
Fast Localized Sensor Self-Deployment for
Focused Coverage?

László Blázovics1 and Tamás Lukovszki2

1Department of Automation and Applied Informatics, Budapest University of
Technology and Economics, Budapest, Hungary

laszlo.blazovics@aut.bme.hu
2 Faculty of Informatics, Eötvös Lóránd University, Budapest, Hungary

lukovszki@inf.elte.hu

Abstract. We consider the focused coverage self-deployment problem
in mobile sensor networks, where an area with maximum radius around
a Point of Interest (POI) must be covered without sensing holes. Li et al.
[9][10] described several algorithms solving this problem. They showed
that their algorithms terminate in finite time. We present a modified
version of the Greedy-Rotation-Greedy (GRG) algorithm by Li et al.,
which drive sensors along the equilateral triangle tessellation (TT) graph
to surround a POI. We prove that our modified GRG (mGRG) algorithm
is collision free and always ends up in a hole-free network around the POI
with maximum radius in O(D) steps, where D is the sum of the initial
distances of the sensors from the POI. This significantly improves the
previous bound on the coverage time. The theoretical results are also
validated by simulations.

Keywords: self-deployment, mobile sensor network, localized algorithms

1 Introduction

Mobile sensor networks (MSN) are distributed collections of nodes, where each
node has sensing, computation, communication and locomotion capabilities.

By assuming a large scale sensor network with unpredictable sensor failure,
limited sensing and communication range, decentralized or localized sensor self-
deployment methods are more beneficial and scale invariant than centralized

? Partially supported by the EU EIT project SmartUC and the grant EITKIC-12-1-
2012-0001 of the National Development Agency. Performed in cooperation with the
EIT ICT Labs Budapest Associate Partner Group. Partially supported by the Euro-
pean Union and the European Social Fund through project FuturICT.hu (grant no.:
TAMOP-4.2.2.C-11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred.
Partially supported by the Hungarian Government, managed by the National De-
velopment Agency, and financed by the Research and Technology Innovation Fund
(grant no.: KMR 12-1-2012-0441). This work is connected to the scientific program
of the ”Development of quality-oriented and cooperative R+D+I strategy and func-
tional model at BUTE” project.



solutions. In this context localized means that each sensor makes independent
decisions using neighborhood information only.

There are situations where sensors should cover a dedicated area around
a Point of Interest (POI). These scenarios are typical in such cases like area
discovery for survivors around the epicenter of disaster. In these cases the area
close to the POI has higher priority and it is more important to be covered
than the distant one. This type of coverage is called focused coverage or F-
coverage [10].

In this article we present a localized, synchronous algorithm for the sensor
self-deployment problem with optimal F-coverage.

1.1 Focused coverage (F-coverage)

We follow the terminology of Li et al. [10]. The coverage region of a sensor net-
work is the region which is enclosed by the outer boundary of the network. If the
coverage is not complete there will be still sensing (or coverage) holes. Sensing
holes are closed areas inside the coverage region which are not not covered by
the sensing range of the sensors.

The coverage radius (or radius of an F-coverage) is the radius of the maximal
hole-free disc enclosed by sensors and centered as POI. The optimal F-coverage
has maximized coverage radius. If the number of sensors is unlimited and the
sensing radius of the sensors approaching zero then the maximum hole-free disc
has a circular shape. Since the sensing radius of the sensors is finite, we consider
a discrete variant of coverage radius measured by layer distance. Layer distance,
also called convex layers in computational geometry represents the number of
successive complete convex polygons adjacently surrounding POI. More pre-
cisely, we consider a discrete set of convex polygons Pi, (i = 1, 2, ...) composed
of sensors, centered at POI, and having a diameter of i · d for some constant d.
Then the coverage radius is the maximum value k, such that Pk is completely
in the coverage region.

1.2 The equiliteral triangle tessellation

The equiliteral triangle tessellation is a tiling of the plane in equiliteral trian-
gles with no overlaps and no gaps. The equilateral triangle tessellation (TT)
maximizes the coverage area of a given number of sensors without coverage gap
when sensor separation is equal to rs

√
3, where rs is the sensing radius of the

sensors [1], [11]. If the communication radius rc of the sensors is at least rs
√

3,
the deployment of the sensors corresponding to a TT layout guarantees the con-
nectivity of the network. The convex polygons defining the layers and the layer
distance of the F-coverage are hexagons centered at the POI.

