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ABSTRACT
The virtualization and softwarization of modern computer
networks offers new opportunities for the simplified man-
agement and flexible placement of middleboxes as e.g. fire-
walls and proxies. This paper initiates the study of algo-
rithmically exploiting the flexibilities present in virtualized
and software-defined networks. Particularly, we are inter-
ested in the initial as well as the incremental deployment of
middleboxes. We present a deterministic O(log(min{n, κ}))
approximation algorithm for n-node computer networks,
where κ is the middlebox capacity. The algorithm is based
on optimizing over a submodular function which can be
computed efficiently using a fast augmenting path approach.
The derived approximation bound is optimal: the underly-
ing problem is computationally hard to approximate within
sublogarithmic factors, unless P = NP holds. We addition-
ally present an exact algorithm based on integer program-
ming, and complement our formal analysis with simulations.
In particular, we consider the number of used middleboxes
and highlight the benefits of the approximation algorithm
in incremental deployments. Our approach also finds in-
teresting applications, e.g., in the context of incremental
deployment of software-defined networks.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; G.1.6 [Optimization]: Linear Programming

Keywords
Network Virtualization, NFV, Software-Defined Network-
ing, Capacitated Set Cover, Facility Location, NP-hardness

1. INTRODUCTION
Middleboxes are ubiquitous in modern computer net-

works, which provide a wide spectrum of in-network func-
tions to ensure security, performance, and policy compli-
ance. In fact, the number of middleboxes in enterprise net-
works can be of the same order of magnitude as the number
of routers [8].
While in-network functions were traditionally imple-

mented in specialized hardware appliances and middleboxes,
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computer networks in general and middleboxes in partic-
ular become more and more software-defined and virtual-
ized [1]: network functions can be implemented in software
and deployed fast and flexibly on the virtualized network
nodes, e.g., running in a virtual machine on a commodity
x86 server. Virtualization is also attractive for its potential
cost savings [17].

Modern computer networks also offer new flexibilities in
terms of how traffic can be routed through middleboxes and
virtualized data plane appliances (often called Virtual Net-
work Functions, short VNFs) [16]. In particular, the ad-
vent of Software-Defined Network (SDN) technology allows
network operators to steer traffic through middleboxes (or
chains of middleboxes) using arbitrary routes, i.e., along
routes which are not necessarily shortest paths, or not even
loop-free [2, 13, 15, 18, 23]. In fact, Openflow, the stan-
dard SDN protocol today, not only introduces a more flexi-
ble routing, but itself allows to implement basic middlebox
functionality, on the switches [6]: an Openflow switch can
match, and perform actions upon, not only layer-2, but also
layer-3 and layer-4 header fields.

However, not much is known today about how to exploit
these flexibilities algorithmically. A particularly interesting
problem regards the question of where to deploy a minimal
number of middleboxes such that basic routing and capacity
constraints are fulfilled. Intuitively, the smaller the num-
ber of deployed network functions, the longer the routes via
these functions, and a good tradeoff between deployment
costs and additional latency must be found. Moreover, ide-
ally, middleboxes should be incrementally deployable: when
additional middleboxes are deployed, existing placements do
not have to be changed. This is desirable especially in de-
ployment scenarios with budget constraints.

Our Contributions. This paper initiates the study of
the problem of placing a minimum number of middleboxes
or network functions, such that distance constraints between
communicating node pairs as well as capacity constraints on
the network nodes are satisfied.

Our main contribution is a deterministic and greedy
O(log (min{κ, n}))-approximation algorithm for the middle-
box placement problem in n-node networks where capacities
are bounded by κ. Our algorithm supports both deploy-
ments from scratch as well as incremental deployments: It
does not require any changes to the locations of existing
middleboxes or the preemption of previously served commu-
nication pairs when additional middleboxes are deployed.

