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Abstract. We consider a scenario of n identical autonomous robots on
a 2D grid. They are memoryless and do not communicate. Their initial
configuration does not have to be connected. Each robot r knows its
position pr ∈ Z2. In addition, each robot knows the connected pattern
F to be formed. F may be given by a set of n points in Z2, or may be
only partially described, e.g., by ”form a connected pattern”, or ”build a
connected formation with minimum diameter” (Collisonless Gathering).
We employ the Look-Compute-Move (LCM) model, and assume that in
a time step each robot is able to move to an unoccupied neighboring grid
vertex, thus guaranteeing that two robots will never collide, i.e., occupy
the same position. The decision where to move solely depends on the
configuration of its 2-hop neighborhood in the grid Z2.
First we consider a helpful intermediate problem - we call it the Lem-

mings problem - where collision at one single point g, known to all robots,
is allowed and the goal is that all robots gather at g. We present an al-
gorithm solving this problem in 2n+D− 1 time steps, where D denotes
the maximum initial distance from any robot to g. This time bound is
easily shown to be optimal up to a constant factor.
Based on this strategy, forming a connected pattern can be done within
the same time bound. Forming a connected pattern F needs additional
considerations. We show how to do so in time O(n+D∗), where D∗ de-
notes the diameter of the point set consisting of the initial configuration
and F . For Collisionless gathering we obtain the same time bound, up
to constant factors. This significantly improves upon the previous upper
bound of O(nD) for this problem presented in [5].
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1 Introduction

We consider various pattern formation problems by n identical autonomous
robots on a 2D grid. They are memoryless (or use only O(1) bits of persistent
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memory) and operate without explicit communication. They have computation
and locomotion capabilities and limited visibility range. They are represented
by discs of unit diameter. Each robot r knows its position pr ∈ Z2 but not the
position of the other robots. In addition, each robot knows the connected pattern
F to be formed. F may be given by a set of n points in Z2, or as a predicate,
e.g., ”form a horizontal line segment”, or may be only partially described, e.g.,
by ”form a connected pattern”, or ”build a connected formation with minimum
diameter” (Collisonless Gathering). All robots have a common coordinate sys-
tem. Each robot has a visibility range of 2 units, i.e. it can see the robots within
its local range of 2 units. With other words, the robots only have information
about their 1- and 2-hop grid neighbors. The robots are able to move only on
the edges of the grid. They all move synchronously with unit speed, s.t. they
travel an edge of the grid in one time unit.

The robots operate corresponding to the Look-Compute-Move (LCM) model.
In one cycle, a robot takes a snapshot of its current visibility range (Look), makes
a decision to stay idle or to move to one of the neighboring vertices (Compute),
and in the latter case makes an instantaneous move to this neighbor (Move).
We assume that the LCM cycles are synchronous at each robot. Collisions are
not allowed during the algoritms, i.e. in each time step each vertex of Z2 can
be occupied by at most one robot. The motion ends when the robots form
the connected pattern F . From now on we will use the terms node and robot
interchangeably.

1.1 Our Contribution

First we consider a helpful intermediate gathering (or point formation) problem
- we call it the Lemmings problem - where collision at one single point g, known
to all robots, is allowed. The goal is that all robots gather at g. We consider
oblivious robots, i.e. the robots do not remember results from any of the previous
computations. We present an algorithm solving this problem, called x-y-routing,
where the robots only need local knowledge about their 2-hop neighborhood in
the grid Z2. We show that the x-y-routing method can be used to guarantee the
gathering of all robots at g in 2n+D − 1 time steps, where D is the maximum
initial hop distance of a robot from g. We prove that this time bound is optimal
up to a constant factor.

After this we investigate the gathering problem of n oblivious robots, where
no collision is allowed at g and the robots have to form a connected configuration
containing g. We show that the x-y-routing solves this problem in n + D − 1
time steps. This significantly improves the previous upper bound of O(nD) on
this problem presented in [5].

After this we consider finite state robots, i.e., the robots can use O(1) bits of
persistent memory for the computation. We show, how the set of n robots can
be arranged to form a connected axis parallel line segment containing a given
point g, known to all robots, in 3n+D + 3 steps.