1.3 Problem Statement

We are given n mobile sensors with communication radius rc and sensing radius
is rs of each, rc ≥ rs

√
3. We assume that the n mobile sensors are initially placed



at the vertices of the TT, such that each sensor is placed in a different vertex.
This is an unrealistic assumption if the sensors are dropped from a plane. In
that case the sensors can perform the Snap and Spread algorithm by Bartolini
et al. [2] to achieve the above condition. The sensors may be disconnected at
the beginning. All sensors have a common coordinate system and they all know
the location of the POI. Without loss of generality, the POI at the origin of the
coordinate system. Furthermore, the sensors only have information about their
1- and 2-hop neighbors. The sensors are able to move only on the edges of the
TT graph (see Fig. 2). They all move synchronously with uniform speed, s.t.
they travel an edge of the TT in one time unit.

The sensors operate corresponding to the Look-Compute-Move model. In
one cycle, a sensor takes a snapshot of the current configuration (Look), makes
a decision to stay idle or to move to one of its adjacent nodes (Compute), and
in the latter case makes an instantaneous move to this neighbor (Move).

The motion ends when the sensors uniformly surround the POI by forming
hole-free network with maximized coverage radius. From now on we will use the
terms node and sensor interchangeably.

1.4 Our Contribution

We present a modified version of the GRG/CV algorithm of Li et al. [10]. We
prove that our modified GRG (mGRG) algorithm guarantees, that after O(D)
steps each node reaches its final layer, where D is the sum of initial hop distances
of the nodes from the POI in the TT. We validate our theoretical results also
with simulations.

An important difference between the requirements of the GRG of Li et al.
[10] and our mGRG algorithm is that the GRG in [10] uses the knowledge about
the 1-hop neighborhood of the sensors, while our mGRG algorithm needs the
knowledge of the 2-hop neighborhood. We give examples, that show that the
knowledge about the 2-hop neighborhood of the sensors is necessary to avoid
collision situations and make the deployment process faster.

This paper is organized as follows. Section 2 gives an overview of related work.
In Section 3 we introduce our mGRG algorithm and mathematical notations.
We prove the convergence of the mGRG algorithm in Section 4 and present an
O(D) upper bound on the surrounding time. Section 5 presents our experimental
results. Finally, Section 6 summarizes the work.

2 Related Work

In the field of mobile sensor networks sensor self-deployment problem has been
an important research topic that deals with autonomous coverage formation.

In the article of Gage et al.[6] three type of formation was introduced. How-
ever it was a military oriented article, from the perspective of the F-coverage
only the blanket formation is relevant. In this formation the nodes form static



connected group in order to maximizes the detection rate of targets appearing
within the coverage area.

The most common sensor self-deployment method is the vector or virtual-
force-based approach. The algorithms which rely on this approach use potential
fields, generated around the sensors which moves the neighbors by attract or re-
pulse them (depending on the distance). The first work which used this approach
was published by Howard et al. [7].

Large amount of research deals with sensor deployment algorithms for cov-
erage formation over a Region of Interest (ROI). An excellent summary can be
found in the works of Nayak et al. [12] and Brass et al. [3].

Cortes et al. [5] proposed Voronoi diagram based sensor self-deployment
method for the coverage of the ROI. The main idea of self-deployment with
Voronoi diagrams is to move sensors to minimize their local uncovered areas
(equivalently speaking, to maximize their sensing-effective areas) by aligning
their sensing range with their Voronoi regions as much as possible.

Li at al. [10], [8], [9] introduced the F-coverage problem. They solved the
problem in a discrete case on an equilateral triangle tessellation. Collision of
sensors during the deployment was allowed, i.e. more than one sensors can oc-
cupy the same triangle vertex at the same time. They presented a proof of the
convergence of their solution within finite time. The convergence time, energy
consumption and number of collisions has been evaluated by simulations.

In the work of Yang et al. [13] a distributed load-balancing sensor self-
deployment algorithm was presented which partitions the plane into a 2D mesh,
and treats nodes as load. By this algorithm, nodes in each cell form a cluster
covering the cell and are managed by an elected cluster head. This approach also
requires dense network coverage and inter-agent communication.

Bartolini et al. [2] have presented a localized algorithm on a hexagonal grid
map in which the entities simultaneously use the snap and the spread activities
in order to cover the given area. The nodes are dispersing from their initial
position while occupying the free hexagons. On each occupied hexagon only the
occupier allowed to stay, which forwards the others towards the borderline of
the covered area.