The approximation bound is optimal in the sense that,
as we show, neither the capacitated nor the uncapacitated



problem admits a sublogarithmic polynomial-time approxi-
mation, unless P = NP holds.
This paper also presents a (non-polynomial) optimal algo-

rithm based on a 0-1 integer linear program which, together
with our hardness result, implies that the problem is NP-
complete: 0-1 programming is one of Karp’s 21 NP-complete
problems.
We complement our formal analysis with a simulation

study, where we investigate the tradeoff between routing
flexibilities (in terms of path stretch) and number of required
middleboxes, and also highlight the benefit of incremental
deployments.
We believe that our model and approach has ramifica-

tions beyond middlebox deployment. For instance, our al-
gorithm can also be used to solve the problem of incremental
SDN deployment [5, 14], which so far has only been studied
heuristically.
Novelty and Related Work. Interestingly, the middle-

box deployment problem has not been studied before in the
algorithms literature. As we show, the problem can be seen
as a novel covering problem [4, 7, 22] where: (1) we are inter-
ested in the distance between communicating pairs, via the
covering nodes, and not to the covering nodes; (2) we aim
to support incremental deployments: middlebox locations
selected earlier in time as well as the supported communi-
cation pairs should not have to be changed when deploying
additional middleboxes; (3) we consider a capacitated set-
ting where the number of items which can be assigned to a
node is bounded by κ.
Nevertheless, we can adapt algorithmic concepts intro-

duced in prior work. Our lower bounds build upon hardness
results on uncapacitated covering problems [12], and our
upper bound builds upon Wolsey’s study of vertex and set
covering problems with hard capacities [22]. An elegant al-
ternative proof to Wolsey’s dual fitting approach, based on
combinatorial arguments, is due to Chuzhoy and Naor [3].
The authors also show that using LP-relaxation approaches
is generally difficult, as the integrality gap of a natural lin-
ear program for the weighted and capacitated vertex and set
covering problems is unbounded.

2. MODEL
We model the computer network as a graph connecting

a set V of n = |V | nodes. The input to our problem is a
set of communicating node pairs P : the route of each node
pair (s, t) ∈ P needs to traverse an instance of a middlebox
or respective network function (e.g., a firewall). Node pairs
do not have to be disjoint: nodes can participate in many
communications simultaneously.
For the sake of generality, we assume that middleboxes

can only be installed on a subset of nodes U ⊆ V . We will
refer to the set of middleboxes locations (and equivalently,
the set of middleboxes instances) by M , and we are inter-
ested in deploying a minimal number of middleboxes at legal
locations M ⊆ U such that:

1. Each pair p = (s, t) ∈ P is assigned to an instance
m ∈M , denoted by m = µ(p).

2. For each pair p = (s, t) ∈ P , there is a route from s
via m = µ(p) to t of length at most ρ · d(s, t)l, i.e.,
d(s,m)+d(m, t) ≤ ρ ·d(s, t), where d(u, v) denotes the
length of the shortest path between nodes u, v ∈ V in
the network G, and where ρ is called the stretch. Our

approach supports many alternative constraints, e.g.,
on the maximal route length.

3. Capacities are respected: at most κ node pairs can be
served by any middlebox instance.

Our objective is to minimize the number of required mid-
dlebox instances, subject to the above constraints.

Use Cases. Middlebox Placement. Our model is mainly
motivated by the middlebox placement flexibilities intro-
duced in network function virtualized and software-defined
networks. For example, network policies can often be de-
fined in terms of adjacency matrices or big switch abstrac-
tions, specifying which traffic is allowed between an ingress
port s and an outgress network port t. In order to enforce
such a policy, traffic from s to t needs to traverse a middle-
box instance inspecting and classifying the flows. The loca-
tion of every middlebox can be optimized, but is subject to
the constraint that the route from s to t via the middlebox
should not be much longer than the shortest path from s to
t (in terms of bounded stretch or maximal length).

