
Tamás Lukovszki1Models of Computation

Models of Computation

8: Decision problems, undecidability

Tamás Lukovszki2Models of Computation

Encoding objects into strings

● If O is some object (e.g., automaton, TM, polynomial, graph,
etc.), we write <O> to be an encoding of O into a string.

● If O1, O2,…,Ok is a list of objects then we write
<O1, O2,…,Ok> to be an encoding of them together into a
single string.

● Notation for writing Turing machines
● We will use English descriptions of algorithms when we

describe TMs, knowing that we could (in principle) convert
those descriptions into states, transition function, etc.

● M = “On input w:
● [English description of the algorithm]”

Tamás Lukovszki3Models of Computation

Example

● TM M recognizing
● M = “On input w

1) Check if, w ∈ a*b*c*, reject if not.

2) Count the number of a’s, b’s, and c’s in w.

3) Accept if all counts are equal; reject if not.”

● High-level description is ok.
● We do not need to manage tapes, states, etc…

Tamás Lukovszki4Models of Computation

Encoding of TMs

● Assumed that Σ = {0,1} .
● The code of a TM M (denoted by <M>) is the following:
● Let M = (Q, {0,1}, Γ, δ, q0, qaccept, qreject), where

● Q = {p1,...,pk}, Γ = {X1,…,Xm}, D1 = R, D2 = S, D3 = L,
● k ≥ 3, p1 = q0, pk−1 = qaccept, pk = qreject,
● m ≥ 3 , X1 = 0 , X2 = 1 , X3 = _.
● The code of a transition δ(pi, Xj) = (pr, Xs, Dt) is

0i10j10r10s10t.
● <M> is list of transition codes separated by 11.

● Note: <M> starts and ends with 0, does not contain the
substring 111.

● <M,w> := <M>111w

Tamás Lukovszki5Models of Computation

Acceptance Problem for DFAs

● Let ADFA = {<B,w> | B is a DFA and B accepts w}.

Theorem: ADFA is decidable.

Proof: Give TM MA-DFA that decides ADFA.
● MA-DFA = “On input s

● check that s has the form <B,w> where B is a
DFA and w is a string; reject if not.

● Simulate the computation of B on w.
● If ends in an accept state then accept.

If not then reject.”

Tamás Lukovszki6Models of Computation

Acceptance Problem for NFAs

● Let ANFA = {<B,w> | B is a NFA and B accepts w}.

Theorem: ADFA is decidable.

Proof: Give TM MA-NFA that decides ANFA.
● MA-NFA = “On input <B,w>

● Convert NFA B to equivalent DFA B’.
● Run TM MA-DFA on input <B’,w>. [MA-DFA decides ADFA]
● Accept if MA-DFA accepts.
● Reject if not.”

● New element: Use conversion construction and previously
constructed TM as a subroutine.

Tamás Lukovszki7Models of Computation

Emptiness Problem for DFAs

● Let EDFA = { | B is a DFA and L(B) = Ø}.

Theorem: EDFA is decidable.

Proof: Give TM ME-DFA that decides EDFA.
● ME-DFA = “On input

[Idea: Check for a path from start to accept.]
● Mark start state.
● Repeat until no new state is marked:

● Mark every state that has an incoming arrow
from a previously marked state.

● Accept if no accept state is marked.
● Reject if some accept state is marked.”

Tamás Lukovszki8Models of Computation

Equivalence Problem for DFAs

● Let EQDFA = {<A,B> | A,B are DFAs and L(A) = L(B)}.

Theorem: EQDFA is decidable.

Proof: Give TM MEQ-DFA that decides EQDFA.
● MEQ-DFA = “On input <A,B>

[Idea: Make DFA C that accepts w
where A and B disagree.]

● Construct DFA C where

● Run ME-DFA on C.
● Accept if ME-DFA accepts.
● Reject if ME-DFA rejects.”

Tamás Lukovszki9Models of Computation

Acceptance Problem for CFGs
● Let ACFG = {<G,w> | G is a CFG and G generates w}.

Theorem: ACFG is decidable.

Proof: Give TM MA-CFG that decides ACFG.
● MA-CFG = “On input <G,w>

● Convert into CNF.
● Try all derivations of length max(1, 2|w| - 1).
● Accept if any generate w.
● Reject if not.

Corollary: Every CFL is decidable.

Proof: Let L be a CFL, generated by CFG G.
● Construct TM MG = “on input w

● Run MA-CFG on <G,w>.
● Accept if MA-CFG accepts
● Reject if MA-CFG rejects.”

● Chomsky Normal Form (CNF)
only allows rules:

● A → BC
● B → b
● S → ε

● Lemma 1: Every CFG can be
converted CFG into CNF.