Finally, for finite state robots, we show how an arbitrary connected pattern
F , known to all robots, can be formed in time O(n+D∗), where D∗ denotes the



diameter of the point set consisting of the initial configuration and F . In case
when all robots know n, this solution can also be applied for solving the focused
coverage problem on the 2D grid. This results in O(n+D) covering time. If the
number of robots n is not known for the robots, then best known upper bound
on this problem is O(S), presented in [2], where S is the sum of initial distances
of the mobile sensors from g.

This paper is organized as follows. Section 2 gives an overview of related
work. In Section 3 we describe the x-y-routing algorithm, which plays a key role
in our solutions. In Section 4 we define the Lemmings problem, where all robots
must be gathered at the given point g. We prove the lower bound of Ω(D + n)
time steps on the running time of each discrete, synchronous algorithm solving
this problem. After this we prove that the x-y-routing algorithm solves this
problem in at most 2n + D − 1 time steps. After this, in Section 5 we study
the gathering problem, where no collision is allowed at g and the robots have
to form a connected configuration containing g. We show that the x-y-routing
solves this problem in n+D−1 time steps. In Section 6 we show how the set of n
robots can be arranged to form a connected axis parallel line segment contaning
a given point g in 3n+D+3 time steps. In Section 7 we show, how a connected
pattern F , known to all robots, can be formed in time O(n + D∗), where D∗

denotes the diameter of the point set consisting of the initial configuration and
F . Section 8 summarizes the work.

2 Related Work

Cohen and Peleg [4] presented an asynchronous algorithm to gather oblivios
robots at the center of gravity. Their algorithm uses the LCM (Look-Compute-
Move) discrete cycle based model to move their robots. They mathematically
proved upper and lower bounds on the convergence speed of their solution.

Cord-Landwehr et al. [6] described an easy-to-check property of target func-
tions that guarantee convergence and gives upper time bounds. This property
holds for the target function in [4] and improves the upper bound on the speed
of the convergence.

Czyczowicz et al. [7] considered the gathering problem for few fat robots,
where the robots are modeled by unit disks. The goal was to gather the robots,
such that the union of the unit disks is connected at the end. Collisions of the
robots are not allowed during the gathering. A main problem which had to be
solved here is that the line of sight of a robot may be blocked by the extent of
other robots.

Cord-Landwehr et al. [5] studied the problem of gathering mobile robots with
an extent at a given position as dense as possible to form a disk of minimum
radius around the gathering point. The authors present an algorithm for the
continuous case and the discrete case, where the robots are moving on a grid.
They prove an O(nD) upper bound for the gathering time, where n is the num-
ber of robots and D is the distance of the farthest robot from the gathering



point. They empirically studied the continuous case, where in they report a few
deadlock situations in the simulations.

For the gathering problem of mobile robots many different variants exist dif-
fering in levels of synchronization, computational power of the robots, memory,
range of visibility, agreement on coordinate system. For a survey we refer to [3].

Another related problem in distributed robotics is the Pattern Formation
problem, where a group of mobile robots have to form a desired geometric pat-
tern. The pattern can be given as set of points in the plane (by their coordinates)
or as a predicate (e.g. ”form a circle”). A common requirement is that the robots
have distinct initial positions and that the number of points in the pattern and
the number of robots are the same. Suzuki and Yamashita [13] [14] investigated
the question what kinds of patterns can be formed by a group of autonomous,
anonymous and homogenous mobile robots that do not communicate, but they
are able to observe each others movements. In [13] [14] the authors have shown
that without agreeing a common coordinate system, a pattern can be formed
if and only if it is purely symmetrical, i.e., a regular polygon (or a point), or a
set of regular concentric polygons. They also have shown that by agreeing on a
coordinate system, the robots can form any geometric pattern. Flocchini et al.
[9] have shown that if each robot has a compass needle that indicates North (the
compass needles are parallel), then any odd number of robots can form an arbi-
trary pattern, but an even number, in the worst case, cannot. If each robot has
two independent compass needles, say North and East, then any set of robots
can form any pattern. Pattern Formation by robots with limited visibility has
been studied in [15].

