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Models of Computation

7: Turing machines
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Models of Algoritms

● From 1930s, the increased demand to create a mathematical model of 
algorithms. 

● Several experiments:
● Kurt Gödel: recursive functions
● Alonso Church: λ -calculus
● Alan Turing: Turing Machine

● From the second half of the 1930s, a several theorems were created, 
which stated the same computing power of these models.

● Later, for many other computation models has been proven that that 
their computing power is equivalent to Turing machines. For example:

● Type-0 grammar
● Pushdown automaton with 2 or more stacks
● RAM
● C, Java, Python, etc…
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Church-Turing thesis

● No algorithmic system is known that is more powerful 
than the Turing machine. 

For many algorithmic systems it is proven to be 
weaker or equivalent to Turing machines.

In the 1930s, the following was formulated:

● Church-Turing thesis: All formalizable problems that 
can be solved with an algorithm, also can be solved 
with Turing machine.

● NOT THEOREM!
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Turing Machines (TMs)

● Introduced by Alan Turing in 
1936

● Head can read and write
● Head is two way (can move 

left or right)
● Tape is infinite (to the right)
● Infinitely many blanks “_“ 

follow input
● Can accept or reject at any 

time (not only at end of input)

Finite
control

a b a b b

read/write input tape

head

_ _
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Turing Machines (TMs)

TM example: TM recognizing 
L={ anbncn | n ≥ 0}

1 Scan right until reaching _ while 
checking if input is in {a,b,c}*, reject 
if not. 

2 Return head to left end.

3 Scan right, crossing off single a, b, 
and c.  

4 If the last one of each symbol, 
accept.

5 If the last one of some symbol but not 
others, reject.

6 If uncrossed symbols remain, return 
to left end and repeat fom 3

Finite
control

a a b c

head

c _b

Finite
control

a a b c

head

c _b

Finite
control

a a b c

head

c _b
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TM – Formal Definition

● A Turing Machine (TM) is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject), 
where Q, Σ, Γ are finite sets

● Q: set of states
● Σ: input alphabet, (blank symbol _∉Σ)  
● Γ: tape alphabet  (Σ ⊆ Γ, _∈Γ)
● δ : Q × Γ → Q × Γ × {L, R} transition function (L = Left,  R = Right) 

● Note: deterministic 
● q0 ∈ Q: start state
● qaccept ∈ Q: accept state
● qreject ∈ Q: reject state, qreject≠qaccept.

● Transition diagram: Corresponds the transition
δ(q, a) = (r, b, D), 
(q, r ∈ Q, a, b ∈ Γ, D ∈ {L, R})
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TM – Computing

● TM M = (Q, Σ, Γ, δ, q0, qaccept, qreject) works as follows.
● The input word of M: w = w1w2...wn ∈ Σ*.

● is located on the the first n cells of the input tape
● the other cells are empty (contain the blank symbol _).

● The first (leftmost)  _ symbol indicates the end of the input.
● The read/write head is on the leftmost cell of the input tape.
● The calculation is done according to the transition function.

● If the head has reached the left end of the input tape, then it 
remains in place regardless of whether the transition function 
indicated movement to the left (L).

● The calculation is completed when the M enters qaccept or qreject. 
Then M halts.

● If neither case occurs, then M never halts (loop). 
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TM – Accepting, rejecting

● On input w a TM M may halt (enter qaccept or qreject) 
or may run forever (“loop”).  

● TM M has 3 possible outcomes for each input w:
● Accept (enter qaccept)
● Reject by halting (enter qreject)
● Reject by looping (running forever) 



Tamás Lukovszki9Models of Computation

TM – Configuration

● The configuration of the TM is a word of the form 
uqv, where u,v ∈ Γ* and q ∈ Q.

● uv : the current content of the tape and that
● q: current position of the head. 
● The head is at the first symbol of v.
● The last symbol of v is followed by blanks _ on 

the tape.
● Example: 1011q701111
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TM – Configuration transition

● Configuration C1 yields configuration C2 (denoted as C1 ⊢ C2) if the TM 
can go from C1 to C2 in a single step: 
Let a, b, c ∈ Γ and u, v ∈ Γ*. Let qi, qj ∈ Q.  

● uaqibv ⊢ uqjacv if δ(qi,b) = (qj,c,L),
● uaqibv ⊢ uacqjv if δ(qi,b) = (qj,c,R).