● Lemma 2: If G is in CNF and w ∈ L(G), then every derivation
of w has max(1, 2|w| - 1) steps.

Tamás Lukovszki10Models of Computation

Emptiness Problem for CFGs

● Let ECFG = {<G> | G is a CFG and L(G) = Ø}.

Theorem: ECFG is decidable.

Proof: Give TM ME-CFG that decides ECFG.
● ME-CFG = “On input <G>

[Idea: work backwards from terminals]
● Mark all occurrences of terminals in G.
● Repeat until no new variables get marked

● Mark all occurrences of variable A if
A → B1B2...Bk is a rule and all Bi were already
marked.

● Reject if the start variable is marked.
● Accept if not.”

Tamás Lukovszki11Models of Computation

Equivalence Problem for CFGs

● Let EQCFG = {<G,H> | A,B are CFGs and L(G) =
L(H)}.

Theorem: EQDFA is not decidable.

Remark: CF languages is not closed under
complementation or intersection.

Proof: s. Sipser, 5.1. exercise

Tamás Lukovszki12Models of Computation

Existence of non-Turing-recognizable
languages
● For all i ≥ 1, let wi be the i-th element of the set {0,1}*

ordered by length and lexicograpically, i.e.
{ε,0,1,00,01,10,11,000,001,…}.

● Let Mi denote the TM encoded by wi (if wi does not encode a TM,
then Mi is an arbitrary TM that does not accept anything)

Theorem: There is a non-Turing-recognizable language.

Proof:
● Two different languages ​​cannot be recognized by the same TM.
● The number of TMs is countably infinite (the encoding of TMs is

an injection into {0,1}*, whose cardinality is countably infinite).
● The set of languages over {0,1} (i.e. {L ⊆ {0,1}*}) is

uncountable (cardinality of continuum). ⃞

Tamás Lukovszki13Models of Computation

A non-Turing-recognizable language

Theorem: Let Ld = {wi : wi ∉ L(Mi)}. Ld is not Turing-recognizable,
i.e. Ld ∉ RE.

Proof: Georg Cantor's diagonalization method.
● Consider the bit table T, for which

T(i,j) = 1 ⇔ wj ∈ L(Mi) (i,j ≥ 1).
● Let z be an infinitely long bit string

in the diagonal of T and
z ̄ be the bitwise complement of z.

● For all i ≥ 1, the i-th row of T is the
characteristic vector of language L(Mi).

● z̄ is the characteristic vector of Ld.
● If Ld could be recognized by a TM D,

the characteristic vector of D would
be a row in T.

● z ̄ differs from every row of T, so
Ld differs from all languages in RE . ⃞

z = 001...

Tamás Lukovszki14Models of Computation

Recursive languages R

● A language L is recursive if L = L(M) for a decider TM M.

Theorem: If a L is recursive, then L is also reccursive.

Proof:
● Let L = L(M) for some TM M

which halts for every input.
We construct a TM M’ with L = L(M’).

● The accepting states of M will
be the rejecting states of M’ (halts without acceptance)

● M’ has a new accepting state r (there is no transition from r).
● Consider all pairs (q,a) of non accepting states q of M and input

symbol a, for which there is no transition in M (M halts without
acceptance). For all such pairs (q,a) add a transition to state r.

● Since M is halts with every input word, M’ also halts with every input
word.

● M’ accepts exatly the words that are not accepted by M. M’ accepts L. ⃞

Tamás Lukovszki15Models of Computation

Complements of recursively enumerable
(RE) languages

Theorem: If L ∈ RE and L ∈ RE, then L ∈ R (and L ∈ RE).

Proof:
● Let L = L(M1) and L = L(M2). M1 and M2

are simulated in parallel with a TM M.
● Let M be a 2-tape TM.

● Tape-1 of M simulates the tape of M1,
● Tape-2 of M simulates the tape of M2.
● The states of M correspod to the pairs

Q1 x Q2 (pairs of states of M1 and M2).
● If the input w of M is in L, then M1 accepts it and halts.

Then M accepts w and halts.
● If the input w of M is in L, then M2 accepts it and halts.

Then M rejects w and halts. So M halts with all inputs and L(M) = L. ⃞

Tamás Lukovszki16Models of Computation

R and RE

● Universal language: Lu = {<M,w> | M is TM and w ∈ L(M)} .

Theorem: Lu ∈ RE \ R.

Proof:
● Lu is recursively enumerable (Turing-recognizable)
● We construct a TM U, called the universal TM, to recognize Lu.
● Let U be a multitape TM s.t.

● 1st tape holds the input with the encodings of M and w.
We use the encoding of TMs and binary strings from this lecture.

