
A new deterministic source coding method in
peer-to-peer systems

Attila Balaton Tamás Lukovszki Ádám Agócs
Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

{balcsi4,lukovszki,adoszka}@inf.elte.hu

Abstract—We propose a novel deterministic method for source
coding in peer-to-peer networks. The main advantage of our
method compared to randomized methods is that the coding will
be invertible with probability one. A further advantage is a much
lower communication overhead due to special coding vectors. We
apply the coding algorithm in a scalable and robust peer-to-peer
system. We analyze the deterministic method theoretically and
prove upper and lower bounds for the number coded pieces. The
theoretical results are backed up by simulations.

I. INTRODUCTION

Network coding has been attracted a huge amount of
theoretical and practical research since its first appearance
in [3]. Network coding is a technique, where the nodes of a
network can take several packets and combine them together
for transmission, instead of simply relaying the packets they
receive. Consider the network as a directed graph G = (V,E)
with capacities on the edges. Ahlswede et al. [3] showed that
for a source node to a set of destination nodes, the rate of the
multicast can achieve the cut bound (the minimum of the cuts
separating the source from a destination) by using network
coding. In general, this is not possible, if the data is regarded
as ”fluid”, which can simply be routed or replicated. Li et al.
[12] proved that linear coding is enough to achieve the upper
bound in multicast problems.

In this work we deal with a special case of network coding,
where just the server is allowed to combine the pieces of the
file, which has to be distributed in the network. This is a form
of source coding. Locher et al. [13] has shown that in peer-
to-peer systems, such as BitTorrent [5], this kind of source
coding is very useful to increase the diversity of pieces in
the network. This accelerates tit-for-tat exchanges between the
peers and it is a good solution to the problem of rare pieces,
because every node is able to restore the original file from any
d linearly independently coded pieces, where d is the number
of the original pieces of the file. In [13] a special random linear
coding scheme is used. Random linear network coding [11],
[8], [6] is a powerful and popular method for disseminating
information in networks. In this scheme the coding coefficients
are chosen randomly from a finite field. In this method it is
possible that the coding will not be invertible. If the coding
vectors are linearly dependent, the original content is not
restorable from the coded blocks. Jaggi et al. [9] have shown

that if the field size is at least |E|/δ, the encoding will
be invertible with probability 1 − δ. Locher et al. [13] use
random 0-1 coding vectors in their source coding scheme for
increasing the diversity of pieces. We introduce a deterministic
method, which guarantees that, with probability 1, the original
file can be restored after downloading of any d different coded
pieces. A further advantage of our deterministic methode
is that each coding vector can be represented by a single
coefficient. This results in a significantly lower communication
overhead than random methods.

A. Our results

We propose a novel deterministic source coding method
for increasing the diversity of pieces of a file in peer-to-
peer networks. Due to the increased piece diversity, tit-for-
that piece exchange can be accelerated and the problem of
rare pieces can be ignored in BitTorrent like peer-to-peer
systems. Our deterministic coding guarantees that the original
file can be restored from the coded blocks with probability
one. We use special coding vectors, that result in a coding
matrix which corresponds to a Vandermonde matrix over a
finite field. Another advantage of our method is a significant
reduction of the communication overhead. For the decoding
of the blocks, the coding vectors also must be known at
the receivers. They are necessary to compute the inverse
of the coding matrix. Therefore, these vectors also must
be transmitted, which causes communication overhead. Our
deterministic coding method uses special coding vectors, that
allow to compute a coding vector from only one coefficient.
It means that instead of the whole coding vector, only one
element of the finite field must be transmitted with each coded
piece.

B. Outline of the paper

In Section II we describe the network model and the
deterministic source coding algorithm and prove that any
receiver can decode the file after receiving d different coded
pieces, where d is the number of original pieces of the file. In
Section III we compare our method with the random coding
methods regarding the traffic overhead. In Section IV we study
the problem, when the client can not be distinguish between
two coded pieces before downloading them. In dependence

on the number of different coded pieces in generated by the
server we prove upper and lower bounds on the number of
coded pieces that must be download for the decoding the
file. In Section V we provide simulation results. Section VI
summarizes our results.

