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Models of Computation

8: Decision problems, undecidability



Tamás Lukovszki2Models of Computation

Encoding objects into strings

● If O is some object (e.g., automaton, TM, polynomial, graph, 
etc.), we write <O> to be an encoding of O into a string.  

● If O1, O2,…,Ok is a list of objects then we write 
<O1, O2,…,Ok> to be an encoding of them together into a 
single string. 

● Notation for writing Turing machines
● We will use English descriptions of algorithms when we 

describe TMs, knowing that we could (in principle) convert 
those descriptions into states, transition function, etc.  

●  M = “On input w:
●            [English description of the algorithm]” 
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Example

● TM M recognizing  
● M = “On input w

1) Check if, w ∈ a*b*c*, reject if not.

2) Count the number of a’s, b’s, and c’s in w.

3) Accept if all counts are equal; reject if not.”

● High-level description is ok.  
● We do not need to manage tapes, states, etc…
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Encoding of TMs

● Assumed that Σ = {0,1} .
● The code of a TM M (denoted by <M> ) is the following:
● Let M = (Q, {0,1}, Γ, δ, q0, qaccept, qreject), where

● Q = {p1,...,pk}, Γ = {X1,…,Xm}, D1 = R, D2 = S, D3 = L,
● k ≥ 3, p1 = q0, pk−1 = qaccept, pk = qreject,
● m ≥ 3 , X1 = 0 , X2 = 1 , X3 = _.
● The code of a transition δ(pi, Xj) = (pr, Xs, Dt) is 

0i10j10r10s10t.
● <M> is list of transition codes separated by 11.

● Note: <M> starts and ends with 0, does not contain the 
substring 111.

● <M,w> := <M>111w
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Acceptance Problem for DFAs

● Let ADFA = {<B,w> | B is a DFA and B accepts w}.

Theorem: ADFA is decidable.

Proof: Give TM MA-DFA that decides ADFA.
● MA-DFA = “On input s

● check that s has the form <B,w> where B is a 
DFA and w is a string; reject if not. 

● Simulate the computation of B on w.
● If ends in an accept state then accept.

If not then reject.”
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Acceptance Problem for NFAs

● Let ANFA = {<B,w> | B is a NFA and B accepts w}.

Theorem: ADFA is decidable.

Proof: Give TM MA-NFA that decides ANFA.
● MA-NFA = “On input <B,w>

● Convert NFA B to equivalent DFA B’.
● Run TM MA-DFA on input <B’,w>. [MA-DFA decides ADFA] 
● Accept if MA-DFA accepts.  
● Reject if not.”

● New element:  Use conversion construction and previously 
constructed TM as a subroutine.
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Emptiness Problem for DFAs

● Let EDFA = {<B> | B is a DFA and L(B) = Ø}.

Theorem: EDFA is decidable.

Proof: Give TM ME-DFA that decides EDFA.
● ME-DFA = “On input  <B>     

[Idea:  Check for a path from start to accept.]
● Mark start state.
● Repeat until no new state is marked:

● Mark every state that has an incoming arrow 
from a previously marked state. 

● Accept if no accept state is marked.  
● Reject if some accept state is marked.”
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Equivalence Problem for DFAs

● Let EQDFA = {<A,B> | A,B are DFAs and L(A) = L(B)}.

Theorem: EQDFA is decidable.

Proof: Give TM MEQ-DFA that decides EQDFA.
● MEQ-DFA = “On input  <A,B>   

[Idea: Make DFA C that accepts w 
where A and B  disagree.]

● Construct DFA C where

● Run ME-DFA on C.
● Accept if ME-DFA accepts.  
● Reject if ME-DFA rejects.”
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Acceptance Problem for CFGs
● Let ACFG = {<G,w> | G is a CFG and G generates w}.

Theorem: ACFG is decidable.

Proof: Give TM MA-CFG that decides ACFG.
● MA-CFG = “On input <G,w>

● Convert  into CNF.
● Try all derivations of length max(1, 2|w| - 1).
● Accept if any generate w.
● Reject  if not. 

Corollary:  Every CFL is decidable.

Proof:  Let L be a CFL, generated by CFG G.
● Construct TM MG = “on input w

● Run MA-CFG on <G,w>.
● Accept if MA-CFG accepts
● Reject  if MA-CFG rejects.”

● Chomsky Normal Form (CNF) 
only allows rules:

● A → BC
● B → b
● S → ε

● Lemma 1: Every CFG can be  
converted CFG into CNF.

