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Models of Computation

6: Probabilistic automata, Pushdown automata, Context-
free languages
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Probabilistic automaton

 Let S={s1, . . . ,sn}be the set of states of the probabilistic 
automaton PA. Reading an input symbol x in state s the automaton 
PA goes to state si with probability pi(s,x), where for every s and x:

 Instead of the initial state, there is a distribution of initial states, 
i.e. every state is an initial state with a fixed probability.

 The accepted language L(PA, Sf, η) depends on 
● the final states Sf and 
● the cutting point η, 0 ≤ η < 1.

 The accepted language L(PA, Sf, η) is the set of words, for which PA 
reaches a state in Sf with a probability greater than η.
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Probabilistic automaton

 An n-dimensional stochastic matrix ( pij )1≤i,j≤n 
is a square matrix, for which 

 An n-dimensional stochastic row vector (column 
vector) is an n-dimensional row vector (column vector) 
whose components are are non-negative and the sum of 
the components is 1.

 If only one component of the stochastic row vector is 1, 
then it is called a coordinate vector.

 The n-dimensional unit matrix En is a stochastic matrix.
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Probabilistic automaton

● A finite probabilistic automaton over an alphabet V 
is a triple PA = (S, s0, M), where

● S = {s1 , . . . , sn} is a finite, nonempty set of 
states,

● s0 is a n-dimensional stochastic row vector, the 
distribution of the initial states

● M is a mapping that maps V to the set of n-
dimensional stochastic matrices.

● For x  ∈ V, the (i,j)-th element of the matrix M(x) is 
pj(si,x), it is the probability that reading x in state si, PA 
goes to state state sj.
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Probabilistic automaton

● Example: Consider the following probabilistic automaton: 
PA = ({s1, s2}, (1,0), M) over the alphabet {x,y}, where

● The initial distribution shows that the initial state is s1.

● The state transition digram:
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Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton 
over alphabet V. The function M on V can be 
extended to V* as follows:

● M̂( ) := ε En

● M̂(x1 ... xn) := M(x1)M(x2)...M(xn) , where n≥2 , xi∈V.
● Instead of M̂, we write M hereafter.
● For a word w  ∈ V*, the (i,j)-th element of M(w) is the 

probability pj(si, w) that processing w in state si the 
automaton PA goes to state sj.
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Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton 
over an alphabet V, and w  ∈ V*. The stochastic row 
vector s0M(w), denoted by PA(w), is the state 
distribution resulting from w.

● Note: PA( ) = ε s0.
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Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton over an 
alphabet V, 0 ≤ η < 1, and s̄f an n-dimensional column vector, 
s.t. all elements of s̄f are either 0 or 1. 
(s̄f can be understood as a membership function for the final 
states Sf, Sf  S⊆ .)

● The language accepted by PA with cut point η is: 
L(PA, s̄f, η) = { w  ∈ V* |  s0M(w)s̄f > η}.

● A language L is called η-stochastic if Ǝ probabilistic finite 
automaton PA = (S, s0, M) and column vector s̄f, s.t.
L = L(PA, s̄f, η) holds.

● A language L is called stochastic if it is η-stochastic for a 
0 ≤ η < 1.
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Probabilistic automaton

● Example: Let PA = ({s1, s2}, (1,0), M) over the alphabet {x,y} with 

 

● Then
● PA(xn) = (1, 0)M(xn) = (1, 0), if n is even,
● PA(xn) = (0, 1), if n is odd, and
● PA(w) = (1/2, 1/2) if w contains at least one y.

● Thus, for

● Thus, V* − (xx)* is, e.g., a 1/3-stochastic language, 
while x(xx)* is, e.g, a 2/3-stochastic language. 
Therfore, both are stochastic languages.
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Regular and (η-)stochastic languages

● Theorem 1 [Rabin 1963]: All regular languages   are 
stochastic, but not all stochastic language is regular.

● Theorem 2 [Rabin 1963]: All 0-stochastic languages 
are regular.
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Pushdown automaton (PDA)

● A pushdown automaton (PDA) is a generalization of a 
finite automaton with (potentially) infinite stack and 
finite control.