A further related problem is the Focused Coverage self-deployment problem
in mobile sensor networks, where an area with maximum radius around a Point
of Interest (POI) must be covered without sensing holes. This problem was in-
troduced by Li at al. [12], [10], [11]. They solved the problem by driving the
mobile sensors along an equilateral triangle tessellation graph centered at the
POI. They showed that their algorithms terminate in finite time. The conver-
gence time has also been evaluated by simulations. Blázovics and Lukovszki [2]
presented a collision free algorithm solving the focused coverage problem in O(S)
time, where S is the sum of initial distances of the mobile sensors from the POI.
The theoretical results has been also validated by simulations.

Another related fundamental problem is the Filling problem (see [1]), in
which a given region must be covered by robots. In this problem the robots are
initially not in the region, they enter the the space one by one, from a point called
”door”. When a robot enters the door, it must disperse itself in the region. The
goal is to cover the entire region. Barrameda et al. [1] have proven that the Filling
problem can be solved with limited visibility, for any simple orthogonal space,
i.e., a polygonal region without holes with sides either parallel or orthogonal,
with a single door, by finite-state robots with a common coordinate system and
common unit of distance in finite time.

For an excellent overview on distributed computing by mobile robots we refer
to the the book by Flocchini et al. [8].



3 Collisionless routing towards a point g

Let V be a set of n robots placed at the vertices of the rectangular grid Z2 and
g ∈ Z2 a gatheting vertex. Each robot knows its own position and the position
of g. We assume that the gathering vertex g has coordinates (0, 0). We use the
synchronous Look-Compute-Movemodel, i.e. all robots robots perform the Look,
Compute, and Move steps synchronously. In each time step, each robot is able
to move to a neighboring vertex of the rectangular grid or it stays in place. We
assume that each robot can see its local environment within two hops. Thus,
when a robot r chooses a neigboring vertex p to which it wants to move, r sees
all robots that are potentially able to move to p in the same time step. The
knowedge about the 2-hop neighborhood makes possible to decide locally, which
robot can move to a certain vertex, such that no collision occurs.

3.1 The x-y routing algorithm

Now we present the routing algorithm. In each time step each robot wants to
decrease its hop distance to the gathering vertex g, such that it moves in x-
direction until it has the same x-coordinate than g. After this, it moves towards
g in y-direction until it reaches g. A path of a robot emerging in this way is called
an x-y-path, which terminates in g. For each robot r, at time t let nexthop(r, t)
be the neighboring vertex of r on the x-y-path towards g. For a robot r at g,
we define nexthop(r, t) = g. If in a time step t the vertex p = nexthop(r, t) is
occupied by another robot, then the robot r must stay in place. If in a time step
t there are two (or more) robots r and r′ with nexthop(r, t) = nexthop(r′, t) = p,
then the robot with smaller y-distance from the gathering vertex g has higher
priority, if r and r′ has the same y-distance from g, then the robot with greater
x-coordinate has higher priority. The robot with highest priority, say r, is allowed
to move to vertex p and the other robot(s) must stay in place. Fomally, let r
and r′ be two robots with coordinates (rx, ry) and (r′x, r

′

y), respectively, s.t. in
time t nexthop(r, t) = nexthop(r′, t) = p. Then priority(r, p) > priority(r′, p)
⇐⇒ |ry| < |r′y | or (p = g and ry > 0 and r′y < 0) or (|ry | = |r′y| and rx > 0).

Algorithm 1 x-y-routing(r)

while r has not yet reached g do

p← nexthop(r, t)
if p is unoccupied and ∄ another robot r′ with nexthop(r′, t) = p, s.t. r′ has
higher priority than r then

r moves to p

else

r stays in place
end if

t← t+ 1
end while
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Fig. 1. Priorties of the robots having the same point p as nexthop(.). a) If p = g, there
are at most four robots r1, r2, r3, r4 having g as nexthop(.). In this case priority(r1, g) >
priority(r2, g) > priority(r3, g) > priority(r4, g). b) If p 6= g, there are at most three
robots r1, r2, r3 having p as nexthop(.). In this case priority(r1, g) > priority(r2, g) >
priority(r3, g).

.

The above rule guarantees that, for each unoccupied vertex p, the robot which
can occupy it in the next step – if any – is unique, and the robots are able to
make this decision based on its local knowledge about their 2-hop neighborhood.

The x-y-routing algorithm is oblivious and the decision of each robot where
to move solely depends on the configuration of the 2-hop neighborhood in the
2D grid.