II. DETERMINISTIC SOURCE CODING

Our deterministic source coding method can be applied to
any peer-to-peer system which has a server or there is at least
one node which owns the original file at the beginning of
the content distribution and the file is divided into pieces.
The server generates combinations of the original pieces by
applying our coding method. The other nodes in the network
download the coded pieces and upload the pieces they received
to other nodes. These nodes restore the original file at the
time they have enough coded pieces. A frequently used p2p
system is BitTorrent. In this system the seeders play role of the
server. The first seeder is the client which usually publish the
.torrent file. When a new node joins the network it receives a
set of neighbors from the tracker and becomes a leecher. The
leechers download the coded pieces and restore the original
file. Every leecher which restored the original file can leave
the network or it becomes a seeder and generates new coded
pieces, in order to increase the piece diversity.

A. Coding algorithm

Now we describe our deterministic source coding method,
which guaranties that the encoding will be invertible at any
receiver with the probability one. Furthermore, compared to
random coding methods, the communication overhead can be
reduced in the network, due to the special coding vectors.

Suppose the file is split into d pieces. The coding algorithm
generates K > d coded pieces. Every piece of the file is repre-
sented as an m-dimensional vector: x1, x2, . . . xd ∈ GF (p)m,
where p ≥ K is a prime number and GF (p) is a finite field
of order p. Let a1, a2, . . . , aK ∈ GF (p) where ai 6= aj if
i 6= j.These numbers will be called the coding coefficients.

The coding algorithm generates K different linear combi-
nation from the original vectors:

yi = 1x1 + aix2 + a2ix3 + . . .+ ad−1i xd

where 1 ≤ i ≤ K. We show that any d of these K vectors
will be independent. Another huge advantage of this method
compared to the randomized approach is that we do not have to
send the full coding vector with the combination. The coding
coefficient ai will be enough, the other coefficients are the
powers of them and can be computed easily at the receiver.

Theorem 2.1: We can restore the original file from arbitrary
d different yi vectors.

Proof: 2.1 The proof based on the following lemma:

Lemma 2.2: Let ai1 , ai2 , . . . , aid ∈ GF (p) where 0 <
ai1 < ai2 < . . . < aid . The following matrix is not singular:

A =

1 ai1 a2i1 . . . ad−1i1

1 ai2 a2i2 . . . ad−1i3

1 ai3 a2i3 . . . ad−1i3
...

...
...

...
1 aid a2id . . . ad−1id

Proof: The matrix A is a Vandermonde matrix, its deter-

minant is the following:

det(A) =
∏
j<`

(ai` − aij) (1)

Since every aij is different, the determinant of A is not
zero, hence A is not singular.

Assume that we get d different linear combinations denoted
by yi(1), yi(2), . . . , yi(d), where

yi(k) = 1x1 + ai(k)x2 + a2i(k)x3 + . . .+ ad−1i(k)xd

for every 1 ≤ k ≤ d, which gives us d different vector
equation. Now consider the first coordinates of these equations.
This is a linear equation system with the following coefficients:

yi(1)1 = 1x11 + ai(1)x21 + a2i(1)x31 + . . .+ ad−1i(1) xd1

yi(2)1 = 1x11 + ai(2)x21 + a2i(2)x31 + . . .+ ad−1i(2) xd1

...

yi(d)1 = 1x11 + ai(d)x21 + a2i(d)x31 + . . .+ ad−1i(d)xd1

which can be written in the following form:

yi(1)1
yi(2)1
yi(3)1

...
yi(d)1

 =

1 ai1 a2i1 . . . ad−1i1

1 ai2 a2i2 . . . ad−1i3

1 ai3 a2i3 . . . ad−1i3
...

...
...

...
1 aid a2id . . . ad−1id

x11
x21
x31

...
xd1

According to the previous lemma the matrix is invertible.
Hence the solution exists and unique. Thus, the first coordinate
of every piece is decoded. Applying this method for the
remaining m− 1 coordinates we can decode every piece.