● The new data is 
added to the top 
of the stack, 
and removed 
in reverse order.

● The stack is a 
last in, first out 
(LIFO) data structure.
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Pushdown automata

● A pushdown automaton (PDA) is a 7-tuple 
A = (Z, Q, T, δ, z0, q0, F), where

● Z is a finite set of stack symbols (stack alphabet),
● Q is a finite set of states,
● T is the finite set of input symbols (input alphabet),
● δ : Z × Q × (T  { }) ∪ ε → P(Z* × Q) is the transition 

function,
● where P(X) is set of finite subsets of X.

(example: δ(z,q,a) = {(z’,q’), (z’’,q’’)},
note: non-deterministic by default).

● z0  ∈ Z is the initial stack symbol,
● q0  ∈ Q is the initial state,
● F  ⊆ Q is the set of accepting states or final states.
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PDA

● The symbol at the top of the stack, the current state, and 
the input symbol determine the transition.

● At each step, the automaton takes one element from the 
top of the stack (pop) and writes several symbols 
(0, 1, 2, . . .) instead (push).

● If δ(z, q, ) is not empty, then so-called ε -transitionε  
( -step, -movement) can be performed, which allows to ε ε
change the state and modify the top of the stack without 
reading a symbol from the input tape.

● -transition is possible ε even before reading the first input 
symbol or even after reading the last input symbol.
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PDA

● The configuration of the PDA is a word of a form of zqw, where 
● z  ∈ Z* is the current content of the stack,
● q  ∈ Q is the current state, and 
● w  ∈ T* is the unprocessed part of the input.

● z has its first letter at the bottom of the stack, and its last letter at the 
top of the stack. 

● The reading head is on the first letter w.
● The symbol on the left of q is the symbol on the top of the stack and 

the symbol on the right of q is the next letter of the input to be 
processed.

● The initial configuration of the PDA A=(Z,Q,T, ,zδ 0,q0,F) for input w  ∈ T* 
is z0q0w.
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PDA – operations

● Let t  ∈ T  { }, ∪ ε q,r  ∈ Q and z  ∈ Z
● ( , ε r)  ∈ δ(z, q, t): element z can be removed from the stack (POP 

operation)
● (z, r)  ∈ δ(z, q, t): the contents of the stack may remain 

unchanged
● (z’, r)  ∈ δ(z, q, t): z can be replaced with z’ at the top of the 

stack
● (zz’, r)  ∈ δ(z, q, t): we can put z’ on top of the stack (PUSH 

operation)
● Other possibilities:

●  (zz’z’’, r)  ∈ δ(z, q, t): we can put z’z’’ on top of the stack, 
z’’ will be on top (z’’, z’  ∈ Z) .

● In general, (w, r)  ∈ δ(z, q, t), where w  ∈ Z*. 
The symbol z is replaced by the word w, s.t. the last letter 
of w is on the top of the stack. 
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PDA – reduction

● The PDA A reduces the configuration α  ∈ Z*QT* to a configuration β 
 ∈ Z*QT* in one step, denoted by α ⇒A β, if 

Ǝ z  ∈ Z, q,p  ∈ Q, a  ∈ T  { }, ∪ ε x,y  ∈ Z*, and w  ∈ T*, s.t. 
(y,p)  ∈ δ(z,q,a) and  = xα zqaw and  = xβ ypw.

● Examples:
● if δ(c,q1,a) = {(dd, q2), ( , ε q4)} and z0cddcq1 is a configuration, 

then
● z0cddcq1ababba ⇒A z0cddddq2babba and
● z0cddcq1ababba ⇒A z0cddq4babba also holds.

● if δ(c, q3, ) = {(ε dd, q2)} and z0cddcq3ababba is a configuration, 
then 

● z0cddcq3ababba ⇒A z0cddddq2ababba
● if δ(c, q5, ) =  and ε ∅ δ(c, q5, a) = , then ∅

● ∄ configuration C s.t. z0ccq5aab ⇒A C. 
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PDA – reduction

● The PDA A reduces the configuration α  ∈ Z*QT* to a 
configuration β  ∈ Z*QT*, denoted by α *⇒ A β, if
● either  = α β, 
● or Ǝ α1, . . . , αn a finite sequence of words, s.t.