4 The Lemmings problem

We assume that at the beginning the robots are placed on different vertices of
the grid Z2. They try to move on the edges towards the gathering vertex g. The
goal is to gather all the robots at g. Collision is only allowed at the gathering
vertex g, i.e. we allow that g can be occupied by more than one robots at the
same time. The only modification in Algoritm 1 is that Algoritm 1 treats the
gathering vertex g as it would be always an unoccupied vertex. After performing
the algorithm all robots will reside on vertex g.

4.1 Lower bound

First we show a lower bound of Ω(n+D) time steps on the Lemmings problem,
where n robots must be gathered at g, where D is the maximum initial hop
distance of a robot from g. We prove the lower bound for robots with infinite
visibility range. Clearly, this bound also holds for robots with limited visibility.

Theorem 1. Let V = {v1, ..., vn} be the set of n robots with infinite visibil-

ity placed on different vertices of the grid Z2. Each algorithm, solving the syn-

chronous discrete Lemmings problem needs Ω(n+D) time steps, where D is the

maximum initial hop distance of a robot from g.



Proof. Since each robot must arrive at g after performing the gathering algo-
rithm and each robot can move to a neighboring grid vertex in each time step,
at least D steps are necessary until the furthest robot arrives at g. On the other
hand, in each time step only one robot can arrive at g from each direction.
Therefore, each algorithm needs at least n/4 steps. In the case, when the initial
distance of all robots from g is D, then the first robot arrives after D steps. In
this step and in each further step at most four robot can arrive at g. Thus, the
last robot needs at least D+n/4− 1 = Ω(n+D) steps. Consequently, Ω(n+D)
is a lower bound on the running time of each algorithm solving the problem. �

4.2 Upper bound

Now we turn to the analysis of Algorithm 1. The only modification in Algoritm 1
to solve the Lemmings problem is that Algoritm 1 treats the gathering vertex g
as it would be always an unoccupied vertex.

First we consider the special but important case, where all robots are initially
placed on one x-y-path P terminating in g. We show that after n+D−1 steps all
robots reach g. We use this result for proving the time bound on the Lemmings
problem in the general case.

Lemma 1. Let V = {v1, ..., vn} be the set of n oblivious robots placed on the

same x-y-path P ⊂ Z2 terminating in g, such that all robots are placed on

different vertices. Let D be the maximum initial hop distance of a robot from g,
i.e. D = maxr∈V (d(r, g)). Then by performing Algorithm 1 all robots reach g in

n+D − 1 steps.

Proof. We prove the claim by induction on the number of robots n.

For n = 1, the claim holds obviously, the robot v1 gets strictly closer to g
in each step, until it reaches g. Therfore, for n = 1, the algoritm terminates in
1 +D − 1 = D steps.

Now, assume that the claim holds for n−1 robots. Let {v1, ..., vn} be the set of
robots ordered by their initial hop distances from g, s.t. d(v1, g) < d(v2, g) < ... <
d(vn, g). By the induction hypothesis vn−1 reaches g within d(vn−1)+(n−1)−1 =
d(vn−1)+n−2 steps. Let t1, ..., tk be the time steps in them vn−1 moved towards
g. In time step tk it reaches g. Then in time steps t1 + 1, ..., tk + 1 the robot
vn can also move towards g. In these time steps the distance between vn and g
decreases by d(vn−1, g) units. Therefore, after tk + 1 steps the distance between
vn and g becomes at most d(vn, g) − d(vn−1, g) = δ. In time steps t > tk the
robot vn can move towards g in each step. Therefore, vn reaches g in tk + 1 + δ
steps. By the induction hypothesis, tk ≤ d(vn−1, g)+n−2. Therefore, vn reaches
g within d(vn−1, g) + n − 2 + 1 + δ = d(vn, g) + n − 1 steps, which proves the
claim. �

Now we turn to the general case, where the n robots are arbitrarily placed on
different vertices of Z2. We show that after 2n+D− 1 steps all robots reach g.
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Theorem 2. Let V = {v1, ..., vn} be the set of n oblivious robots placed on dif-

ferent vertices of Z2. Let g be the gathering vertex and D be the maximum initial

hop distance of a robot from g, i.e. D = maxr∈V (d(r, g)). Then by performing

Algorithm 1 all robots reach g in 2n+D − 1 steps.