Now compare this method with the random techniques. If
the encoding coefficients are chosen uniformly at random, the
probability that the coding matrix will be invertible is depends
on the size of the field. Jaggi et al. [9] showed that if the
network is modeled as a directed graph G = (V,E) and the
field size is at least |E|/δ, the encoding will be invertible at
any given receiver with probability at least 1− δ. This means
that a large network requires a large field size.

Our new deterministic source coding method guarantees that
d different coded pieces are enough for the decoding, where
d is the number of the pieces of the original file. To restore
the original file, we need the coding vectors to compute the
inverse of the coding matrix. These vectors must be sent for
every coded piece, which increase the traffic in the network.
Using deterministic source coding, this additional data is just
one coefficient for each coded piece, which is significantly
less than in case of random coding, where the whole coding
vector of d coefficients must be sent. In the next section we
analyze traffic overhead resulting from this fact.

III. TRAFFIC OVERHEAD

As it mentioned before the deterministic method has another
huge advantage compared with random coding regarding the
communication overhead. To restore the original file the cod-
ing vectors must be known. These vectors must be sent with
the coded pieces. This results in traffic overhead.

When the coefficients are arbitrary, the whole vector must be
transmitted for the decoding. This means d element of GF (p).
If deterministic source coding is used, sending ai is enough,
the other coefficients are the powers of ai and they can be
computed at the receiver. The more pieces the file contains, the
more gain against the random method is achieved. Table I and
Table II contain results, when p is a 32-bit prime number and
64-bit prime number, respectively. The amount of transmitted
data by using random source coding corresponds 100%, the
percentages in the tables belongs to the deterministic method.

file size 64K pieces 256K pieces 1M pieces 4M pieces
1M 99.91% 99.99% 100% -

20M 98.09% 99.88% 99.99% 100%
100M 91.11% 99.40% 99.96% 100%

700M (CD) 59.44% 95.88% 99.73% 99.98%
4,37 GB (DVD) 18.62% 78.99% 98.31% 99.89%

TABLE I
THE AMOUNT OF TRANSMITTED DATA BY DETERMINISTIC CODING

COMPARED TO RANDOM CODING, WHEN p IS A 32-BIT PRIME NUMBER

file size 64K pieces 256K pieces 1M pieces 4M pieces
1M 99.81% 99.97% 100% -

20M 96.24% 99.76% 99.98% 100%
100M 83.67% 98.79% 99.92% 100%

700M (CD) 59.44% 92.11% 99.46% 99.97%
4,37 GB (DVD) 10.28% 64.62% 96.68% 99.79%

TABLE II
THE AMOUNT OF TRANSMITTED DATA BY DETERMINISTIC CODING

COMPARED TO RANDOM CODING, WHEN p IS A 64-BIT PRIME NUMBER

We remark that the communication overhead of random
coding can be reduced by using special coding vectors. In [13]
the random coding vectors contain 0-1 coordinates. This means
that the coding vectors are bitmaps of size d bits. Since usually
d > 64, our method generate lower overhead. If d ≤ 64, the
overhead is negligible in both methods.

To restore the original file a peer needs d different coded
pieces in case of our deterministic coding and d linearly
independently coded pieces in case of random coding. This
means that a peer have to know which coded pieces are
available at its neighbors. This can lead to a significant com-
munication overhead. For example, consider the BitTorrent
protocol. In this protocol the neighbors of a newly joining
peer send them a bitfield message immediately after the
handshaking, before any other messages are sent. The bits of
the bitfield represent the pieces available at the peer. After
that, when a peer successfully downloaded and verified a
piece, it sends the index of this piece to its neighbors in a
have message. Compare the size of this message in three
cases: without coding, using random coding and using our
deterministic coding. If the BitTorrent network does not use
any coding, each of the original pieces of the file can be
identified by a bit in the bitfield message and by an
index in a have message. In the case of random coding, a
coded piece can be identified by the coding vector which is d
dimensional and usually every coordinates come from GF (p).
Even if we only use 0-1 coefficients, we need d bits for one
coded piece. By using our deterministic source coding, every
coded piece can be identified by the second coordinate of the
coding vector which is an element of GF (p). Therefore, our
deterministic coding can easily be made compatible with the
standard BitTorrent protocol by sending this coordinate for a
newly downloaded coded piece to the neighbors in a have
message.