Incremental Deployment of Software-Defined Networks.
Our model also finds interesting applications in the con-
text of hybrid Software-Defined Networks (SDNs) [5, 14,
21]. Especially the partial deployment of SDNs is of practi-
cal importance, due to cost constraints. It has recently been
shown that by routing traffic via sparsely deployed Openflow
switches (serving as “waypoints” where SDN functionality
is applied), it is possible to run SDN applications also in
hybrid networks, and hence to reap the benefits of SDN. In
particular, our approach can be used to solve the incremen-
tal SDN deployment of Panopticon [5], which so far has only
been studied heuristically.

3. APPROXIMATION ALGORITHM
We present a deterministic and polynomial-time

O(log(min{n, κ}))-approximation algorithm for the in-
cremental middlebox deployment problem. Our algorithm
is based on an efficient computation of a certain submodular
set function: it defines the maximum number of pairs which
can be covered by a given set of middleboxes. In a nutshell,
the submodular function is computed efficiently using an
augmenting path method on a certain bipartite graph,
which also determines the corresponding assignment of
communication pairs to the middleboxes (a maximum
matching). The augmenting path algorithm is based on a
simple, linear-time breadth-first graph traversal.

The augmenting path method is attractive and may be of
independent interest: similarly to the flow-based approaches
in the literature [3], it does not require changes to previ-
ously deployed middleboxes, but removes the disadvantage
of [3] that the set of served communication pairs changes
over time: an attractive property for incremental deploy-
ments. Our solution with augmenting paths results (theo-
retically and practically) in significantly faster computations
of the submodular function value as well as of the corre-
sponding assignment compared to the flow based approach.

Preliminaries. For any set of middlebox instancesM ⊆ U ,
we define ϕ(M) to be the maximum number of communi-
cation pairs that can be assigned to M , given the capacity
constraints at the nodes and the route length constraints.
We show that ϕ is non-decreasing and submodular, and
ϕ(M) – and the corresponding assignment of pairs to mid-
dlebox instances in M – can be computed in polynomial



time. This allows us to use Wolsey’s Theorem [22] to prove
an approximation factor of 1 + O(log ϕmax), where ϕmax =
maxm∈U ϕ({m}). Since in our case, ϕmax = min{κ, |P |}
and |P | ≤ n2, this implies that Algorithm 1 computes an
O(log(min{κ, n}))-approximation for the minimum number
of middlebox instances that can cover all pairs P (i.e., all
pairs can be assigned to the deployed middleboxes).
In order to compute function ϕ(M), for any M ⊆ U , we

construct a bipartite graph B(M) = (M ∪P,E), where P is
the set of communicating pairs. We will simply refer to the
middlebox instances m ∈M and pairs p ∈ P in the bipartite
graph as the nodes. The edge set E connects middlebox
instances m ∈M to those communicating pairs p ∈ P which
can be routed via m without exceeding the route stretch
constraint ρ, i.e., E = {(m, p) : m ∈ M, p = (s, t) ∈
P, d(s,m) + d(m, t) ≤ ρ · d(s, t)}, where d(u, v) denotes
the length of shortest path between nodes u and v in the
network. For each p, the set of such middlebox nodes can
be computed in a pre-processing step by performing an all-
pairs shortest paths algorithm to compute d(u, v) for each
u, v in the network, and for each p = (s, t) ∈ P , selecting
the nodes m ∈M with d(s,m) + d(m, t) ≤ ρ · d(s, t).
A partial assignment A(M) ⊆ B(M) of pairs p ∈ P to

middlebox instances in M is a subgraph of B(M), in which
each p ∈ P is connected to at most one middlebox m ∈ M
by an edge, i.e., degA(M)(p) ≤ 1 where deg denotes the
degree. A pair p ∈ P with degA(M)(p) = 1 is called an
assigned pair, and a pair with degA(M)(p) = 0 is called an
unassigned pair or a free pair. A partial assignment A(M)
without free pairs is called an assignment. The size |A(M)|
of a (partial) assignment A(M) is defined as the number of
edges in A(M).
Our goal is to compute a partial assignment A(M) of pairs