● 2nd tape is used to simulate M's input tape.
We initialize the 2nd tape with w.
We move the head on the 2nd tape to the first simulated cell.

● 3rd tape is used to store M's state.
We initialize the 3rd tape with the start state of M.

● 4th tape is used as a work tape.

RE

R

Lu

Ld

Tamás Lukovszki17Models of Computation

R and RE

Proof (cont.):
● Simulating a transition of M:

● U searches tape 1 for a transition for
the current state of M (stored on tape 3) and
the current tape symbol of M (stored on tape 2).

● Then U stores the new state on tape 3,
U changes the tape symbol on tape 2,
U moves M's tape head left or right on tape 2 as specified
by the transition.

● If M enters its final state signaling that M accepts w, then
U accepts <M,w> and halts.

● Thus, L(U) = Lu.
● ⇒ Lu∈ RE

Tamás Lukovszki18Models of Computation

R and RE

Proof (cont.):
● Lu is not recursive:
● Suppose for contradiction, Lu were recursive.

Then there would exist a TM M that accepts Lu the complement of Lu.
● Then we can transform M into a TM M' that accepts Ld as follows:

● M' transforms its input string w into a pair <w,w>.
● M' simulates M on <w,w> assuming the first w is an encoding of a

TM Mi and the second w is an encoding of a binary string wi.
Since M accepts the complement of Lu, M will accept <w,w> if
and only if Mi does not accept wi.

● Thus, M' accepts w if and only if w is in Ld.
But we have previously shown that there does not exist a TM that
recognizes Ld. Consequently, M does not exist.

● ⇒ Lu ∉ R. ⃞

Tamás Lukovszki19Models of Computation

Halting Problem

● In Alan Turing’s original formulation of Turing machines
acceptance was just by halting not necessarily by halting in a
final state.

● We define H(M) for a TM M to be the set of input strings w on
which M halts in either a final or a nonfinal state.

● The halting problem is to he set of pairs
HALT = {<M,w> | w is in H(M)}.

● Theorem: HALT ∈ RE \ R.
Proof: Similar to the proof of Lu ∈ RE \ R.

● A similar argument can be used to show that many practical
problems associated with software verification are
undecidable. For example, the problem of determining
whether a program will ever go into an infinite loop is
undecidable.

Tamás Lukovszki20Models of Computation

Reducibility – Concept

● If we have two languages (or problems) A and B,
then A is reducible to B means that we can use
B to solve A.

● If A is reducible to B then solving B gives a
solution to A.

● B is easy → A is easy.
● A is hard → B is hard.

this is the form we will use

Tamás Lukovszki21Models of Computation

 Reducibility

● If we know that some problem is undecidable, we can use that to show other
problems are undecidable.

● HALT = {<M,w> | M halts on input w}.

Theorem: HALT is undecidable.

Proof: Showing that Lu is reducible to HALT.
● Assume that HALT is decidable and show that Lu is decidable.
● Let R be a TM deciding HALT.
● Construct TM S deciding Lu.
● S = “On input <M,w>

1. Use R to test if M on w halts. If not, reject.

2. Simulate M on w until it halts (as guaranteed by R).

3. If M has accepted then accept.
 If M has rejected then reject.

● TM S decides Lu is a contradiction. Therefore, HALT is undecidable. ⃞

Tamás Lukovszki22Models of Computation

Recursive (Turing-decidable) languages
R and L1 languages

● A linear bounded automaton (LBA)
is a nondeterministic TM, whose

● input alphabet Σ contains two special symbols
▷ (left endmarker) and ◁ (right endmarker).

● The inputs are in the form ▷(Σ \ {▷,◁})*◁,
● ▷ and ◁ cannot be overwritten
● The head cannot stand to the left of ▷

or to the right of ◁.
● The starting position of the head is the right neighbor of the

cell containing ▷.
● An LBA is an NTM that has a limited working area.
● Named after an equivalent model in which the available storage is

bounded by a constant multiple of the length of the input.

w1 w2 wn ◁▷ ...

Tamás Lukovszki23Models of Computation

R and L1

Theorem:
● (1) For every type-1 grammar G, a LBA A can be given,

s.t. L(A) = L(G).
● (2) For every LBA A, a type-1 grammar G can be specified,

s.t. L(G) = L(A).

Proof:
● (1) In the previous lecture, we saw that all type-0 grammar G an

NTM can be constructed recognizing L(G) .
● The construction simulates a derivation in G non-deterministically

on tape 3. At the end of the iterations the NTM checks if the
sentence on tape 3 is equal to the the input word w on tape 1.