IV. UPPER AND LOWER BOUNDS ON THE NUMBER OF
DOWNLOADED PIECES

In this section we show that even the exchange of the
identifier of the piece is unnecessary if the diversity of pieces
is large enough. We consider the case when the client does
not have information about the pieces its neighbors. A node
download d arbitrary pieces and check if these pieces are
different after all d pieces are downloaded. The peer is able to
restore the original file from any d different pieces. Hence
the main question is the number of coded pieces must be
downloaded to get d different coded pieces.

We denote by K the number of different coded pieces. In
our analysis we assume, that the coded pieces are distributed
uniformly in the network, i.e. that the probability of choosing
a certain coded piece uniformly at random is 1/K. The first
theorem states that if K = ω(d2) it is enough to download
d pieces. Then the probability that these will be different is
asymptotically 1 if d→∞.

Theorem 4.1:
(i) Let K = ω(d2) and download exactly d coded pieces. The
probability that the original file can be restored from these
pieces is asymptotically 1 when d→∞.
(ii) If K = o(d2) then this probability is asymptotically 0
when d→∞.

Proof: We choose d coded pieces among K, indepen-
dently, uniformly at random. Denote P (d) the probability that
we choose d different pieces:

P (d) =

(
K
d

)
d!

Kd
(2)

In (2) the numerator
(
K
d

)
d! is the number of favorable cases,

i.e. choosing d different coded pieces among K. The denom-
inator is the number of all cases.

P (d) =

(
K
d

)
d!

Kd
=

K!
(K−d)!

Kd
=
K(K − 1) . . . (K − d+ 1)

Kd

For an upper bound on P (d), consider the inequality
between the arithmetic and geometrical means for K, (K −
1), . . . , (K − d+ 1):

d

√√√√d−1∏
i=0

(K − i) <

d−1∑
i=0

(K − i)

d
= K − d− 1

2
(3)

Using (3) we got the following upper bound for P (d):

P (d) <
(K − d−1

2)d

Kd
=

(
1− d− 1

2K

)d

(4)

which is asymptotically e−
(d−1)d

2K .

Now we show a lower bound on P (d). Instead of the
the inequality between the arithmetic and geometrical means,
underestimate the product with the lowest member. Thus we
got

P (d) =

d−1∏
i=0

(K − i)

Kd
>

(K − d+ 1)d

Kd
=

(
1− d− 1

K

)d

(5)
which is asymptotically e−

(d−1)d
K .

Summarizing, we have

e−
(d−1)d

K < P (d) < e−
(d−1)d

2K (6)

Now using the K = ω(d2) and the lower bound on P (d)
the proof of (i) is done:

lim
d→∞

P (d) ≥ lim
d→∞

e
− (d−1)d

ω(d2) = lim e−o(1) = 1 (7)

The proof of (ii) is obtained by the upper bound P (d) <

e−
(d−1)d

2K . Then the right side of the inequality goes to 0 if
K = o(d2).

Theorem 4.1 (i) states that downloading arbitrary d pieces
are enough if K = ω(d2). Theorem 4.1 (ii) says that if K =
o(d2) then d pieces will not be enough with probability which
goes to 1 if d increases. In fact a stronger claim also can
be proved. If K = o(d2) then slightly more pieces than d
still not enough. If the number of downloaded coded pieces
is d+ s, where s is a constant which is independent from d,

then the probability that the decoding is possible still goes to
0 if d→∞.

Theorem 4.2: Let K = o(d2) and assume that we download
d+s coded pieces, where s is a given constant. The probability
of the original file can be decoded from these d+ s pieces is
asymptotically 0.

Proof: We will show that for every 0 ≤ i ≤ s the
probability of there are d+ i different among the downloaded
d+ s goes to 0. Denote this probability by P (d+ i) which is
overestimated in the following way:

P (d+ i) <

(
K
d+i

) (d+s)!
(s−i)! (d+ i)s−i

Kd+s
(8)

For the estimation (8), we choose the d + i different coded
pieces, then consider the first occurrences and distribute the
remaining s−i coded pieces. This is obviously an upper bound
because some cases counted several times, if a piece arrives
repeatedly it is counted only once. Continuing the estimation:

(
K
d+i

) (d+s)!
(s−i)! (d+ i)s−i

Kd+s
=

d+i−1∏
j=0

(K − j)(d+ s)!(d+ i)s−i

Kd+i(d+ i)!Ks−i(s− i)!