Cord-Landwehr et al. [4] studied the problem of gathering mobile robots with
an extent at a fixed position as dense as possible to form a disk of minimum
radius around the gathering point. The authors present an algorithm for the
continuous case and the discrete case, where the robots are moving on a grid.
They prove an O(nR) upper bound for the gatheringg time, where n is the
number of robots and R is the distance of the farthest robot from the gathering
point. They empirically studied the continuous case, where in they report a few
deadlock situations in the simulations.

3 The modified GRG

Before the introduction of our modified GRG algorithm, we briefly review the
collision avoidance version GRG/CV [10] of the GRG algorithm.



3.1 The GRG/CV algorithm

The Greedy-Roatation-Greedy (GRG) algorithm and its version with collision
avoidance (GRG/CV) are designed for the asynchronous model. The self-deploy-
ment decision of the sensors only uses the information about the 1-hop neighbor-
hood. In order to keep the description simple, we declare the POI unoccupyable.
Therefore, the POI related rules were not used. The sensors try to move toward
the POI along the TT edges and decrease the hop distance to the POI step by
step. This movement is called greedy advance movement. If the greedy advance
movement is blocked, the sensors use another type of movement, called rotation
movement, i.e. they try to move on the same layer. The rotation is restricted
to a particular, say the counterclockwise, direction so as to avoid unnecessary
collision among rotating nodes. The key is that a sensor should not move away
from the POI once it moves closer to it. A sensor stops rotating when it reaches
a vertex where greedy advance can resume, or when it returns to the vertex
where it started rotating or the rotational movement is blocked. In the case that
a greedy advance movement and a rotation movement target the same vertex,
a competition rule is applied, which gives higher priority to the greedy advance
movement.

Although the GRG/CV is an asynchronous algorithm, in most cases it works
also in a synchronous environment. However, as illustrated on Fig. 1(a), there
are situations where a sensor is unable occupy an empty vertex. The sensor u on
the second layer is unable to move to the empty vertex, because it only knows
its 1-hop neighborhood. Thus, u does not see the empty vertex. Therefore, u
rotates counterclockwise. In the same time step v moves to the empty place, and
the previous position of v becomes empty. After one step (See Fig. 1(b)) the u
is in front of the empty place, however due to the Safety Rule in [10] it is not
allowed to occupy the empty place1. The empty space moves in the first layer
in clockwise direction and u on the second layer in counterclockwise direction.
After three steps the same situation appears as in Fig. 1(a), just rotated around
the POI by an angle of 2π/3 counterclockwise. After making a full circle around
the target, u will stop without occupying the empty place.

It is not solved in [10].

3.2 The mGRG algorithm

The main ideas of our concept to make the surrounding of the POI faster are
the following. First, each hexagonal layer is assigned a heading direction, such
that any two neighboring layers have opposite heading direction. For example,
odd layers have counterclockwise and even layers clockwise heading direction.
When a sensor on a certain layer performs a rotation step, it moves around the
POI in the given heading direction. Second, if a greedy advance movement and a

1 The Safety Rule in [10] describes that a node must not greedily advance unless it
knows the movement is definitely safe. It says that a node u does not choose inward
vertex neighbor x as greedy next hop if the neighbor of x on the layer of x in clockwise
direction is not a one-hop neighbor of u.



(a) Before the step (b) After the step

Fig. 1. Endless loop with the modified GRG/CV

Fig. 2. The hexagonal layers (trajectories) and their heading direction in the equilateral
triangle tessellation

rotation movement target the same vertex, the rotational movement gets higher
priority. This principle will ensure that each sensor can keep moving in each time
step, since rotation will be always possible.

The sensors move straight towards the POI until they reach the innermost
hexagonal layer. This is the primary trajectory (T1).

Similarly to the base GRG, if a node is unable to the get closer to the POI
– because of another node is in front of it, or it has reached the innermost layer
– it should rotate on the current layer. If the node is able to move to an inner
layer it should check whether an other node is trying to get to the same place.
An example can be seen on Fig. 2.