p ∈ P to middlebox instances in M which maximizes the
number of assigned pairs. Accordingly, we distinguish be-
tween assignment edges EA and non-assignment edges EA,
where EA ∪ EA = E forms a partition of the edge set E of
B(M). Our algorithm ensures that at any moment of time,
the partial assignments are feasible, i.e., the assignment ful-
fills the following capacity constraints. The current load of
a middlebox m ∈ M , denoted by λ(m), is the number of
communicating pairs served by m according to the current
partial assignment A(M). Moreover, we define the free ca-
pacity κ∗(m) of m to be κ∗(m) = κ − λ(m). A (partial)
assignment A(M) is feasible if and only if it does not violate
capacities, i.e., λ(m) ≤ κ, for all m ∈M .
In order to compute the integer function ϕ(M), which

is the size |A∗(M)| of a maximum feasible partial assign-
ment A∗(M), we make use of augmenting paths. Let
A(M) be a feasible partial assignment. An augmenting path
π = (v1, v2, . . . , vj) relative to A(M) in B(M) starts at a
middlebox m ∈ M with free capacity, ends at a free pair
p ∈ P , and alternates between assignment edges and non-
assignment edges, i.e.,

1. v1 ∈ M with κ∗(v1) > 0 and vj ∈ P with
degA(M)(vj) = 0,

2. (vi, vi+1) ∈ B(M) \A(M), for any odd i,

3. (vi, vi+1) ∈ A(M), for any even i.

An augmenting path π relative to A(M) is a witness
for a better partial assignment: The symmetric difference

A′(M) = (A(M) \ π) ∪ (π \A(M) is also a (partial) assign-
ment with size |A′(M)| = |A(M)|+1. Due to the properties
of the augmenting path, by this reassignment, one addi-
tional pair will be covered by the same set of middlebox
instances, without violating node capacities: in A(M), the
first node had free capacity and the last node represents a
free pair. Furthermore, the degree at each internal node of π
remains unchanged, since one incident assignment edge gets
unassigned and one incident unassigned edge gets assigned.
Therefore, the load of the internal nodes in π remains un-
changed.

Conversely, an augmenting path must always exist for sub-
optimal partial assignments. To see this, consider the fol-
lowing reduction to matching: replace each middlebox node
with κ many clones of capacity 1, and connect each pair
p ∈ P to all corresponding clones by an edge. Feasible
assignments constitute a matching in this graph, and vice
versa. Given any suboptimal matching, we find a witness
for a augmenting path as follows. We take the symmetric
difference of the suboptimal and the optimal solution, which
gives us a set of paths and cycles of even length, such that
the edges on these paths and cycles are alternating between
matching edges and non-matcing edges. Since the optimal
solution has strictly more edges than the suboptimal one,
a path must exist where the optimal solution has one addi-
tional edge. This path is an augmenting path which leads
to a larger matching and thus, to a strictly better feasible
assignment in the original bipartite graph.

Augmenting paths can be computed efficiently, by simply
performing breadth-first searches in B(M). A breadth-first
search partitions the nodes of the graph B(M) into layers.
The nodes m ∈M with free capacities are used as the start-
ing nodes of this search. These nodes form the first layer of
the partitioning. At the first level of the search, we use the
non-assignment edges. At subsequent levels of the search,
the traversed edges are required to alternate between non-
assignment and assignment edges. That is, when searching
for successors of a node m ∈M , only non-assignment edges
are traversed, while when searching for successors of a node
p ∈ P , only assignment edges are traversed. The search ter-
minates at the first layer, where one or more free nodes in P
are reached. Then a path from a node m ∈M with free ca-
pacity to a free node p ∈ P through the breadth-first search
layering is an augmenting path. We obtain such a path by
starting a depth-first search from a reached free node p ∈ P .