● Special cases: 
● For the left-hand end of tape, 

● qibv yields qjcv if δ(qi,b) = (qj,c,L),
(prevents the TM from going off the left end of the tape)

● qibv ⊢ cqjv if δ(qi,b) = (qj,c,R).
● For the right-hand end of the input, 

● uaqi is equivalent to uaqi_.
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TM – Accepting, rejecting, halting

● Start configuration of TM M on input w is q0w.
● Accepting configuration: the state of the 

configuration is qaccept.
● Rejecting configuration: the state of the 

configuration is qreject.
● Accepting and rejecting configurations are halting 

configurations 
● do not yield further configurations.

● δ can be also defined as: δ: Q’ × Γ→ Q × Γ × {L, R}, 
where Q’=Q\{qaccept,qreject}.
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TM – recognized language

● TM M accepts input w if a sequence of 
configurations C1, C2, … , Ck exists, where

1. C1 is the start configuration of M on input w,
● 2. each Ci ⊢ Ci+1, and

3. Ck is an accepting configuration.
● The set of words that M accepts is the language 

recognized (or accepted) by M, denoted by L(M), 
i.e.

● L(M) = { w | M accepts w}. 
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TM – Recognizer, Decider

● A TM M recognizes L if L = L(M). 
● A language L is Turing-recognizable 

if L = L(M) for some TM M.
● Turing-recognizable languages ​​are also called 

recursively enumerable languages.

● A TM M is a decider if M halts on all inputs.
● M decides L if L=L(M) and M is a decider.
● A language L is Turing-decidable 

if L = L(M) for some decider TM M.
● Turing-deciable languages ​​are also called 

recursive languages

T-recognizable

T-decidable
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q1 q20/_,R

q_reject

_/_,R
x/x,R

x/x,R

q3

0/x,R

q_accept

_/_,R

x/x,Rq4 0/0,R

q5

_/_,L

0/x,R

x/x,R

  _/_,R

_/_,R 0/0,L
x/x,L

Decider TM example

● Example: TM M that decides
● M on input w:

1. Scan the tape left to right crossing off every second 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than
 a single 0 and the number of 0s was odd, reject.

4. Return the head to the left end of the tape.

5. Go to stage 1.
● Formal description of 

M= (Q, Σ, Γ, δ, q1, qaccept, qreject):
● Q = {q1, q2, q3, q4, q5, qaccept, qreject},
● Σ = {0}, Γ = {0,x,_}.
● δ is given with a state diagram:
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Decider TM example

● Example: TM M that decides

● A sample run of M on input 0000:

q1 q20/_,R

q_reject

_/_,R
x/x,R

x/x,R

q3

0/x,R

q_accept

_/_,R

x/x,Rq4 0/0,R

q5

_/_,L

0/x,R

x/x,R

  _/_,R

_/_,R 0/0,L
x/x,L
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TM Variants – Multitape TM

● Multitape TM: 
● Each tape has its own head 

for reading and writing. 
● Initially the input is on tape 1,

and the others are blank. 
● The transition function is changed to allow for reading, 

writing, and moving the heads on some or all of the 
tapes simultaneously:

● δ : Q × Γk → Q × Γk × {L, R, S}k, 
where k is the number of tapes,
S: "stay put" it can be substituted by a moving 
the head to the right then to the left. 

● e.g. δ(qi, a1, … , ak) = (qj, b1, …. , bk, L, R, … , L) 
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Multitape TM, Single-tape TM

Theorem:  Every multitape TM has an equivalent single-tape TM.

Proof: Convert Multitape TM M to a single-tape TM S.
● S simulates M by storing 

the contents of multiple 
tapes on a single tape 
in “blocks” separated by 
a new symbol #.

● The content of the k tapes
of M is represented on the 
single tape of S as 
#w#_#_#_..._#, where w 
is the content of tape 1 of M.

● Record head positions with dotted symbols.
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Multitape TM, Single-tape TM

Proof (cont.):

● Some details of S:

1. For each step of M

a: Scan entire tape to find 
dotted symbols.

b: Scan again to update 
according to M’s δ.

c: Shift to add room as needed.

2. Accept/reject if M does.     ⃞
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Nondeterministic TM

● A nondeterministic TM (NTM) is similar to a deterministic 
TM except for its transition function 
δ : Q × Γ → P(Q × Γ × {L, R}).

Theorem: Every NTM N has an equivalent deterministic TM M.

Proof: Idea: 
● The computation of a NTM N with input w can be 

represented by a tree (computation tree)
● Nodes correspond to configurations, 

root corresponds to the start configuration.
● M tries all possible branches of the 

nondeterministic computation of N. (BFS) 
● If M ever finds the accept state on one of the 

branches, M accepts. Otherwise, M will not terminate.⃞
accept

. . .