Now we define the priority rule more precisely. Consider a vertex x on the
layer Ti The vertex x has at most four neighboring vertices from which it can be
occupied in the next step if x is a corner vertex, and at most three, otherwise.
One such neighboring vertex is on the same layer Ti and at most three vertices
on the next higher layer Ti+1. Regarding x the highest priority is assigned to
the neighbor vertex on Ti. The heading direction Ti+1 defines an order on the
neighbor vertices on Ti+1. The first one in this order gets the second highest
priority, the second the next highest, etc... For example, in Fig. 2 vertex p1
can be occupied from vertices q1, q2, q3, p2. The priority order from highest to



lowest is p2, q3, q2, q1. A sensor u obtains the same priority than the vertex
currently occupied by u. A sensor u can occupy a vertex x, if no other sensor
resides on a vertex with higher priority regarding x. Note that each sensor is
aware of the sensors that can occupy the same vertex, since they are in the 2-
hop neighborhood of each other. Thus, each sensor can decide locally, whether
it has the highest priority among them.

If a sensor u is equally far from two vertices closer to the POI than u (like
q1 from p0 and p1 in Fig. 2 and the heading direction of u is counterclockwise
(clockwise), then the vertex left (right) from the direction of the POI is prefered.
If there is another sensor with higher priority regarding this vertex, then u choose
the other. If this vertex also can be occupied by a higher priority sensor, then u
must rotate.

These rules imply that that each sensor either moving towards the target or
rotating around it, it never stays on same place in the next time step. They also
imply that a node must know the 2-hop neighborhood in order to avoid collision
and to detect an occupyable vertex in the next inner layer.

4 Analysis

In this section we prove that by using the mGRG algorithm a group of mobile
sensors will always enclose a given POI with maximum coverage radius.

We assume that at the beginning each sensor resides on different vertices of
the TT and tries to move on the edges towards of the POI.

We say that two sensor u and v are in conflict if they may target the same
vertex x of the TT in one step.

We prove that the sensors always can move, never stuck in deadlock situation
and we give a convergence guarantee of the surrounding process.

4.1 Upper bound on the coverage time

First we show that each sensors can move either into the direction of the POI
or rotate on the same layer around the POI. Therefore, the sum of the distances
between the nodes and the POI never increases during the process.

Lemma 1. Each sensor v, which is not on the innermost layer T1, can move
towards the POI if v is not in conflict with another sensor u with higher priority.
Otherwise, v can move on its current layer around the POI in the corresponding
heading direction. The distance between the POI and the sensor never increases
during the coverage process.

Proof. First we consider a sensor v which is already on the innermost layer T1.
We show that v can move on that layer and its distance never increases. Since all
sensors on T1 (if any) move in the same direction around the POI synchronously,
their distance to each other remains the same, and thus, they do not cause a
collision. Another sensor u is only allowed to move to T1, if it does not cause a
collision.



Now we consider a sensor v which not in T1. If v is not in conflict with any
another sensor u regarding a neighboring vertex on the next inner layer, then it
moves towards the POI and its distance strictly decreases. Otherwise, by similar
argument than above, v can rotate on its current layer and its distance from the
POI does not change. ut

Now we are able to prove a guarantee of the convergence of the coverage
process.

Theorem 1. Until the inner layers have not been occupied with sensors (i.e. an
inner orbit Tin contains an unoccupied vertex), the sum of hop-distances of the
sensors from the POI decreases by at least 1 within 3(i+ 1) + 1 steps, where i is
the index of the innermost layer with an unoccupied vertex Ti.

Proof. Our rules guarantee that for each sensor the distance from the POI never
increases. If a sensor is not prohibited by other sensors, it is moving towards
the POI, until it reaches the innermost layer. If a sensor does not decrease its
hop-distance to the POI by one unit in a time step, then it is either on the
innermost layer or it is in conflict with another sensor.

Let Ti be the innermost layer which contains an unoccupied vertex. Consider
a sensor v on the layer Tj , such that j > i and j is smallest among them. If no
such sensor exists, then we are done, all inner layers are filled. Otherwise, if v is
not at a corner vertex of the hexagonal layer Tj , then v can only be prohibited
to move in the direction of the POI by sensors on Ti. If v is at a corner vertex
of Tj , it also can be prohibited to move in the direction of the POI by another
node v′ on a neighboring vertex of the same layer. Then we substitute v by v′.
The sensor v decreases its distance until it reaches layer Ti+1 where it starts
the rotation. The sensor v and the unoccupied vertex on Ti rotate in opposite
direction. Within 3(i+1)+1 steps either v can move into the unoccupied vertex
on Ti or another sensor filled it before v. Thus, within 3(i+ 1) + 1 steps at least
one sensor decreased its hop-distance to the POI at least by one. ut

Theorem 2. After O(D) time steps all inner layers are filled, where D is the
sum of initial hop-distances of the sensors to the POI.