Submodularity. The set function ϕ : 2U → N is called
non-decreasing if and only if ϕ(U1) ≤ ϕ(U2) for all U1, U2 ⊆
U with U1 ⊆ U2, and submodular if and only if ϕ(U1) +
ϕ(U2) ≥ f(U1 ∩ U2) + f(U1 ∪ U2) for all U1, U2 ⊆ U .

For each potential middlebox location u ∈ U , let Su ⊆
P be the set of communication pairs that can be routed
through u in a path with stretch at most ρ, i.e. Su = {p =
(s, t) ∈ P : d(s, u) + d(u, t) ≤ ρ · d(s, t)}. For any set of
middlebox instances M ⊆ U , ϕ(M) denotes the maximum
number of communication pairs that can be assigned to M ,
given the capacity constraints at the nodes and the route
length constraints. This is the maximum number of com-
munication pairs that can be covered by the collection of
sets {Su : u ∈ M}, such that each set can cover at most
κ pairs. The set function ϕ is known to be non-decreasing
and submodular (see e.g. [11], [22]).

Summary and Algorithm. Given these insights, we
can describe our greedy algorithm. The algorithm starts



Algorithm 1: Greedy Algorithm

1 init M ← ∅, A(M)← empty assignment
2 while A(M) is not a feasible assignment do
3 set m∗ ← ∅, opt← 0, and tmp← 0
4 foreach u ∈ U \M do
5 tmp← ϕ(M ∪ {u}) (* augmenting paths *)
6 if tmp > opt then
7 opt← tmp, m∗ ← u
8 end

9 end
10 set M ←M ∪ {m∗} and update A(M)

11 end

with an empty set M and cycles through the possible mid-
dlebox locations u ∈ U \M always deploying the middlebox
yielding – together with the already places middleboxes –
the highest function value ϕ (see Lines 4-9 in Algorithm 1).
Function ϕ can be evaluated on the pre-computed bipartite
matching graph using augmenting paths.
Analysis. Given the submodularity and the augmenting

path construction, we have derived our main result. The
greedy algorithm performs |M∗| iterations, where |M∗| is
the number of middleboxes in the solution. We call one
iteration a greedy step. In each greedy step, the value ϕ(M∪
{u}) is computed for all u ∈ U \ M , and the middlebox
location u with the highest value is added to M . That is,
we compute the value of ϕ exactly |U \ M | ≤ n times in
each greedy step; the value of ϕ is computed O(n · |M∗|)
times during the algorithm. For the computation of ϕ(M ∪
{u}), u ∈ U \M , we initially have a maximum assignment
A(M) for M and all augmentig paths (starting at u) must be
computed. One augmenting path can be computed in time
linear in the size of the bipartite graph B(M). Using the
Hopcroft-Karp algorithm, we can even compute all of at most
κ many augmenting paths in time O(min{κ,

√
|V (B(M))|} ·

|E(B(M))|), where V (B(M)) and E(B(M)) denote the set
of nodes and set of edges in B(M). Since B(M) ⊆ B(M∗),

this is O(min{κ,
√
|V (B(M∗))|} · |E(B(M∗))|). Therefore,

the overall running time of the algorithm is O(n · |M∗| ·
min{κ,

√
|V (B(M∗))|} · |E(B(M∗))|):

Theorem 1. Our greedy, incremental middlebox deploy-
ment algorithm computes a solution M∗ and a feasible as-
sigment of communicating pairs P to M∗, such that M∗

is an O(log(min{κ, n}))-approximation of the optimal so-
lution. The overall runtime is bounded by O(n · |M∗| ·
min{κ,

√
|V (B(M∗))|} · |E(B(M∗))|).