Tamás Lukovszki22Models of Computation

#b

Nondeterministic TM

Theorem: Every NTM N has an 
equivalent deterministic TM M.

Proof: 
● M simulates N by storing each 

thread’s tape in a separate “block” 
on its tape separated by a 
new symbol #.

● In each block it stores
the head location,

● and the state ot the thread.
● If a thread forks, then M 

copies the block.  
● If a thread accepts then M accepts.⃞

accept

. . .

Deterministic TM

M a a a b b b#q3 q7q1 cc _ _

b

NTM

N a a a _ _
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Corollaries

● Corollary: A language is Turing-recognizable iff 
some multitape TM recognizes it.

● Corollary: A language is Turing-recognizable iff 
some nondeterministic TM recognizes it.

● Remark: We can modify the proof of previous 
Theorem, s.t. if N terminates on all branches during 
the nondeterministic calculation, then M also 
terminates. A NTM N is called decider if N 
terminates in every branch, for each input word.

● Corollary: A language can be decided iff some 
nondeterministic TM decies it.
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Turing Enumerators

● A Turing Enumerator is a 
deterministic TM with 
a printer.  

● It starts on a blank tape and
it can print strings w1,w2,w3,...
possibly going forever.

● Its language is the set of all strings it prints.   
It is a generator, not a recognizer.

● For enumerator E: L(E) = {w | E prints w}.
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Turing Enumerators

Theorem:  A language L is Turing-recognizable iff L=L(E) 
for some Turing enumerator E.

Proof: 
● (←) Convert E to an equivalent TM M.

● M for input w:
● Simulate E (on blank input). 
● Whenever E prints x, test if x=w.  
● Accept if = and continue otherwise.

● (→)  Convert TM M to equivalent enumerator E.
● E = Simulate M on each wi in Σ*={ε,0,1,00,01,10,11,...} 

● Whenever M accepts wi, print wi.
● Continue with next wi.

● Problem: What if M loops with w?
● Fix: Simulate M on w1,w2,…,wi for i steps, for i=1,2,…

Print those wi which are accepted.       ⃞
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TMs and Type-0 Grammars

Theorem:  For each type-0 grammar G, an NTG can be given, which 
recognizes L(G). 

Proof: 
● Let M be a TM having 3 tapes,  

● the first tape contains the input of M, 
● the second contains the rules of the grammar G,
● the third tape always has an α string 

(initially, the start symbol G).
● 1. M chooses a rule p → q nondeterministically and a position in α.
● 2. If the given position starts with p, i.e. α = xpy, then

replace p with q, the new string α becomes xqy.
● 3. If the contents of tapes 1 and 3 are equal, M stops with qaccept. 

Otherwise, repeat from 1.
● Clearly, L(M) = L(G)                ⃞

Corollary: By the previous theorem, a deterministic TM also can be given.
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TMs and Type-0 Grammars

Theorem:  For each deterministic TM M = (Q, Σ, Γ, δ, q0, qaccept, qreject) a 
grammar G generating L(M) can be given. 

Proof: 
● The sentences of G will encode the configurations of M. G proceeds 

in the opposite way. Nondeterministically generates an accepting 
configuration and then tries to derive a start configuration from that.

● Let G = ((Γ \ Σ) ∪ Q ∪ {S, A, ▷,◁}, Σ, P, S), where P:

1)S → ▷AqacceptA◁

2)A → aA | ε (∀ a ∈ Γ)

3)bq’ → qa, if δ(q, a) = (q’, b, R)

4)q’b → qa, if δ(q, a) = (q’, b, S)

5)q’cb → cqa, if δ(q, a) = (q’, b, L) (∀ c ∈ Γ)

6)_◁ → ◁ , ◁ → ε, ▷_ → ▷, ▷q0 → ε
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TMs and Type-0 Grammars

Proof (cont.): 

1)S → ▷AqacceptA◁

2)A → aA | ε (∀ a ∈ Γ )

3)bq’ → qa, if δ(q, a) = (q’, b, R)

4)q’b → qa, if δ(q, a) = (q’, b, S)

5)q’cb → cqa, if δ(q, a) = (q’, b, L) (∀ c ∈ Γ )

6)_◁ → ◁, ◁ → ε, ▷_ → ▷, ▷q0 → ε

1)-2) generate an accepting configuration.
● 3)-5) configuration transitions are simulated in the reverse direction. 