● Lemma 2: If G is in CNF and w ∈ L(G), then every derivation 
of w has max(1, 2|w| - 1) steps.
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Emptiness Problem for CFGs

● Let ECFG = {<G> | G is a CFG and L(G) = Ø}.

Theorem: ECFG is decidable.

Proof: Give TM ME-CFG that decides ECFG.
● ME-CFG = “On input <G>      

[Idea: work backwards from terminals]
● Mark all occurrences of terminals in G.
● Repeat until no new variables get marked

● Mark all occurrences of variable A if  
A → B1B2...Bk is a rule and all Bi were already 
marked. 

● Reject if the start variable is marked.  
● Accept if not.”
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Equivalence Problem for CFGs

● Let EQCFG = {<G,H> | A,B are CFGs and L(G) = 
L(H)}.

Theorem: EQDFA is not decidable.

Remark: CF languages is not closed under 
complementation or intersection.

Proof: s. Sipser, 5.1. exercise
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Existence of non-Turing-recognizable 
languages
● For all i ≥ 1, let wi be the i-th element of the set {0,1}* 

ordered by length and lexicograpically, i.e. 
{ε,0,1,00,01,10,11,000,001,…}.

● Let Mi denote the TM encoded by wi (if wi does not encode a TM, 
then Mi is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.

Proof: 
● Two different languages ​​cannot be recognized by the same TM. 
● The number of TMs is countably infinite (the encoding of TMs is 

an injection into {0,1}*, whose cardinality is countably infinite). 
● The set of languages over {0,1} (i.e. {L ⊆ {0,1}*}) is 

uncountable (cardinality of continuum).       ⃞
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A non-Turing-recognizable language

Theorem: Let Ld = {wi : wi ∉ L(Mi)}. Ld is not Turing-recognizable, 
i.e. Ld ∉ RE.

Proof: Georg Cantor's diagonalization method.
● Consider the bit table T, for which 

T(i,j) = 1 ⇔ wj ∈ L(Mi) (i,j ≥ 1).
● Let z be an infinitely long bit string 

in the diagonal of T and 
z ̄ be the bitwise complement of z.

● For all i ≥ 1, the i-th row of T is the 
characteristic vector of language L(Mi).

● z̄ is the characteristic vector of Ld.
● If Ld could be recognized by a TM D, 

the characteristic vector of D would
be a row in T.

● z ̄ differs from every row of T, so
Ld differs from all languages in RE .  ⃞

z = 001...
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Recursive languages R

● A language L is recursive if L = L(M) for a decider TM M.

Theorem: If a L is recursive, then L is also reccursive.

Proof: 
● Let L = L(M) for some TM M 

which halts for every input. 
We construct a TM M’ with L = L(M’).

● The accepting states of M will 
be the rejecting states of M’ (halts without acceptance)

● M’ has a new accepting state r (there is no transition from r).
● Consider all pairs (q,a) of non accepting states q of M and input 

symbol a, for which there is no transition in M (M halts without 
acceptance). For all such pairs (q,a) add a transition to state r.

● Since M is halts with every input word, M’ also halts with every input 
word.

● M’ accepts exatly the words that are not accepted by M. M’ accepts L. ⃞
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Complements of recursively enumerable 
(RE) languages

Theorem: If L ∈ RE and L ∈ RE, then L ∈ R (and L ∈ RE).

Proof: 
● Let L = L(M1) and L = L(M2). M1 and M2 

are simulated in parallel with a TM M.
● Let M be a 2-tape TM. 

● Tape-1 of M simulates the tape of M1,
● Tape-2 of M simulates the tape of M2.
● The states of M correspod to the pairs 

Q1 x Q2 (pairs of states of M1 and M2).
● If the input w of M is in L, then M1 accepts it and halts. 

Then M accepts w and halts. 
● If the input w of M is in L, then M2 accepts it and halts. 

Then M rejects w and halts. So M halts with all inputs and L(M) = L.  ⃞
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R and RE

● Universal language: Lu = {<M,w> | M is TM and w ∈ L(M)} .

Theorem: Lu ∈ RE \ R.

Proof: 
● Lu is recursively enumerable (Turing-recognizable)
● We construct a TM U, called the universal TM, to recognize Lu.
● Let U be a multitape TM s.t.

● 1st tape holds the input with the encodings of M and w. 
We use the encoding of TMs and binary strings from this lecture.

● 2nd tape is used to simulate M's input tape. 
We initialize the 2nd tape with w. 
We move the head on the 2nd tape to the first simulated cell.