Split the product into two pieces and overestimate both of
them. The first part can be overestimated by the following
way:

d+i−1∏
j=0

(K − j)

Kd+i
<

(K − d+i−1
2)d+i

Kd+i
<

(
1− d+ i− 1

2K

)d+i

And the second part:

(d+ s)s−i(d+ i)s−i

Ks−i(s− i)!
<

(d+ s)2(s−i)

Ks−i(s− i)!
<

(
(d+s)2

K

)s−i
(s− i)!

In the estimations we used again the inequality between the
arithmetic and geometric means and overestimated (d+s)!

(d+i)! and
(d + i)s−i by (d + s)s−i. Summarizing the two estimation
below we got the following asymptotic result:

lim
d→∞

P (d+ i) = lim
d→∞

(
1− d+ i− 1

2K

)d+i

(
(d+s)2

K

)s−i
(s− i)!

= e−
(d+i−1)(d+i)

2K e(s−i) ln
(d+s)2

K
1

(s− i)!

=
1

(s− i)!
e(s−i) ln

(d+s)2

K − (d+i−1)(d+i)
2K

which goes to 0 if

lim
d→∞

(
(s− i) ln (d+ s)2

K
− (d+ i− 1)(d+ i)

2K

)
= −∞.

(9)
Since K = o(d2),

lim
d→∞

(
(d+ i− 1)(d+ i)

2K

)
= +∞ (10)

Using Equation (9) and Equation (10) the following condition
will be enough to limd→∞(P (d+ i)) = 0

(s− i) ln (d+ s)2

K
<

1

2

(d+ i− 1)(d+ i)

2K

which is equivalent to

c ln
d2

K
<
d2

K
(11)

with an appropriate c constant. It stands from Equation (10),
thus we got that limP (d+ i) = 0 for every i. Now denote
by P (≥ d) the probability of downloading at least d different
pieces. According to the previous results:

lim(P (≥ d)) = lim(

s∑
i=0

P (d+ i)) =

s∑
i=0

limP (d+ i)) = 0

since s is constant, which is independent from d.

V. SIMULATION RESULTS

In this section we present some simulation results about
deterministic source coding. The simulations analyze the case
discussed in the previous section, when the client can not
distinguish between the coded pieces before downloading
them. In the simulations we analyzed the number of defect
nodes in a network. A node is called defect if it gets at most
d−1 different coded pieces. This means that the node is unable
to decode the file. Thanks to the large piece diversity, a defect
node cannot effect on its neighbors. It means that the nodes
can be analyzed independently. Therefore, the simulations can
be done in the following way.

Let the coded pieces are different integers between 1 and
K. We independently choose d or d + s integers uniformly
at random among them for each client which models the
downloading of d or d + s coded pieces. If a node get at
least d different number it is non-defect otherwise it is defect.

In the first simulation we considered the number of defect
nodes when K = d2 and the number of nodes is given.
According to Inequality (6) the probability of being defect is
between 1

e and 1√
e
. Since the nodes are independently defect

or not, the following equation holds
n

e
< E[n] <

n√
e

(12)

where E[n] is the expected value of defect nodes and n is
the number of nodes. Fig. 1 shows the results when there are
5000 nodes in the network and the number of pieces vary from
1000 to 10000. The results are presented in Fig. 1.

In the second case the number of original and coded pieces
are given. We varied the number of nodes in the network and
considered again the number of defect nodes. Using inequality
(12) the results must be between two linear curves, which is
shown in Fig. 2.

The third simulation demonstrates the impact of the number
of coded pieces on the number of defect nodes. As it was

Fig. 1. The number of defect nodes. n = 5000, d = 1000 . . . 10000

Fig. 2. The number of defect nodes. d = 1000, n = 1000 . . . 10000

Fig. 3. The number of defect nodes. n = 5000, d = 1000, K = 1 . . . 30×
106

shown in the previous section, the number of defect nodes
strictly depends on the ratio of original and coded pieces.