E.g. if αcqaβ ⊢ αq’cbβ according to a rule δ(q, a) = (q’, b, L), then by 5), 
q’cb becomes rewritten to cqa.

6) If the sentence is a start configuration (possibly with a few extra _), 
then these unnecessary symbols will be cleaned.

● By induction on the length of the derivation, it can be shown that
q0w ⊢* αqacceptβ iff S ⇒* ▷αqacceptβ◁ ⇒* ▷_iqacceptw_j◁ ⇒* w.     ⃞
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Multi-stack pushdown automata

● A k-stack pushdown automaton
k-stack PDA ) is a 
deterministic pushdown 
automaton with k stacks.

● Finite set of states.
● Finite input alphabet.
● Finite stack alphabet, 

common to all stacks.
● The transition of the multi-stack 

machine depends on:
● the state of the control unit,
● the input symbol read,
● the stack symbols at the top of each stack.
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Multi-stack PDA

● The multi-stack machine during a state transition:
● changes state, and
● the topmost stack symbol at the top of each stack is replaced by some 

number (0, 1, or more) of stack symbols.
● A configuration transition (state transition):

● δ(q, a, X1,...,Xk) = (p, y1,...,yk).
● in state q, symbol Xi on the top of the i-th stack, 

i = 1,…,k, reading the input symbol a, 
● goes to state p and replaces symbol Xi on the top of the i-th stack 

with yi, for all i = 1,…,k.
● The multi-stack machine accepts a word when it reaches the accepting end 

state.
● We assume that there is a special symbol $ at the end of the input (not part of 

it), called endmarker. It indicates that the entire input has been processed.
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Multi-stack PDA vs. TMs

Theorem: If a language L is accepted by a k-stack PDA, 
then there is a TM accepting L.

Proof: It is easy to simulate a k-stack machine with a 
(k+1)-tape TM: 

● we store the input on the first tape, 
● the other k tapes store the content of the k stacks.
● If we write j letters to one of the stacks in a step, we 

can simulate it with the TM in j steps, letter by letter. 
                 ⃞
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Multi-stack PDA vs. TMs

● Theorem: If a language L is accepted by a Turing 
machine M, then there is a 2-stack PDA S accepting L

● Proof: Idea: One stack stores the symbols left from 
the head of the TM, the other stack stores the 
symbols right from the head.
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Multi-stack PDA vs. TMs

Proof (cont.):  
● Initially, the stacks of S start with the stack symbol #

● # is not an element of the tape alphabet of M. 
● # is only used to indicate the bottom of the stack.

● Assume that the word w is present at the input of S. 
● S copies w to the first stack. S finishes copying if it reads $

($ indicates the end of the input).
● S takes the symbols one by one from the first stack and puts them 

all in the second stack (with  -transitions). ε
Then the first stack will be empty, 
the second stack will contain w, 
the first letter of w will be the top of stack.

● S enters the state corresponding to the initial state of M.
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Multi-stack PDA vs. TMs

Proof (cont.):  
● S simulates a transition of M as follows:
● It is assumed that S knows the state of M, denoted by q.
● For each state q of M, S has its own corresponding state.
● S knows the symbol X currently being read by M: 

X is the top of the second stack of S. 
An exception is, when the second stack contains only # 
(stack end symbol), in this case M just hit a blank 
symbol _.

● So S knows the next transition of M. S goes to its next 
state according to the next state of M.



Tamás Lukovszki35Models of Computation

Multi-stack PDA vs. TMs

Proof (cont.):  
● We only need to deal with moving to the left and to the right.
● If M replaces a symbol X with Y and moves to the right, then S 

puts Y to stack-1 and removes X from the top of stack-2, i.e. Y 
is to the left of the head of M. There are two special cases:

● If stack-2 only contains the stack end symbol # and thus
X = _, then the contents of stack-2 does not change, 
(M moves towards another _ to the right.)

● If Y = _ and # is on top of stack-1, then the content of 
stack-1 remains unchanged. (To the left of M's head 
there are only _ symbols.)
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Multi-stack PDA vs. TMs

Proof (cont.):  
● If M replaces symbol X with Y and moves to the left, 

then S removes the topmost symbol – call it Z – of the 
stack-1, and replaces X with ZY in the top of stack-2.

● I.e. the symbol Z, which was to the left of the head 
of M, will be under the head. An exception is the 
case where Z is the stack end symbol #. Then _Y 
is placed on the top of stack-2 and nothing is 
removed from stack-1.

● S accepts if the new state of M is accepting. 
Otherwise, S simulates the next step of M.    ⃞
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