● 3rd tape is used to store M's state. 
We initialize the 3rd tape with the start state of M.

● 4th tape is used as a work tape.

RE

R

Lu

Ld
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R and RE 

Proof (cont.): 
● Simulating a transition of M:

● U searches tape 1 for a transition for 
the current state of M (stored on tape 3) and 
the current tape symbol of M (stored on tape 2). 

● Then U stores the new state on tape 3, 
U changes the tape symbol on tape 2,
U moves M's tape head left or right on tape 2 as specified 
by the transition.

● If M enters its final state signaling that M accepts w, then 
U accepts <M,w> and halts.

● Thus, L(U) = Lu. 
●  ⇒ Lu∈ RE
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R and RE 

Proof (cont.): 
● Lu is not recursive:
● Suppose for contradiction, Lu were recursive. 

Then there would exist a TM M that accepts Lu the complement of Lu.
● Then we can transform M into a TM M' that accepts Ld as follows:

● M' transforms its input string w into a pair <w,w>.
● M' simulates M on <w,w> assuming the first w is an encoding of a 

TM Mi and the second w is an encoding of a binary string wi. 
Since M accepts the complement of Lu, M will accept <w,w> if 
and only if Mi does not accept wi.

● Thus, M' accepts w if and only if w is in Ld.
But we have previously shown that there does not exist a TM that 
recognizes Ld. Consequently, M does not exist.

●  ⇒ Lu ∉ R.                     ⃞   
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Halting Problem 

● In Alan Turing’s original formulation of Turing machines 
acceptance was just by halting not necessarily by halting in a 
final state.

● We define H(M) for a TM M to be the set of input strings w on 
which M halts in either a final or a nonfinal state.

● The halting problem is to he set of pairs 
HALT = {<M,w> | w is in H(M)}.

● Theorem: HALT ∈ RE \ R.
Proof: Similar to the proof of Lu ∈ RE \ R.

● A similar argument can be used to show that many practical 
problems associated with software verification are 
undecidable. For example, the problem of determining 
whether a program will ever go into an infinite loop is 
undecidable.               
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Reducibility – Concept 

● If we have two languages (or problems) A and B, 
then A is reducible to B means that we can use 
B to solve A.

● If A is reducible to B then solving B gives a 
solution to A.

● B is easy → A is easy.
● A is hard → B is hard.

this is the form we will use 
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 Reducibility

● If we know that some problem is undecidable, we can use that to show other 
problems are undecidable.

● HALT = {<M,w> | M halts on input w}.  

Theorem: HALT is undecidable.

Proof: Showing that Lu is reducible to HALT.  
● Assume that HALT is decidable and show that Lu is decidable.
● Let R be a TM deciding HALT.
● Construct TM S deciding Lu.
● S = “On input <M,w> 

1. Use R to test if M on w halts.  If not, reject.

2. Simulate M on w until it halts (as guaranteed by R).

3. If M has accepted then accept.
 If M has rejected then reject.

● TM S decides Lu is a contradiction. Therefore, HALT is undecidable.    ⃞ 
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Recursive (Turing-decidable) languages 
R and L1 languages

● A linear bounded automaton (LBA) 
is a nondeterministic TM, whose 

● input alphabet Σ contains two special symbols
▷ (left endmarker) and ◁ (right endmarker). 

● The inputs are in the form  ▷(Σ \ {▷,◁})*◁,
● ▷ and ◁ cannot be overwritten
● The head cannot stand to the left of ▷ 

or to the right of ◁.
● The starting position of the head is the right neighbor of the 

cell containing ▷.
● An LBA is an NTM that has a limited working area.
● Named after an equivalent model in which the available storage is 

bounded by a constant multiple of the length of the input.

w1 w2 wn ◁▷ ...
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R and L1 

Theorem: 
● (1) For every type-1 grammar G, a LBA A can be given, 

s.t. L(A) = L(G).
● (2) For every LBA A, a type-1 grammar G can be specified, 

s.t. L(G) = L(A).

Proof:
● (1) In the previous lecture, we saw that all type-0 grammar G an 

NTM can be constructed recognizing L(G) .
● The construction simulates a derivation in G non-deterministically 

on tape 3. At the end of the iterations the NTM checks if the 
sentence on tape 3 is equal to the the input word w on tape 1.

