactly one element for each

input symbol a ∈ T and δ(z, q,) = ,ε ∅
● or δ(z, q,) contains exactly one element and ε
δ(z, q, a) = for all input symbols ∅ a ∈ T.

● Remark: If for all (z, q, a) ∈ Z × Q × T, it holds that
|δ(z, q, a)| + |δ(z, q,)| ≤ 1 then the PDA can be easily extended to a ε
deterministic one accepting the same language. Thus, PDAs fulfilling
this condition can be considered as deterministic in a broader sense.

Tamás Lukovszki21Models of Computation

Deterministic PDA

● The acceptance (recognition) power of
deterministic PDAs is less than of
non-deterministic PDAs.

● Example: Let
● L1 = {wcw−1 | w {∈ a, b}*},
● L2 = {ww−1 | w {∈ a, b}*}.
● L1 can be accepted by a deterministic PDA, but

L2 not.
● Both L1 and L2 can be accepted by a non-

deterministic PDA.

Tamás Lukovszki23Models of Computation

Non-Deterministic PDA

● Example: Accepting L2 = {ww−1 | w {∈ a, b}*}
non-deterministically.
● Idea:

● 1. read and push input symbols
non-deterministically either repeat 1. or go to 2.

● 2. read input symbols and pop stack sympols, compare
if not equal reject.

● 3. enter accept state if stack is empty.
● Non-deterministic PDA:

A = ({q0, q1, q2}, {a, b}, {$, a, b}, δ, q0, $, {q2}), where:
● (zt, q0) ∈ δ(z, q0, t), ∀ t {∈ a, b}, z {∈ $, a, b}
● (z, q1) ∈ δ(z, q0,), ε ∀ z {∈ $, a, b}
● (, ε q1) ∈ δ(t, q1, t), ∀ t {∈ a, b}
● ($, q2) ∈ δ($, q1,)ε

Tamás Lukovszki24Models of Computation

Non-deterministic PDA

● Example: Accepting L2 = {ww−1 | w {∈ a, b}*}
non-deterministically.
● Idea:

● 1. read and push input symbols
non-deterministically either repeat 1. or go to 2.

● 2. read input symbols and pop stack sympols, compare
if not equal reject.

● 3. enter accept state if stack is empty.

q0 q2

a, $ → $a
a, a → aa
a, b → ba
b, $ → $b
b, a → ab
b, b → bb

q1

ε, $ → $
ε, a → a
ε, b → b ε, $ → $

a, a → ε
b, b → ε

Tamás Lukovszki25Models of Computation

PDA

● The language accepted by the PDA A with an empty
stack is
● N(A) = {w ∈ T* | z0q0w *⇒ A p, where p ∈ Q} .

● Example: Let A = ({$, a}{q0, q1}, {a, b}, δ, $, q0, { }),
where δ is:
● $q0a $→ aq0

● aq0a → aaq0

● aq0b → q1

● aq1b → q1

● $q1 → q1 .
Then N(A) = {anbn | n ≥ 1 } .

Tamás Lukovszki26Models of Computation

PDA

● Remark: If the stack is empty, the operation of
the automaton is blocked, since no transition is
defined for the case of an empty stack. (This is
why we need the symbol z0 in the initial
configuration. The set of accepting states is
irrelevant to N(A).)

Tamás Lukovszki27Models of Computation

Computing power of PDAs

● Theorem 3: For every PDA A, a PDA A’ can be
constructed, s.t. N(A’) = L(A) is fulfilled.

● Theorem 4: For every context-free grammar G, a PDA A
can be constructed, s.t. L(A) = L(G).

● Theorem 5: For every PDA A, a context-free grammar G
can be given, s.t. L(G)=N(A)

● Therefore, the computing power of PDAs (either we
consider acceptance with accepting end state or
acceptance with an empty stack) equal to the computing
power of context-free (type 2) grammars.

Tamás Lukovszki29Models of Computation

Converting CFGs to PDAs

● Theorem 4: For every context-free grammar (CFG) G, a PDA A can be
constructed, s.t. L(A) = L(G).

● Proof construction: Convert the CFG G to the following PDA.
● Push the start symbol on the stack.
● If the top of stack is

● Non-terminal: replace with right hand side of rule (non-
deterministic choice).

● Terminal: pop it and match with next input symbol.
● If the stack is empty, accept.

● Example: Let G=(N,T,P,S) be the CFG with T = {a,+,×,(,)},
N = {S,M,F}, and P={S → S+M | M, M → M×F | F, F → (S) | a}.
Input: a+a×a.

S S

+
M

M
+
M

F
+
M

a
+
M

+
M

M M
×
F

F
×
F

×
F

F aa
×
F

Tamás Lukovszki30Models of Computation

Bar-Hillel Lemma –
pumping lemma for context-free languages

● A necessary condition that a language is context-free
(thus, it can be recognized by a PDA).

● Theorem 6 (Bar-Hillel lemma, or pumping lemma for
context-free languages):
For every context-free language L, there exists a
natural number n, s.t. for every word z ∈ L
with |z|>n, holds that z can be written as z=uvwxy
(u,v,w,x,y T*∈), satisfying the following 3 conditions:
1. |vwx| ≤ n,
2. vx ≠ , ε
3. uviwxiy ∈ L, for all i ≥ 0.