Proof. For i ≥ 1, the number of vertices of layer Ti is 6i. Let i∗ be the smallest

index, such that the number of sensors n is less than or equal to
∑i∗

i=1 6i. For
1 ≤ i < i∗, let mi = 6i and let mi∗ = n−

∑
1≤i<i∗ 6i. We show that after O(D)

time steps all vertices of layers Ti, 1 ≤ i < i∗, become occupied and layer Ti∗

contains mi∗ sensors.
For 1 ≤ i ≤ i∗ and 1 ≤ j ≤ mi, let ti,j be the time, when all layers T`,

` < i, are already filled and the number of sensors on layer Ti increases from
j − 1 to j. Let vi,j be the sensor moving to layer Ti at time ti,j . Ti will be
the final layer of vi,j , since all layers closer to the POI are already filled. Let
Vi,j be the set of sensors that have already reached their final layer at time ti,j .
To simplify the description let t1,0 be the starting time and ti+1,0 := ti,mi

, for
1 ≤ i < i∗. Consider the time dti,j := ti,j − ti,j−1, 1 ≤ i ≤ i∗, 1 ≤ j ≤ mi. Let



ui,j ∈ V \ Vi,j−1 be a sensor at time ti,j−1 which is closest to the POI and not
prohibited to move in the direction of the POI by nodes in V \Vi,j−1. The sensor
ui,j can move in the direction of the POI in each time step, until it reaches the
layer Ti+1. (In case ui,j could not decrease its hop-distance to the POI, then it is
in conflict with another sensor w on the same layer. Then we simply replace ui,j
by w. Note that at time ti,j−1, w was also on the same layer as ui,j , since ui,j
was closest to the POI.) Then after O(i) steps of rotation steps on layer Ti+1 it
can occupy an unoccupied vertex in Ti, if Ti has not been filled before this time
step. Thus, we obtain that dti,j ≤ di,j−1(ui,j , o)+O(i), where di,j−1(ui,j , o) is the
distance of ui,j to the POI at time ti,j−1, which is not greater than the initial
distance d(ui,j , o) of ui,j and the POI. Furthermore, d(ui,j , o) ≥ i. Therefore,
dti,j ≤ c ·d(ui,j , o), for some constant c > 1. Thus we can conclude that the time
t until all the sensors reach their final layer is:

t =

i∗∑
i=1

mi∑
j=1

dti,j ≤
∑
u∈V

c · d(u, o) = O(D).

ut

5 Evaluation

In order to evaluate our solution we have implemented both the GRG/CV and
the mGRG algorithms in our custom synchronous simulation environment. We
performed simulations where the nodes were placed uniformly at random on the
vertices of a TT graph. In all scenarios the POI was placed on one of the centre
vertex of the TT graph. The sensors know their 2-hop neighborhood in the TT.
Due to the synchronous environment, the speed and the taken distance were
the same for each sensor in each time step. We made two group of simulations
during the evaluation process.

In the first group we measured the performance of the GRG/CV and the
mGRG when the dropping area was a fixed 30×30 square area and network size
was varying from 30 to 315 nodes. With each parameter we performed 20-20
simulations. In the second group we kept the number of the nodes fixed (90),
while we varied the size of the dropping area from 25×25 to 45×45. We performed
40-40 simulations with each parameter.

5.1 GRG/CV vs. mGRG

Below we will introduce the results of the two simulation groups. The results are
visualised on Fig 3. Fig. 3(a) and 3(b) show, that the mGRG always required
less time steps than GRG/CV for finalising the coverage.