Proof. Let v1, v2, ..., vn be the robots ordered regarding the time they arrive at
g. The x-y-path of each robot is unique, each such path terminates in g, and the
union of the x-y-paths define a tree.

Consider the robot vn arriving at g as the last one. Let P be the x-y-path
from the initial position of vn to g. Let U = {u1, ..., uk} with uk = vn be the
set of robots that are initially on the tree path P . If we remove all robots in
V \ U from the scene, then by Lemma 1, all robots in U would reach g within
n+D′ − 1 steps, where D′ is the initial distance of uk from g.

Now consider the steps of vn in the presence of the robots in V \U . The key
observation is that a robot vi ∈ V \U can increase the arrival time of uk at g by
at most two time steps, that are (i) the step ti, in which vi reaches the path P ,
i.e., nexthop(vi, ti) = x ∈ P and vi moves to x, and (ii) the step immediately
after vi has joined the path P (see Figure 2):

Case (i): Consider the time step ti, when the hop distance of vi and P is one
and after peforming this step vi belongs to P (Figure 2.a). Let x be the vertex of
P with x = nexthop(vi, ti). If there is a robot uj ∈ P with nexthop(uj , ti) = x
with lower priority than vi then uj must wait in this step. This will increase the
arriving time of vn to g by one time unit.

Case (ii): The time step ti+1, imediately after vi has moved to x ∈ P (Figure
2.b). In this time step uj must wait because vi is immediatly in front of uj in P ,
i.e. vi occupies the vertex nexthop(uj , ti + 1). Starting with this time step, the
robot vi behaves exactly the same way as uj would behave without the existence
of vi. Thus, vi reaches g at the same time uj would reach g without the existence
of vi. If no other robot joins the path P on the front of uj , then uj reaches g
two time units after vi reached g, i.e. at most two time units later than it would
reach without the existence of vi. The robots vj′ , j

′ = j + 1, ..., k, arrive at g by
at most two time steps later than they would arrive without the existence of vi.

Conequently, joining of all robots of V \ U increases the arrival time of uk

by at most 2|V \ U | = 2(n − k) time units. Therefore, uk arrives at g and the



algorithm terminates in at most D′+k−1+2(n−k) ≤ D′+2n−1 ≤ D+2n−1
steps, where D is the maximum initial distance of a robot from g. �

Remark 1. By Theorem 1 and Theorem 2 the x-y-routing algorithm solves the
discrete Lemmings problem, where all robots must be gathered at g in optimal
time, up to a constant factor.

5 Forming a connected configuration containing g

Now we turn to the discrete gathering problem, where no collision is allowed at
g and the robots have to form a connected configuration containing g. We show
that the x-y-routing algorithm (Algoritm 1) solves this problem in n + D − 1
steps.

Theorem 3. Let V = {v1, ..., vn} be the set of n oblivious robots placed on dif-

ferent vertices of Z2. Let g be the gathering vertex and D be the maximum initial

hop distance of a robot from g, i.e. D = maxr∈V (d(r, g)). Then by performing

Algorithm 1 the robots form a connected configuration containing g in n+D− 1
steps.

Proof. For each robot v ∈ V , let pv be the initial position of v and Pv the
x-y-path from pv to g. Let T =

⋃
v∈V Pv be the tree defined as the union of

the x-y-paths. For each robot v ∈ V , let p∗v be the closest position of v to g
during the algorithm. Since the hop distance of a robot never increases during
the algorithm, p∗v is the final position of v. Let P ∗

v the x-y-path from p∗v to g and
T ∗ =

⋃
v∈V P ∗

v .

We show that (i) T ∗ contains g, (ii) T ∗ has no unoccupied vertex, i.e. the
robots form a connected configuration, and (iii) each vertex of T ∗ becomes
occupied in n+D − 1 steps.

(i) Obviously, T ∗ contains g. A robot v with smallest initial distance form g
will occupy g, which will be the final position v.

(ii) Assume for contradiction, that T ∗ has an unoccupied vertex. Let x be an
unoccupied vertex of T ∗ with maximum hop distance from g. Let U = {v ∈ V :
x ∈ Pv} be the set of robots whose x-y-paths contain x. Then the final position
of at least one of the robots in U is further from g than x, otherwise x would
not be contained in T ∗. Since x is an unoccupied vertex of T ∗ with maximum
hop distance from g, there is at least one robot u ∈ U with distance one from x,
s.t. d(p∗u, g) = d(x, g) + 1. Then one of these robots occupies x in the next step.