 = α α1 ,  = β αn and αi ⇒A αi + 1, 1 ≤ i ≤ n − 1.

● The relation *⇒ A  ⊆ Z*QT* × Z*QT* is the reflexive and transitive 
closure of relation ⇒A.

● Example:
● If δ(d, q6, b) = {( , ε q5)} and δ(d, q5, ) = {(ε dd, q2), ( , ε q4)} then

● #cddq6bab ⇒A #cdq5ab ⇒A #cddq2ab and
● #cddq6bab ⇒A #cdq5ab ⇒A #cq4ab.
● So, #cddq6bab *⇒ A #cddq2ab and #cddq6bab *⇒ A #cq4ab.
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PDA – reduction

● The accepted language with accepting state 
(or with final state) by a PDA A is:

L(A) = {w  ∈ T* | z0q0w *⇒ A xp, where x  ∈ Z*, p  ∈ F}.
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PDA 

A PDA A can be alternatively given by 
● Rewriting rules

● The set of rules is denoted by Mδ. 
Using this alternative notation:

● zqa  up→  ∈ Mδ  (⇐⇒ u, p)  ∈ δ(z, q, a),
● zq  up→  ∈ Mδ  (⇐⇒ u, p)  ∈ δ(z, q, ε).
● (p, q  Q , a  T , z  Z , u  Z*∈ ∈ ∈ ∈ )

● State transition diagram
● For p,q  Q, a  T∈ ∈   {∪ ε}, z  Z, u  Z*∈ ∈ :

(u, p)  ∈ δ(z, q, a) ⇐⇒

● Final states are indicated by double circle.
● The start state is indicated by . →
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Deterministic PDA

● The PDA A = (Z, Q, T, δ, z0, q0, F) is deterministic if for 
all (z, q, a)  ∈ Z × Q × T it holds that
|δ(z, q, a)| + | (δ z, q, )| = 1.ε

● So, for all q  ∈ Q and z  ∈ Z
● either δ(z, q, a) contains exactly one element for each 

input symbol a  ∈ T and δ(z, q, ) =  ,ε ∅
● or δ(z, q, ) contains exactly one element and ε
δ(z, q, a) =  for all input symbols ∅ a  ∈ T.

● Remark: If for all (z, q, a) ∈ Z × Q × T, it holds that 
|δ(z, q, a)| + |δ(z, q, )| ≤ 1 then the PDA can be easily extended to a ε
deterministic one accepting the same language. Thus, PDAs fulfilling 
this condition can be considered as deterministic in a broader sense.
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Deterministic PDA

● The acceptance (recognition) power of 
deterministic PDAs is less than of 
non-deterministic PDAs.

● Example: Let
● L1 = {wcw−1 | w  {∈ a, b}*},
● L2 = {ww−1 | w  {∈ a, b}*}.
● L1 can be accepted by a deterministic PDA, but 

L2 not.
● Both L1 and L2 can be accepted by a non-

deterministic PDA.
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Non-Deterministic PDA

● Example: Accepting L2 = {ww−1 | w  {∈ a, b}*} 
non-deterministically. 
● Idea: 

● 1. read and push input symbols
non-deterministically either repeat 1. or go to 2.

● 2. read input symbols and pop stack sympols, compare
if not equal reject.

● 3. enter accept state if stack is empty.
● Non-deterministic PDA:

A = ({q0, q1, q2}, {a, b}, {$, a, b}, δ, q0, $, {q2}), where:
● (zt, q0)  ∈ δ(z, q0, t),  ∀ t  {∈ a, b}, z  {∈ $, a, b}
● (z, q1)  ∈ δ(z, q0, ), ε  ∀ z  {∈ $, a, b}
● ( , ε q1)  ∈ δ(t, q1, t),   ∀ t  {∈ a, b}
● ($, q2)  ∈ δ($, q1, )ε
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Non-deterministic PDA

● Example: Accepting L2 = {ww−1 | w  {∈ a, b}*} 
non-deterministically. 
● Idea: 

● 1. read and push input symbols
non-deterministically either repeat 1. or go to 2.