Hardness and Lower Bound. Theorem 1 is essentially
the best we can hope for:

Theorem 2. The middlebox deployment problem is NP-
hard and cannot be approximated within c logn, for some c >
0 unless P = NP. Furthermore, it is not approximable within
(1− ϵ) lnn, for any ϵ > 0, unless NP ⊂ Dtime(nlog logn).

Proof sketch. We present a polynomial time reduction
from the Minimum Set Cover (MSC) problem, defined as
follows: Given a finite set S of n elements and a collection
C of subsets of S. A set cover for S is a subset C′ ⊆ C such
that every element in S is contained in at least one member
of C′. The objective is to minimize the cardinality of the
set cover C′.

Consider an instance of the MSC problem: let S =
{v1, ..., vn} be a set of n elements, C = {Si ⊆ S, i =
1, ...,m}. We define the instance of the corresponding mid-
dlebox deployment problem in a network G = (V,E) with
a set of communicating pairs P and stretch ρ = 1 as fol-
lows. For each element v ∈ S, we introduce two nodes
vs and vt in V . For each subset Si ∈ C, we introduce
a node vSi in V as well. The edge set E of the network
G = (V,E) is defined by the following rule: there is an
edge (vs, vSi) ∈ E and an edge (vSi , vt) ∈ E if and only if
the corresponding element v is contained in Si. The set of
communicating pairs is defined as P = {(vs, vt) : v ∈ S}
and the set of potential middlebox locations is defined as
U = {vSi : Si ∈ C}. G = (V,E) is a bipartite graph with
partitions U and {vs : v ∈ S} ∪ {vt : v ∈ S}. If v ∈ S is
contained in a set Si ∈ C then there is a path of length 2
between the corresponding pair (vs, vt) in G. This is also
the shortest path between vs and vt. In the middlebox de-
ployment problem with stretch ρ = 1, a set of nodes M ⊆ U
of minimum cardinality must be selected such that between
each pair (vs, vt) ∈ P there is a route of length of at most 2
and it contains at least one node of M . By the construc-
tion of the network, for each pair (vs, vt) ∈ P , there is a
route vs, vSi , vt of length 2 in G if and only if v ∈ Si. Let
M ⊆ U be a minimum cardinality solution of the middlebox
deployment problem. The node set M implies a minimum
cardinality solution for the MSC problem and vice versa.
This proves the NP-hardness of the problem.

The inapproximability results follow from the combination
of the above reduction and the inapproximability results of
the minimum set cover problem by Raz and Safra [19] and
by Feige [7]. Raz and Safra [19] proved that the minimum
set cover problem is not approximable within c logn, for
some c > 0, unless P = NP . Feige [7] showed the in-
approximability within (1 − ϵ) lnn, for any ϵ > 0, unless
NP ⊂ Dtime(nlog logn). If we had a better approximation
for the middlebox deployment problem, by the above reduc-
tion, we would have a better approximation factor for the
minimum set cover problem, as well.

4. EXACT 0-1 PROGRAM
The middlebox deployment problem can be formulated as

the 0-1 integer program (IP) given in Algorithm 1. Together
with the NP-hardness result this proves the problem’s NP-
completeness [9].

For all potential middlebox locations u ∈ U , let Su be the
set of pairs P that can be routed through u on a path of
stretch at most ρ. i.e. Su = {p = (s, t) ∈ P : d(s, u) +
d(u, t) ≤ ρ · d(s, t)}, where d(v, w) denotes the length of the
shortest path between nodes v, w ∈ V in the network. Su

can be precomputed efficiently. For all potential middlebox
locations u ∈ U , we introduce the binary variable xu ∈
{0, 1}. The variable xu indicates that u is selected as a
middlebox node in the optimal solution M , i.e. xu = 1 ⇔
u ∈ M . For all u ∈ U and p ∈ P , we introduce the binary
variable xup ∈ {0, 1}. The variable xup indicates that the
pair p = (s, t) ∈ P is assigned to the node u ∈ U , s.t. the
path stretch from s to t through u is at most ρ.