In the third simulation we fixed the number of nodes

and the number of original pieces and varied the number of
coded pieces. By increasing the number of coded pieces, the
number of defect nodes quickly goes to 0. To illustrate this
decreasing we present it in logarithmically scaled x-axis and
logarithmically scaled y-axis in Fig. 3.

Fig. 4. The number of defect nodes. n = 5000, d = 1000, K = 1 . . . 30×
106

In Fig. 4 the number of nodes and pieces are fixed, the
number of coded pieces increasing from 1 to 30 million. Two
cases tested here with and without an additional downloaded
piece. The number of defect nodes quickly goes to 0 by
increasing the number of coded pieces. The number of defect
nodes decreases faster when s = 1. Fig. 5 illustrates this
in logarithmically scaled x-axis and logarithmically scaled y-
axis.

Fig. 5. The number of defect nodes. n = 5000, d = 1000, K = 1 . . . 30×
106

VI. SUMMARY

We presented a deterministic source coding method for
distributing files in peer-to-peer networks. This method is an
alternative to the random source coding. The main advantages

of our deterministic coding are (i) that the coding will always
be invertible after receiving d different coded pieces and (ii)
a significantly lower communication overhead which results
from the special coding vectors, that also must be known
(and transmitted) for decoding the coded pieces. Instead of the
whole vector only one coefficient of the vector must be send
with a coded piece. The BitTorrent protocol can be extended
relatively easily by our deterministic source coding method.

We also considered a case, where the peers only can check
if the coded pieces are different after they download them.
Using the simplifying assumption that the coded pieces are
distributed uniformly in the network, we have shown that (i)
if there are K = ω(d) different coded pieces, the probability
that a peer can reconstruct the original file after downloading d
randomly chosen coded pieces is asymptotically 1 when d→
∞. (ii) If K = o(d), then this probability is asymptotically
0 even if a peer downloads a constant number of additional
pieces. We have verified the theoretical results by simulations.

ACKNOWLEDGEMENT

This project is supported by the New Hungary Development
Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0003.

REFERENCES

[1]
[2]
[3] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W.

Yeung. Network information flow. IEEE Transactions on Information
Theory, 46(4):1204–1216, 2000.

[4] Philip A. Chou, Yunnan Wu, and Kamal Jain. Practical network
coding. In Proc. Allerton Conference on Communication, Control, and
Computing, 2003.

[5] Bram Cohen. Incentives build robustness in bittorrent. In 1st Workshop
on Economics of Peer-to-Peer Systems, 2003.

[6] Christos Gkantsidis and Pablo Rodriguez. Network coding for large
scale content distribution. In Proc. IEEE INFOCOM, pages 2235–2245,
2005.

[7] Nicholas J. A. Harvey, David R. Karger, and Kazuo Murota. Determin-
istic network coding by matrix completion. In Proc. 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 489–498, 2005.

[8] Tracey Ho, Muriel Medard, Ralf Koetter, David R. Karger, Michelle
Effros, and Ben Leong Jun Shi. A random linear network coding
approach to multicast. IEEE Transactions on Information Theory,
52(10):4413–4430, 2006.

[9] Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian
Egner, Kamal Jain, and Ludo Tolhuizen. Polynomial time algorithms for
multicast network code construction. IEEE Transactions on Information
Theory, 51(6):1973–1982, 2005.

[10] Kamal Jain, László Lovász, and Philip A. Chou. Building scalable and
robust peer-to-peer overlay networks for broadcasting using network
coding. In Proc. 24th ACM Symposium on Principles of Distributed
Computing (PODC), pages 51–59, 2005.

[11] Ralf Koetter. Coding for errors and erasures in random network coding.
In Proc. IEEE International Symposium on Information Theory, 2005.

[12] Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear network
coding. IEEE Transactions on Information Theory, 49(2):371–381,
2003.

[13] Thomas Locher, Stefan Schmid, and Roger Wattenhofer. Rescuing tit-
for-tat with source coding. In 7th IEEE International Conference on
Peer-to-Peer Computing (P2P), 2007.