● 2. read input symbols and pop stack sympols, compare
if not equal reject.

● 3. enter accept state if stack is empty.

q0 q2

a, $ → $a
a, a → aa
a, b → ba
b, $ → $b
b, a → ab
b, b → bb

q1

ε, $ → $
ε, a → a
ε, b → b ε, $ → $

a, a → ε
b, b → ε
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PDA

● The language accepted by the PDA A with an empty 
stack is
● N(A) = {w  ∈ T* | z0q0w *⇒ A p, where p  ∈ Q} .

● Example: Let A = ({$, a}{q0, q1}, {a, b}, δ, $, q0, { }), 
where  δ is:
● $q0a  $→ aq0

● aq0a  → aaq0

● aq0b  → q1

● aq1b  → q1

● $q1  → q1 .
Then N(A) = {anbn | n ≥ 1 } .
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PDA

● Remark: If the stack is empty, the operation of 
the automaton is blocked, since no transition is 
defined for the case of an empty stack. (This is 
why we need the symbol z0 in the initial 
configuration. The set of accepting states is 
irrelevant to N(A).)
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Computing power of PDAs

● Theorem 3: For every PDA A, a PDA A’ can be 
constructed, s.t. N(A’) = L(A) is fulfilled.

● Theorem 4: For every context-free grammar G, a PDA A 
can be constructed, s.t. L(A) = L(G).

● Theorem 5: For every PDA A, a context-free grammar G 
can be given, s.t. L(G)=N(A)

● Therefore, the computing power of PDAs (either we 
consider acceptance with accepting end state or 
acceptance with an empty stack) equal to the computing 
power of context-free (type 2) grammars.
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Converting CFGs to PDAs

● Theorem 4: For every context-free grammar (CFG) G, a PDA A can be 
constructed, s.t. L(A) = L(G).

● Proof construction:  Convert the CFG G to the following PDA. 
● Push the start symbol on the stack.
● If the top of stack is

● Non-terminal: replace with right hand side of rule (non-
deterministic choice).

● Terminal: pop it and match with next input symbol.
● If the stack is empty, accept.

● Example: Let G=(N,T,P,S) be the CFG with T = {a,+,×,(,)}, 
N = {S,M,F}, and P={S → S+M | M, M → M×F | F, F → (S) | a}.
Input: a+a×a.

 
S S

+
M

M
+
M

F
+
M

a
+
M

+
M

M M
×
F

F
×
F

×
F

F aa
×
F
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Bar-Hillel Lemma – 
pumping lemma for context-free languages

● A necessary condition that a language is context-free 
(thus, it can be recognized by a PDA).

● Theorem 6 (Bar-Hillel lemma, or pumping lemma for 
context-free languages): 
For every context-free language L, there exists a 
natural number n, s.t. for every word z  ∈ L 
with |z|>n, holds that z can be written as z=uvwxy 
(u,v,w,x,y  T*∈ ), satisfying the following 3 conditions:
1. |vwx| ≤ n, 
2. vx ≠ , ε
3. uviwxiy  ∈ L, for all i ≥ 0.
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Bar-Hillel Lemma

● Proof: Assume, that the grammar is -ε
free and given in Chomsky normal form 
(i.e. all  production rules are of the form: 
A  → BC, or A  → a, or S  ). → ε
The derivation of a word z  ∈ L(G) can be 
represented by a tree TS. 
If the depth of TS (lengt of the longest 
path from S to a leaf) is k, then |z|≤ 2k, 
due to the Chomsky normal form. 
Let N be the set of non-terminals in G 
and j=|N|. Let n=2j+1. 
If z  ∈ L and |z| > n, then the longest 
path in the derivation tree of S * ⇒ z 
must be longer than j. Consider the last 
section of this path of length j+1. There 
must be a non-terminal A  ∈ N that 
occurs at least twice in this section.
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Bar-Hillel Lemma