5.2 Fixed sized dropping area and varied network size

Fig.3(a) shows the coverage time of the algorithms. As it was noticed in simu-
lations of Li et al.[10] for the GRG/CV algoritm the the curves are tendentially



0	  

20	  

40	  

60	  

80	  

100	  

30
	  

45
	  

60
	  

75
	  

90
	  

10
5	  

12
0	  

13
5	  

15
0	  

16
5	  

18
0	  

19
5	  

21
0	  

22
5	  

24
0	  

25
5	  

27
0	  

28
5	  

30
0	  

31
5	  

N
um

be
r	  o

f	  4
m
e	  
st
ep

s	  

Number	  of	  nodes	  

mGRG	   GRG	  

(a)

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  

25
x2
5	  

26
x2
6	  

27
x2
7	  

28
x2
8	  

29
x2
9	  

30
x3
0	  

31
x3
1	  

32
x3
2	  

33
x3
3	  

34
x3
4	  

35
x3
5	  

36
x3
6	  

37
x3
7	  

38
x3
8	  

39
x3
9	  

40
x4
0	  

41
x4
1	  

42
x4
2	  

43
x4
3	  

44
x4
4	  

N
um

be
r	  o

f	  5
m
e	  
st
ep

s	  

Size	  of	  dropping	  area	  

mGRG	   GRG	  

(b)

0	  

10	  

20	  

30	  

40	  

50	  

60	  

30
	  

45
	  

60
	  

75
	  

90
	  

10
5	  

12
0	  

13
5	  

15
0	  

16
5	  

18
0	  

19
5	  

21
0	  

22
5	  

24
0	  

25
5	  

27
0	  

28
5	  

30
0	  

31
5	  Av
er
ag
e	  
nu

m
be

r	  o
f	  

m
ov
es
	  p
er
	  n
od

e	  

Number	  of	  nodes	  

mGRG	   GRG	  

(c)

0	  

10	  

20	  

30	  

40	  

50	  

25
x2
5	  

26
x2
6	  

27
x2
7	  

28
x2
8	  

29
x2
9	  

30
x3
0	  

31
x3
1	  

32
x3
2	  

33
x3
3	  

34
x3
4	  

35
x3
5	  

36
x3
6	  

37
x3
7	  

38
x3
8	  

39
x3
9	  

40
x4
0	  

41
x4
1	  

42
x4
2	  

43
x4
3	  

44
x4
4	  

Av
er
ag
e	  
nu

m
be

r	  o
f	  

m
ov
es
	  p
er
	  n
od

e	  

Size	  of	  dropping	  area	  

mGRG	   GRG	  

(d)

0	  
2000	  
4000	  
6000	  
8000	  

10000	  
12000	  
14000	  

30
	  

45
	  

60
	  

75
	  

90
	  

10
5	  

12
0	  

13
5	  

15
0	  

16
5	  

18
0	  

19
5	  

21
0	  

22
5	  

24
0	  

25
5	  

27
0	  

28
5	  

30
0	  

31
5	  

To
ta
l	  n
um

be
r	  o

f	  m
ov
es
	  

Number	  of	  nodes	  

mGRG	   GRG	  

(e)

0	  

1000	  

2000	  

3000	  

4000	  

5000	  

25
x2
5	  

26
x2
6	  

27
x2
7	  

28
x2
8	  

29
x2
9	  

30
x3
0	  

31
x3
1	  

32
x3
2	  

33
x3
3	  

34
x3
4	  

35
x3
5	  

36
x3
6	  

37
x3
7	  

38
x3
8	  

39
x3
9	  

40
x4
0	  

41
x4
1	  

42
x4
2	  

43
x4
3	  

44
x4
4	  

To
ta
l	  n
um

be
r	  o

f	  m
ov
es
	  

Size	  of	  dropping	  area	  

mGRG	   GRG	  

(f)

Fig. 3. Simulation results for mGRG (blue) GRG/CV (red), (a)-(c) var. size network
fixed size dropping area, (d)-(f) fixed size network, var. size dropping area, (a)(d)
Coverage time (b)(e) average moves per node (c)(f) overall moves of nodes

increasing however they contain similar intervals in which they descend. Our
mGRG algoritm shows a similar behavior. This is because both algorithms do
not converge until there is no node which are able to move closer to the POI.
However if the outermost layer has more free vertices than moving nodes, the
occupation of these vertices required less steps than those situations when all ver-
tices must be occupied. The latter case can be observed in the peaks of Fig.3(a)
where the number of nodes enables to fully fill all the layers. In both situations
mGRG always performs better than GRG/CV. It can be observed that difference
will be more significant with increasing number of sensor nodes.

Fig.3(c) shows the average number of steps taken by the sensor nodes. Be-
cause the nodes in mGRG never stop moving, each node make the same amount
of steps which is equal to the convergence time. In contrast, the nodes in GRG/CV
often stop moving in order to allow neighbors with higher priority to continue
their motion and to avoid collisions. The moving of the nodes is prohibited more
frequently as the density of the nodes increases. That is why the average number



of steps in GRG/CV decreases and that is the main reason why the GRG/CV
is slower than mGRG.