(iii) Now we show that each vertex of T ∗ becomes occupied in n + D − 1
steps. By induction, we prove that after i +D steps, 0 ≤ i ≤ n− 1, all vertices
of T ∗ with hop distance at most i from g are occupied. Thus, after i+D steps,
the robots on those vertices have reached their final positions.

For i = 0, the claim holds, since the robot which occupies g will never be
stopped by another robot and its initial distance from g is at most D. Therefore,
after D steps it occupies g.



Assume that the induction hypothesis holds for i, 0 ≤ i < n−1. Let Vi be the
set of robots with final position of hop distance at most i from g. If Vi = V we
are done. Otherwise, consider a robot v whose final position will be at a vertex
x with distance i+ 1 from g.

We say that a robot u stops v in a certain step t if either nexthop(v, t) is
occupied by u or nexthop(v, t) is unoccupied and u occupies it in step t. Observe,
that during the algorithm none of the robots in V \Vi can stop v before v reaches
its final position. To see this, assume that a robot w ∈ V \Vi stops v in a certain
step t. Then in step t + 1 the robot w becomes on the front of v in the x-y-
path from v to g, i.e. w gets strictly closer to g than v and the distance of w
to g remains strictly lower than the distance of v. Therfore, the final distance
of w from g will also be strictly lower than the final distance of v, which is by
assumption i+ 1.

Therefore, v can be only stopped by robots in Vi before v reaches its final
position. Let u be the robot whose final position q is on the x-y-path of v to g and
the hop distance d(q, g) = i. Let t be the time step in which u reaches q. By the
induction hypothesis t ≤ i+D. If v was stopped by u in some time step t′ < t,
then after this time step v ”follows” u, and thus, in time step t+ 1 ≤ D+ i+ 1
the robot v also reaches its final position. If v was never stopped by u then v
was able to get closer to g in each of the t steps. Since the distance between the
initial position of v and its final position x is at most D, the robot v reaches x
in at most D ≤ D + i + 1 steps. This completes the proof of the the induction
hypothesis for i+ 1.

Since the hop distance between g and any vertex of T ∗ is at most n − 1,
each robot reaches its final position within n+D− 1 steps and the claim of the
theorem follows. �

6 Forming an axis parallel line segment containing g as

an end point

Given a point g, known for each robot. The goal is to arrange the n robots in a
connected horizontal line segment containing g as an end point. Now we consider
so called finite state robots, i.e. with O(1) persistent bits of memory (see e.g. in
[1]). The visibility range of the robots is limited to the 2-hop neighborhood in
the 2D grid. We show how the robots can form a connected horizontal line L
containing g as its left end point in 3n + D + 3 steps. A vertical line segment
can be formed in a similar way.

6.1 Forming the horizontal line segment L

Forming the connected horizontal line segment L containing g as its left end
point consists of 3 phases for each robot. Each of the 3 phases are oblivious,
in each step the decision of each robot where to move solely depends on the
configuration of the 2-hop neighborhood in the 2D grid. The only persistent
memory used by a robot is to store, which phase of the algorithm it currently
executes. The robots execute the following phases:



1. Let (gx, gy) be the coordinates of g and let g′ be the point with coordinates
(gx − 1, gy + 1). Each robot with initial y-coordinate greater than gy moves
one step upwards and each robot with initial y-coordinate less or equal than
gy moves one step downwards. During this step no collision can arrise. At the
end of this step we obtain a horizontal stripe H of height 2 containing the
horizontal line coincident with g and the horizontal line coincident with g′.

2. Execute the Lemmings algorithm with sink g′. More precisely, execute Al-
gorithm 1 with sink g′, such that g′ can be occupied in a step t, if g′ is
unoccupied at the beginning of step t. When a robot occupies g′ in a certain
step, it moves one hop to the right from g′ to the point g′′ = (gx, gy + 1) in
the next step and starts phase 3.

3. Build L from the source g′′ as follows. Let (x, y) be the current coordinates
of a robot. Until the the vertex at (x, y − 1) is occupied, move to the right.
Otherwise, occupy the vertex at (x, y−1) and terminate the algoritm of that
robot.