● If G is a type-1 grammar, the length of strings during the 
derivation are non-decreasing. Therefore, the length of the string 
on tape 2 never exceeds |w|, so this NTM is an LBA.
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R and L1 

Proof (cont.): 
● (2) For every LBA A, a type-1 grammar G can be specified, 

s.t. L(G) = L(A).
● We sightly modify the construction of the last lecture. 
● Let Γ’ := Γ \ {▷,◁} and G = ((Γ \ Σ) ∪ Q × Γ’ ∪ {S,A}, Σ, P, S).

1) S → ▷A(qaccept,a)A◁ | ▷A(qaccept,a)◁ | ▷(qaccept,a)A◁ | ▷(qaccept,a)◁ ( ∀ a∈Γ’ )

2) A → aA | a                     ( ∀ a∈Γ’)

3) b(q’,c) → (q,a)c if (q’,b,R) ∈ δ(q,a)              ( ∀ c∈Γ’ )

4) (q’,b) → (q,a) if (q’,b,S) ∈ δ(q,a)

5) (q’,c)b → c(q,a) if (q’,b,L) ∈ δ(q,a)          ( ∀ c∈Γ’ )

6) ▷(q0,a) → ▷a                  ( ∀ a∈Γ’ )
● 1-2. we generate an arbitrary accepting configuration. 

Since A is an LBA, for accepting a word u, it is enough to generate a 
configuration of length of at most |u|. After this the length of sentence is fixed.

● 3-5. configuration transitions are simulated in reverse order in the grammar.
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R and L1

Proof (cont.): 

1) S → ▷A(qaccept,a)A◁ | ▷A(qaccept,a)◁ | ▷(qaccept,a)A◁ | ▷(qaccept,a)◁ ( ∀ a∈Γ’ )

2) A → aA | a                     ( ∀ a∈Γ’)

3) b(q’,c) → (q,a)c if (q’,b,R) ∈ δ(q,a)              ( ∀ c∈Γ’ )

4) (q’,b) → (q,a) if (q’,b,S) ∈ δ(q,a)

5) (q’,c)b → c(q,a) if (q’,b,L) ∈ δ(q,a)          ( ∀ c∈Γ’ )

6) ▷(q0,a) → ▷a                  ( ∀ a∈Γ’ )

● 6. Since the grammar does not decrease the length, technically we need 
symbols from Q × Γ’. Until the last step, the sentence contains exactly one of 
that symbols.

● For all a ∈ Σ \ {▷,◁}, w ∈ (Σ \ {▷,◁})* or a = _, w = ε, it can be shown by 
induction on the length of the derivation that 

● for x ∈ Γ’, α,β ∈ (Γ’)* : ▷q0aw◁ ⊢* ▷αqacceptxβ◁ if and only if
S ⇒* ▷α(qaccept,x)β◁ ⇒* ▷(q0,a)w◁ ⇒ ▷aw◁.         ⃞
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R and L1 

Theorem: If A is LBA, then L(A) is decidable.

Proof: 
● Let w be an input word, |w|=n. Due to the linear bound, the 

number of possible configurations of A for an input w is at most 
m(w) = |Q| · n · |Γ|n. 

● Every computation longer than m(w) leads to an infinite loop. 
● Let M’ be the TM, s.t.

on input <A,w>, where A is an LBA and w a string

1)Run A on w for ≤ m(w)+1 transitions

2)If A accepts/rejects before this point, accept/reject as A.

3)Otherwise, reject. 
● Obviously, L(M’) = L(A) and M’ decides L(A).   ⃞
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R and L1 

Theorem: L1 ⊂ R.

Proof: 

● Based on the previous 2 theorems, L1  ⊆ R.
● Let Ld,LBA = {<A> : A is a LBA and <A> ∉ L(A)}.
● Ld,LBA can be decided as follows: 

● For LBA A, let S be a TM which goes in state 
● qaccept if <A> ∉ L(A) and 
● qreject if <A> ∈ L(A).

 Since L(A) decidable, S always halts.  ⇒ Ld,LBA∈ R.

● Ld,LBA  is not recognizable with LBA (  ⇒ Ld,LBA ∉ L1)
● By Cantor's diagonalization method.
● For contradiction, assume that Ld,LBA  is recognized by an LBA S.

● if <S>  ∈ Ld,LBA, then S recognizes <S>, so <S> ∉ Ld,LBA, contradiction,
● if <S> ∉ Ld,LBA, then S does not recognizes <S>, so <S>  ∈ Ld,LBA, 

contradiction.                  ⃞

R

L1

Ld,LBA
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