The Objective Function (1) requires that a minimum car-
dinality middlebox set must be selected. Constraints (2)
declare that each pair p = (s, t) ∈ P is assigned to ex-
actly one node u ∈ U . Constraints (3) state that each pair
p = (s, t) ∈ P can only be assigned to a node u ∈ U with



Integer Program 1: Optimal Middlebox Deployment

minimize
∑
u∈U

xu (1)

s.t.
∑
u∈U

xup = 1 ∀ p ∈ P (2)

∑
p̸∈Su

xup = 0 ∀ u ∈ U (3)

∑
p∈P

xup ≤ κ · xu ∀ u ∈ U (4)

xu, xup ∈ {0, 1} ∀ u ∈ U, p ∈ P (5)

p ∈ Su. By the definition of Su, the pair p can be routed
through u via a path of stretch at most ρ. Constraints (4)
describe that the capacity limit κ must not be exceeded at
any node, and nodes u ∈ U which are not selected in the
solution M (where the corresponding variable xu becomes 0
in the solution) are not assigned to any pair p ∈ P .

5. EVALUATION
In order to complement our formal analysis, we conducted

a simulation study. In particular, we compare the perfor-
mance of the greedy algorithm (Algorithm 1) and the Inte-
ger Program (IP) presented in Section 4 along the following
metrics: (1) runtime, (2) the number of installed middle-
boxes, and (3) the number of relocations of middleboxes
or reassignment of communication pairs in the incremental
deployment setting. Our evaluation is based on seven real-
world wide-are topologies obtained from the topology zoo
collection [10]. As shown in Table 1, the topologies are ei-
ther country-wide or continent-wide ISP, backbone, or – in
case of Geant – research networks. The topologies were se-
lected so that the number of nodes is spread more or less
uniformly across the range 20 to 82. Furthermore, all se-
lected topologies provide detailed geographical information
for nodes, such that the latency can be estimated based on
geographical distance (speed of light). We first consider the
offline setting, in which all communication pairs are given
in advance, and then consider the incremental setting.
Runtime. In the first set of experiments, we generate

scenarios according to the following parameters. Each of
the |V | · (|V | − 1)/2 potential communication pairs is se-
lected with probability p, set to either 0.2, 0.3, or 0.4. To
ensure comparability across topologies, all nodes are al-
lowed to host middlebox functionality. The capacity κ is
set to ⌈2 · (|V | − 1) · p⌉: Hence, the number of to be in-
stalled middleboxes is likely to be higher than |V |/4. For

Name Year Size |V | |E|
Quest 1998 Continent 20 62

GtsHungary 2009 Country 30 62
Geant 2012 Continent 40 122
Surfnet 2010 Country 50 136
Forthnet 2010 Country 62 124
Telcove 2004 Country 71 140
Ulaknet 2010 Country 82 164

Table 1: Topology Zoo Instances used
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Figure 1: Runtime of the algorithms as a function of the
different topologies (left) and the stretch for Ulaknet (right).

each topology and each probability, we generate 15 scenar-
ios. All communication pairs are allowed the same maxi-
mal (latency) stretch. Concretely, we consider stretches of
{1.00, 1.05, 1.10, . . . 2.50}, which, when multiplied with the
shortest path latency, defines the maximal allowed latency.
A stretch of 1.00 implies that middleboxes must lie on (one
of the possible) the respective shortest path.

The greedy approximation algorithm and the IP were im-
plemented in Python. The IP uses Gurobi, a commercial
solver, to compute optimal solutions. The computation of
the middlebox to add in Algorithm 1 was parallelized.