● Proof (cont.): Consider two such 
occurrences of A on this path. Let r be 
the word corresponding to the subtree 
of the first one (closer to S), and let w 
be the word corresponding to the other 
one. Then, A * ⇒ r and A * ⇒ w, and w is 
a subword of r, so r=vwx for some 
v,x  ∈ T*. Furthermore, z=ury, for some
u,y  ∈ T*. Due to the choice of the 
occurrences of A, |r| ≤ 2j+1. On the other 
hand, S * ⇒ uAy and A * ⇒ vAx. 
Therefore, S * ⇒ uviwxiy, for any i ≥ 0. 
Thus, A * ⇒ vAx contains at least one 
step, and the first step must be the 
application of a rule of the form A  → BC. 
Therefore |vx| ≥ 1, since G is -free.ε  ⃞
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Application of the Bar-Hillel Lemma

● Claim: The language L={ajbjcj : j ≥ 1} is not 
context-free.

● Proof: Assume for contradiction, that G is a 
context-free grammar generating L. 
Then, by the lemma, Ǝ n≥0 s.t.  word ∀ z  ∈ L, 
|z|>n can be written in the form z=uvwxy, 
satisfying |vwx| ≤ n, vx≠ , and for all ε i ≥ 0, 
uviwxiy  ∈ L. 
Consider a word ambmcm with m>n. 
Since |vwx| ≤ n, vwx can not contain all three 
symbols of a,b,c. 
Assume, w.l.o.g., it contains at least one a and 
does not contain any c. Then by pumping, 
for i ≥ 2, uviwxiy  contains more a’s than c’s. 
Consequently, uviwxiy ∉ L.⃞

{ajbjcj  | j ≥ 1}

L2 

L1 
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Example

● Example: A context sensitive grammar generating 
L={ajbjcj : j ≥ 1}:

S  abc | aAbc→
Ab  bA→
Ac  Bbcc→
bB  Bb→
aB  aa | aaA→

{ajbjcj  | j ≥ 1}

L2 

L1 
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Properties of CF Languages

Theorem 7: Let L and L’ be CF languages. Then the languages L  L’∪ , LL’,  and 
L*  are also CF (i.e. L2 is closed for the regular operations: union, concatenation, 
Kleene-star).

Proof: We just prove that L  L’∪  is CF.
● Let G =(N,T,P,S) and G’ =(N’,T’,P’,S’) be CF gammars, s.t. 

L(G)= L and L(G’) = L’. 
● Assume that N  N’ = .∩ ∅  (Otherwise, rename the non-terminals in N’.)
● Let S’’ be a new symbol, S’’  ∉ N  N’  T  T’.∪ ∪ ∪  S’’ will be the new start symbol.
● Let G’’ = (N  N’∪ ∪{S’’}, T  T’,∪  P’’, S’’), where 

P’’ = P  P’ ∪ ∪ {S’’  S, S’’  S’→ → }.
● Then G’’ is a CF grammar and L(G’’) = L(G)  L∪ (G’) = L  L’.∪

● The derivation must begin with one of the rules S’’  S → or S’’  S’→ .
● If it begins with S’’  S, → then only the rules of G can be applied.
● If it begins with S’’  S’, → then only the rules of G’ can be applied.  ⃞
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Properties of CF Languages

Theorem 8: The intersection of two CF languages is not necessarily 
a CF language (i.e. L2 is not closed for the intersection operation).

Proof: Consider the following languages over T={a,b,c}:
● L={anbncm | n ≥ 1, m ≥ 1}, 
● L’={anbmcm | n ≥ 1, m ≥ 1}. 
● Then L  L’∩ ={anbncn | n ≥ 1}. 
● We know from the previous slides that L  L’∩   is not CF. 
● However, L and L’ are both CF. L is generated by the CF grammar:

● S  → TC 
● C  → cC | c
● T  → aTb | ab 

● L’ is generated by a similar CF grammar. ⃞
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Properties of CF Languages

Theorem 9 The complement of a CF language is not necessarily 
CF. (i.e. L2 is not closed for the complement operation).

Proof: 
● Assume that the complement of every CF language is CF.
● Let L and L’ be two CF languages over the alphabet T. 
● By the assumption, L and L’  are CF.
● By Theorem 7,  L  ∪ L’ is CF. 
● Applying the assumption again, we have that   is CF.
● But       , which by Theorem 8, is not necessarily CF.
● Consequently, the assumption cannot be true. ⃞
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