Tamás Lukovszki31Models of Computation

Bar-Hillel Lemma

● Proof: Assume, that the grammar is -ε
free and given in Chomsky normal form
(i.e. all production rules are of the form:
A → BC, or A → a, or S). → ε
The derivation of a word z ∈ L(G) can be
represented by a tree TS.
If the depth of TS (lengt of the longest
path from S to a leaf) is k, then |z|≤ 2k,
due to the Chomsky normal form.
Let N be the set of non-terminals in G
and j=|N|. Let n=2j+1.
If z ∈ L and |z| > n, then the longest
path in the derivation tree of S * ⇒ z
must be longer than j. Consider the last
section of this path of length j+1. There
must be a non-terminal A ∈ N that
occurs at least twice in this section.

Tamás Lukovszki32Models of Computation

Bar-Hillel Lemma

● Proof (cont.): Consider two such
occurrences of A on this path. Let r be
the word corresponding to the subtree
of the first one (closer to S), and let w
be the word corresponding to the other
one. Then, A * ⇒ r and A * ⇒ w, and w is
a subword of r, so r=vwx for some
v,x ∈ T*. Furthermore, z=ury, for some
u,y ∈ T*. Due to the choice of the
occurrences of A, |r| ≤ 2j+1. On the other
hand, S * ⇒ uAy and A * ⇒ vAx.
Therefore, S * ⇒ uviwxiy, for any i ≥ 0.
Thus, A * ⇒ vAx contains at least one
step, and the first step must be the
application of a rule of the form A → BC.
Therefore |vx| ≥ 1, since G is -free.ε ⃞

Tamás Lukovszki33Models of Computation

Application of the Bar-Hillel Lemma

● Claim: The language L={ajbjcj : j ≥ 1} is not
context-free.

● Proof: Assume for contradiction, that G is a
context-free grammar generating L.
Then, by the lemma, Ǝ n≥0 s.t. word ∀ z ∈ L,
|z|>n can be written in the form z=uvwxy,
satisfying |vwx| ≤ n, vx≠ , and for all ε i ≥ 0,
uviwxiy ∈ L.
Consider a word ambmcm with m>n.
Since |vwx| ≤ n, vwx can not contain all three
symbols of a,b,c.
Assume, w.l.o.g., it contains at least one a and
does not contain any c. Then by pumping,
for i ≥ 2, uviwxiy contains more a’s than c’s.
Consequently, uviwxiy ∉ L.⃞

{ajbjcj | j ≥ 1}

L2

L1

Tamás Lukovszki34Models of Computation

Example

● Example: A context sensitive grammar generating
L={ajbjcj : j ≥ 1}:

S abc | aAbc→
Ab bA→
Ac Bbcc→
bB Bb→
aB aa | aaA→

{ajbjcj | j ≥ 1}

L2

L1

Tamás Lukovszki35Models of Computation

Properties of CF Languages

Theorem 7: Let L and L’ be CF languages. Then the languages L L’∪ , LL’, and
L* are also CF (i.e. L2 is closed for the regular operations: union, concatenation,
Kleene-star).

Proof: We just prove that L L’∪ is CF.
● Let G =(N,T,P,S) and G’ =(N’,T’,P’,S’) be CF gammars, s.t.

L(G)= L and L(G’) = L’.
● Assume that N N’ = .∩ ∅ (Otherwise, rename the non-terminals in N’.)
● Let S’’ be a new symbol, S’’ ∉ N N’ T T’.∪ ∪ ∪ S’’ will be the new start symbol.
● Let G’’ = (N N’∪ ∪{S’’}, T T’,∪ P’’, S’’), where

P’’ = P P’ ∪ ∪ {S’’ S, S’’ S’→ → }.
● Then G’’ is a CF grammar and L(G’’) = L(G) L∪ (G’) = L L’.∪

● The derivation must begin with one of the rules S’’ S → or S’’ S’→ .
● If it begins with S’’ S, → then only the rules of G can be applied.
● If it begins with S’’ S’, → then only the rules of G’ can be applied. ⃞

Tamás Lukovszki36Models of Computation

Properties of CF Languages

Theorem 8: The intersection of two CF languages is not necessarily
a CF language (i.e. L2 is not closed for the intersection operation).

Proof: Consider the following languages over T={a,b,c}:
● L={anbncm | n ≥ 1, m ≥ 1},
● L’={anbmcm | n ≥ 1, m ≥ 1}.
● Then L L’∩ ={anbncn | n ≥ 1}.
● We know from the previous slides that L L’∩ is not CF.
● However, L and L’ are both CF. L is generated by the CF grammar:

● S → TC
● C → cC | c
● T → aTb | ab

● L’ is generated by a similar CF grammar. ⃞

Tamás Lukovszki37Models of Computation

Properties of CF Languages

Theorem 9 The complement of a CF language is not necessarily
CF. (i.e. L2 is not closed for the complement operation).

Proof:
● Assume that the complement of every CF language is CF.
● Let L and L’ be two CF languages over the alphabet T.
● By the assumption, L and L’ are CF.
● By Theorem 7, L ∪ L’ is CF.
● Applying the assumption again, we have that is CF.
● But , which by Theorem 8, is not necessarily CF.
● Consequently, the assumption cannot be true. ⃞

Tamás Lukovszki38Models of Computation

References

● Michael O. Rabin: Probabilistic Automata.
Information and Control. 6 (3): 230–245, 1963.
doi:10.1016/s0019-9958(63)90290-0

● Michael Sipser: Introduction to the Theory of
Computation. 3rd edition, 2012.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