In Figure 1 the average runtime of the greedy (G) algo-
rithm with 1 and 8 threads and of the IP is depicted. In the
left plot the averaged runtimes are shown. Each data point
represents the aggregate of 31 ·15 = 465 experiments. While
the average runtime of the greedy algorithm with one thread
lies below the one of the IP for 20 and 30 nodes, the greedy
algorithm with 8 threads clearly outperforms the IP on the
topologies with 62, 71 and 82 nodes. On the largest topol-
ogy the computation of the greedy algorithm can be sped up
by a factor of around 5, by using 8 threads. Furthermore,
the runtime of the IP on the largest topology Ulaknet is one
magnitude higher than the one of the 8-threaded greedy al-
gorithm. The right plot depicts the runtime on this topology
as a function of the stretch. Starting at a stretch of 1.3, the
runtime of the IP increases dramatically with the number of
potential middleboxes for serving a communication pair.

Impact on the number of required middleboxes.
Regarding the number of installed middleboxes, the left box
plot of Figure 2 shows the approximation ratio, i.e., the num-
ber of middleboxes opened by the greedy algorithm divided
by the optimal number of middleboxes computed by the
IP. The median lies below 1.4 and the maximum is reached
close to 1.8. Furthermore, the right plot of Figure 2 de-
picts how the number of used middleboxes decreases when
the stretch grows. Concretely, the ratio of used middleboxes
is divided by the number when the stretch equals 1.0. In-
terestingly, both algorithms can – on average – reduce the
number of necessary middleboxes by 4% when considering
a path stretch of only 5%. While the IP achieves a reduc-
tion of up to 15%, the greedy algorithm performs worse.
This indicates that the approximation factor of the greedy
algorithm worsens with increased stretch.

Incremental deployment and reconfigurations. We
also study the opportunities arising when deploying middle-
boxes incrementally. Concretely, we consider the change in
middlebox locations and the number of (re-)assignments of
communication pairs under both algorithms that arise when
a single new communication pair must be served. Our ex-
perimental setup is as follows. We first generate a set of
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Figure 2: Empirical approximation ratio (left) and relative
reduction of middleboxes with increasing stretch (right).
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Figure 3: Relative relocation and reassignment of the greedy
algorithm and the IP. Note the different respective scales.

communication pairs as above with a probability p = 0.3
on the medium-sized Surfnet topology. We consider the
optimal solution obtained by the IP for assigning the first
{0.05, 0.10, · · · , 0.95} percent of the generated communica-
tion pairs and obtain a single data point by adding the single
next pair to the scenario. For these experiments, the opti-
mal IP solution is read into the matching graph used by the
greedy algorithm to warm-start it. The IP is executed as is.
We consider 25 different experiment runs.
The metrics considered are the relative number of reloca-

tions and the relative reassignments. We define the relative
relocation as |M ′ \ M |/|M ′|, where M is the set of mid-
dleboxes installed before adding the new commmunication
pair and M ′ denotes middlebox locations outputted by the
respective algorithm. Similarly, we define the relative reas-
signment by |A(M ′)\A(M)|/|A(M ′)|, where A(M ′) denotes
the assignments including the novel communication pair and
A(M) represents the previous assignments.
Our results are depicted in Figure 3. We first note the

strong correlation between relocations and reassignments for
both algorithms. The greedy algorithm relocates and recon-
figures less than 8% of the middleboxes and assignments
respectively. In fact, as soon as 10% of the communication
pairs are served, the number of relative relocations and reas-
signments barely exceeds 2%. The IP performs much worse.
Even when 50% of the communication pairs are already con-
nected, the produced solutions vary by approximately 25%
in terms of the chosen middleboxes and up to 70% of the as-
signments respectively. While this performance gap is due to
the fact that the greedy algorithm is warm-started, it shows
that the greedy algorithm yields highly stable solutions.

6. SUMMARY
This paper presented a deterministic and greedy approxi-

mation algorithm for deploying middleboxes as e.g. firewalls
or proxies. The found algorithm performs particularly well
in incremental deployment scenarios and also achieves near-
optimal performance in the offline scenario.
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