● If G is a type-1 grammar, the length of strings during the
derivation are non-decreasing. Therefore, the length of the string
on tape 2 never exceeds |w|, so this NTM is an LBA.

Tamás Lukovszki24Models of Computation

R and L1

Proof (cont.):
● (2) For every LBA A, a type-1 grammar G can be specified,

s.t. L(G) = L(A).
● We sightly modify the construction of the last lecture.
● Let Γ’ := Γ \ {▷,◁} and G = ((Γ \ Σ) ∪ Q × Γ’ ∪ {S,A}, Σ, P, S).

1) S → ▷A(qaccept,a)A◁ | ▷A(qaccept,a)◁ | ▷(qaccept,a)A◁ | ▷(qaccept,a)◁ (∀ a∈Γ’)

2) A → aA | a (∀ a∈Γ’)

3) b(q’,c) → (q,a)c if (q’,b,R) ∈ δ(q,a) (∀ c∈Γ’)

4) (q’,b) → (q,a) if (q’,b,S) ∈ δ(q,a)

5) (q’,c)b → c(q,a) if (q’,b,L) ∈ δ(q,a) (∀ c∈Γ’)

6) ▷(q0,a) → ▷a (∀ a∈Γ’)
● 1-2. we generate an arbitrary accepting configuration.

Since A is an LBA, for accepting a word u, it is enough to generate a
configuration of length of at most |u|. After this the length of sentence is fixed.

● 3-5. configuration transitions are simulated in reverse order in the grammar.

Tamás Lukovszki25Models of Computation

R and L1

Proof (cont.):

1) S → ▷A(qaccept,a)A◁ | ▷A(qaccept,a)◁ | ▷(qaccept,a)A◁ | ▷(qaccept,a)◁ (∀ a∈Γ’)

2) A → aA | a (∀ a∈Γ’)

3) b(q’,c) → (q,a)c if (q’,b,R) ∈ δ(q,a) (∀ c∈Γ’)

4) (q’,b) → (q,a) if (q’,b,S) ∈ δ(q,a)

5) (q’,c)b → c(q,a) if (q’,b,L) ∈ δ(q,a) (∀ c∈Γ’)

6) ▷(q0,a) → ▷a (∀ a∈Γ’)

● 6. Since the grammar does not decrease the length, technically we need
symbols from Q × Γ’. Until the last step, the sentence contains exactly one of
that symbols.

● For all a ∈ Σ \ {▷,◁}, w ∈ (Σ \ {▷,◁})* or a = _, w = ε, it can be shown by
induction on the length of the derivation that

● for x ∈ Γ’, α,β ∈ (Γ’)* : ▷q0aw◁ ⊢* ▷αqacceptxβ◁ if and only if
S ⇒* ▷α(qaccept,x)β◁ ⇒* ▷(q0,a)w◁ ⇒ ▷aw◁. ⃞

Tamás Lukovszki26Models of Computation

R and L1

Theorem: If A is LBA, then L(A) is decidable.

Proof:
● Let w be an input word, |w|=n. Due to the linear bound, the

number of possible configurations of A for an input w is at most
m(w) = |Q| · n · |Γ|n.

● Every computation longer than m(w) leads to an infinite loop.
● Let M’ be the TM, s.t.

on input <A,w>, where A is an LBA and w a string

1)Run A on w for ≤ m(w)+1 transitions

2)If A accepts/rejects before this point, accept/reject as A.

3)Otherwise, reject.
● Obviously, L(M’) = L(A) and M’ decides L(A). ⃞

Tamás Lukovszki27Models of Computation

R and L1

Theorem: L1 ⊂ R.

Proof:

● Based on the previous 2 theorems, L1 ⊆ R.
● Let Ld,LBA = {<A> : A is a LBA and <A> ∉ L(A)}.
● Ld,LBA can be decided as follows:

● For LBA A, let S be a TM which goes in state
● qaccept if <A> ∉ L(A) and
● qreject if <A> ∈ L(A).

 Since L(A) decidable, S always halts. ⇒ Ld,LBA∈ R.

● Ld,LBA is not recognizable with LBA (⇒ Ld,LBA ∉ L1)
● By Cantor's diagonalization method.
● For contradiction, assume that Ld,LBA is recognized by an LBA S.

● if <S> ∈ Ld,LBA, then S recognizes <S>, so <S> ∉ Ld,LBA, contradiction,
● if <S> ∉ Ld,LBA, then S does not recognizes <S>, so <S> ∈ Ld,LBA,

contradiction. ⃞

R

L1

Ld,LBA

Tamás Lukovszki30Models of Computation

References

● Michael Sipser: Introduction to the Theory of
Computation. 3rd edition, 2012.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 30