Theorem 4. Let V = {v1, ..., vn} be the set of n finite state robots placed on

different vertices of Z2. Let g be a point, known for all robots. Then by the above

algorithm the robots form a connected horizontal line segment L with left end

point g in D + 3n+ 3 steps, where D is the maximum initial hop distance of a

robot from g.

Proof. After phase 1, the horizontal stripe H of height 2 containing the hori-
zontal lines coincident with g and g′ is free of robots. Let ℓ be the vertical line
coincident to g′. In phase 2, non of the robots visits any vertex in H \ ℓ. In phase
3 each robot only visits vertices in H \ ℓ. Therefore, no collision can occure.

Phase 1 of the algorithm takes 1 time unit. The only difference between phase
2 of the formation of L and the Lemmings algorithm is that g′ can be occupied
in a step t, if g′ is unoccupied at the beginning of step t. The robot, which has
occupied g′ will move away from g to the left in the next step. and starts phase
3. It is easy to check that all arguments of the proof of Theorem 2 also apply
for this case and the time bound 2n + D′ − 1 stated in Theorem holds, where
D′ = D + 2 is the maximum hop distance of a robot from g′ at the beginning
of phase 2. Therefore, each robot finishes phase 1 and 2 after 2n+D + 3 steps.
It is easy to check that each robot spends at most n time steps in phase 3.
Consequently, the robots build the connected line segment L by the algorithm
in 3n+D + 3 steps.

7 Forming an arbitrary connected pattern F

Now we show how the Lemmings algorithm can be used for forming an arbitrary
connected pattern of n vertices in the 2D grid. We consider finite state robots.
The visibility range of the robots is limited to the 2-hop neighborhood in the 2D
grid.

Given a connected pattern F of size n. Let B be the axis-parallel bounding
box of F and (x, y) the upper left corner ofB. Let g be the point with coordinates



(x− 1, y+ 1) and g′ be the point with coordinates (x, y + 1) (see Figure 3). Let
T be a spanning tree of F . Consider the rooted tree T ∗ with root g that starts
with a shortest path from g through g′ to a closest node g∗ of F (This path does
not contain further nodes of F ) and contains a rooted version of T rooted at g∗.

Assume that n robots appear in g, one after another. Empty steps where no
new robot appears are allowed, all robots have appeared after some number R
of steps. The point g plays a similar role as the ”door” in the Filling problem
[1], but g is not contained in F . As further difference, F can be any connected
pattern in our case. Let d(T ∗) be the depth of T ∗. It is easy to check that a dept-
first filling of T ∗ (more precisely, the depth-first filling of T ) can be executed by
the appearing robots, so that, after O(R + d(T ∗)) many steps, each node of F
is occupied by one robot, and no collisions appeared during these steps.

7.1 Forming F

Forming the connected pattern F consists of 3 phases for each robot. The only
persistent memory used by a robot is to store, which phase of the algorithm it
currently executes. The robots execute the following phases:

1. Let ymin and ymax be the minimum and maximum y-coordinate of F , re-
spectively. Let h = ymax − ymin + 1 be the height of the connected pattern
F . Each robot with initial position above or on the lower horizontal border
of F moves h + 1 many steps upwards. During this h + 1 steps there are
no collisions. At the end we obtain a horizontal stripe H of height h + 1
containing the axis parallel bounding box B′ of F ∪ {g′} free of robots (see
Figure 3).

2. Execute the Lemmings algorithm with sink g. More precisely, execute Algo-
rithm 1, such that g can be occupied in a step t, if it is unoccupied at the
beginning of step t. When a robot occupies g in a certain step, it moves one
hop to the right from g to the point g′ in the next step and starts phase 3.

3. Build F from the source g′ by depth-first filling of T , using the arrivals of
the robots in g during the Lemmings algorithm as input stream.

Theorem 5. Let V = {v1, ..., vn} be the set of n finite state robots placed on

different vertices of Z2. Let F be a connected formation, known for all robots.

Then the robots form F in time O(n +D∗), where D∗ denotes the diameter of

the point set consisting of the initial configuration and F .

Proof. After phase 1 of the algorithm, the horizontal stripe H of height h + 1
containing the axis parallel bounding box B′ of F ∪ {g′} is free of robots. In
phase 2, each robot only visits vertices outside B′. In phase 3 each robot only
visits vertices in B′. Therfore, no collision can occure.