Fig.3(e) shows the total number of moves taken during the coverage process.
GRG/CV performs less moves than the mGRG it is less sensitive to number of
nodes. However we should note this is because that nodes in GRG/CV often
stop and then start moving again. The nodes in mGRG keep moving even they
reached their final layer.

5.3 Fixed sized network and varied sized dropping area

Fig.3(b). shows that the mGRG performs the converage faster than the GRG/CV.
In addition it is less dependend on the startup constellation. It can be also ob-
served that these curves are monotonically increasing. This is because the num-
ber of the entities is fixed and the coverage time only depends on the size of the
dropping area.

Fig.3(d) shows, that both the GRG/CV and the mGRG require more steps
as the dropping area getting larger. It can be also observed that in that case
nodes in the GRG/CV take less steps. This is mainly caused by the stopped
nodes as we have already described.

Similar to the results of the first group the overall number of time steps of
GRG/CV was less in various field sizes too, as it can be seen of Fig.3(f). As it
was already described this is because the nodes in mGRG are always moving
even when they have reached their final layer.

5.4 Simulation Summary

In the simulations our mGRG algorithm were always faster but it required more
moving steps than the GRG/CV. We note in certain situations like aerial appli-
cation, the difference between standing or hovering and moving is not significant
from the perspective of energy consumption. In those scenarios the coverage time
is more relevant.

6 Conclusions

We have presented a new algorithm mGRG to solve the focused coverage problem
in self-deploying mobil sensor networks. Our algorithm is a modified version of
the GRG/CV algorithm by Li et al. [10]. We have proved that our algorithm
always guarantees that the sensor nodes enclose the POI without sensing holes
in O(D) time step, where D is the sum of distances of the nodes from the POI
in the initial configuration. This significantly improves the previous bound on
the coverage time. The theoretical results are also validated by simulations. The
simulations show that our mGRG algorithms results in a faster coverage than
the GRG/CV.



References

1. Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to
achieve both coverage and connectivity. In: MobiHoc. pp. 131–142 (2006)

2. Bartolini, N., Calamoneri, T., Fusco, E.G., Massini, A., Silvestri, S.: Snap and
spread: A self-deployment algorithm for mobile sensor networks. In: Proc. 4th IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS).
pp. 451–456. Springer-Verlag (2008)

3. Brass, P.: Bounds on coverage and target detection capabilities for models of net-
works of mobile sensors. ACM Trans. Sen. Netw. 3(2) (2007)

4. Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas,
A., Kling, P., Kurras, S., Märtens, M., Der Heide, F.M.A., Raupach, C., Swierkot,
K., Warner, D., Weddemann, C., Wonisch, D.: Collisionless gathering of robots
with an extent. In: Proceedings of the 37th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2011). pp. 178–189.
Springer Verlag, LNCS (2011)

5. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing
networks. Robotics and Automation, IEEE Transactions on 20(2), 243–255 (2004)

6. Gage, D.W.: Command control for many-robot systems. Naval Command Control
and Ocean Surveilance Center RDT and E Div San Diego CA (1992)

7. Howard, A., Matarić, M.J., Sukhatme, G.S.: An incremental self-deployment algo-
rithm for mobile sensor networks. Auton. Robots 13(2), 113–126 (2002)

8. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment
for guaranteed coverage radius maximization. In: Communications, 2009. ICC ’09.
IEEE International Conference on. pp. 1 –5 (2009)

9. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Focused-coverage by mobile sensor
networks. In: 6th IEEE International Conference on Mobile Adhoc and Sensor
Systems (MASS). pp. 466–475 (2009)

10. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Strictly localized sensor self-
deployment for optimal focused coverage. IEEE Trans. Mob. Comput. 10(11),
1520–1533 (2011)

11. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mo-
bile sensor networks. IEEE Trans. Computers 56(7) (2007)

12. Nayak, A., Stojmenovic, I.: Wireless Sensor and Actuator Networks: Algo-
rithms and Protocols for Scalable Coordination and Data Communication. Wiley-
Interscience, New York, NY, USA (2010)

13. Yang, S., Li, M., Wu, J.: Scan-based movement-assisted sensor deployment meth-
ods in wireless sensor networks. IEEE Transactions on Parallel and Distributed
Systems 18(8), 1108–1121 (2007)