Phase 1 takes h+ 1 = O(D∗) steps. The only difference between phase 2 of
the pattern formation and the Lemmings algorithm is that g can be occupied in
a step t, if it is unoccupied at the beginning of step t. When a robot occupies
g in a certain step, it moves one hop to the right from g to the point g′ in
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Fig. 3. After phase 1, the horizontal stripe H (shaded region) of height h+1 containing
the axis parallel bounding box B′ of F ∪ {g′} is free of robots. In phase 2, each robot
only visits vertices outside B′. In phase 3 each robot only visits vertices in B′.

the next step and starts phase 3. It is easy to check that all arguments of the
proof of Theorem 2 also apply for this case and the time bound 2n + D′ − 1
stated in Theorem holds, where D′ is the maximum hop distance of a robot
from g at the beginning of phase 2. Therefore, each robot finishes phase 2 after
O(n+D∗) steps. It is easy to check that each robot spends O(n) time in phase
3. Consequently, the formation F becomes built by the algorithm in O(n+D∗)
steps.

7.2 Focused coverage problem, when n is known for all nodes

A closely related problem to the pattern formation problem is the focused cov-
erage self-deployment problem in mobile sensor networks, where an area with
maximum radius around a Point of Interest (POI) must be covered without
sensing holes. This problem was introduced in [10], [11],[12]. The authors solved
the problem by driving the mobile sensors along an equilateral triangle tessel-
lation graph centered at the POI. They showed that their algorithms terminate
in finite time. Subsequently, in [2] a collision free algorithm has been presented
solving the focused coverage problem in O(S) time, where S is the sum of initial
distances of the mobile sensors from the POI.

Now we consider the focused coverage problem on the 2D grid instead of
the an equilateral triangle tessellation graph. Additionally, we assume that the
number of sensors n is known for each sensor node. Then each node can compute
the connected hole free formation F with maximum radius centered at the POI.
Then our algorithm for connected pattern formation can be applied, which solves
the problem in O(n+D∗) time, where D∗ denotes the diameter of the point set
consisting of the initial configuration and F .

Corollary 1. Let V = {v1, ..., vn} be the set of n finite state mobile sensor nodes

placed on different vertices of Z2. Assume that all nodes know the POI, n, and
the configutation of its 2-hop neighborhood in Z2. Then by applying the connected

pattern formation algorithm, the focused coverage problem can be solved in time



O(n + D∗), where D∗ denotes the diameter of the point set consisting of the

initial configuration of the nodes and the POI.

8 Summary

We have investigated the Pattern Formation problem on a 2D grid in the syn-
chronous Look-Compute-Move model. First we have considered the helpful in-
termediate problem, called the Lemmings problem, where all robots have to be
gathered at a given point g, and thus at the single point g collision is allowed,
we proved a lower bound of Ω(n + D) time steps on the running time of each
discrete synchronous algorithm solving this problem.

We have introduced the x-y-routing algorithm for solving this problem, where
the nodes only need local knowledge about their 2-hop neighborhood in the grid
Z2. Based on this knowledge the nodes are able to move towards the gathering
point g without collision, such that after at most 2n + D − 1 time steps all
robots reach g, where D is the maximum hop distance of a robot from g. Thus,
the running time of the algorithm is optimal up to a constant factor.

We have shown that the x-y-routing method also solves the gathering problem
in n+D − 1 time steps, where no collision is allowed at g and the robots have
to form a connected configuration containing g. This significantly improves the
previous upper bound of O(nD) for this problem presented in [5]

Furthermore, we have shown how a the robots can form a connected axis
parallel line segment L containing g as an end point in 3n+D + 3 steps.

Finally, we have investigated the problem of forming a connected pattern F ,
which is known to all robots. We have shown how to build F in time O(n +
D∗), where D∗ denotes the diameter of the point set consisting of the initial
configuration and F .

In case when all robots know n, this solution can also be applied for solving
the focused coverage problem on the 2D grid. This results in O(n+D) covering
time. If the number of robots n is not known for the robots, then best known
upper bound on this problem is O(S), presented in [2], where S is the sum of
initial distances of the mobile sensors from g.
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