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The Internet?
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Middleboxes
The Internet contains many middleboxes

– Middlebox: aka “a bump in the wire”

– Firewalls, NATs, proxies, caches, WAN 
optimizer, encryption…

– Studies show: number of middleboxes in the 
order of the number of routers!
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Middleboxes
The Internet contains many middleboxes

– Middlebox: aka “a bump in the wire”

– Firewalls, NATs, proxies, caches, WAN 
optimizer, encryption…

– Studies show: number of middleboxes in the 
order of the number of routers!

Problem: Middleboxes are expensive, cumbersome to 
deploy and manage…
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Trend: NFV = Flexible 
Allocation

– Trend: Network Function 
Virtualization (NFV)

– Virtualize the middlebox:
• Running in software, e.g., 

running in a VM
• Many middlebox templates 

run on a “universal node”
– Benefit: 

– Flexible and fast 
deployment!

– Can even program / 
reprogram it

Universal 
node

(Server)

VM1 VM2
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NFV + SDN

Software-Defined Networking

– Outsources control over 
switches to software

– Renders networking more 
flexible

– For example traffic 
engineering: guide flows 
through Virtual Network 
Functions
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Service Chains

– Service chain = sequence of to be 
traversed network functions between A 
and B

– E.g., first go via proxy cache, then 
through NAT and then WAN optimizer
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Our Problem
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Model
– Network of n nodes

– L NF types: F1,..., FL

– Instances of Fi: fi
(1), fi

(2),...

– One node can host 
also more than 1 NFs

– Requests: σ=(σ1,...,σk),
σi=(si,ti)

– For each σi, 
si and ti neeeds to be connected via a 
service chain ci=(f1

(x1), f2
(x2),..., fL

(xL))

t1

s2

s1

t2

f1

f2

f2
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Problem
Maximum service chain embedding problem (SCEP)

Given:
– Network G=(V,E), |V|=n
– NFs

– Requests: σ=(σ1,...,σk), σi=(si,ti)

Constraints:
– κ(v) is the maximum number of requests,

for which node v in V can apply a NF
– path length (# hopps) for each chain

must be at most R

 Goal: 
– Admit and embed a maximum number of

service chains without violating constraints
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Results

On-line SCEP: 
– O(log L)-competetive on-line algorithm
– (log L) lower bound on the competetive ratio 

of any on-line algorithm

Offline SCEP:
– APX-hard for unit capacities and constant L ≥ 3
– Poly-APX-hard, when there is no bound on L
– Exact optimal solution via 0-1-ILP
– NP-completeness for constant L
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On-line SCEP

 Requests arrive one by one
 On arrival of a request 
is to decide: admit or reject

 Admission: 
assign and embed 
the service chain

 Admitted requests can not
be canceled or rerouted 

 Permanent chains

t1

s2

s1

t2

f1

f2

f2
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On-line Algorithm: ACE
Admission Control and Chain Embedding Algorithm

Idea: cost for hosting NF for a chain: exponential in 
the relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where  = 2L + 2
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On-line Algorithm: ACE
Algorithm ACE: 
 When request σj arrives, 
check if there exists a chain cj , s.t.

1. σj can be routed through cj on a path of length
  at most R and

2. 

 If such cj exists, then admit σj and assign it to cj. 
Otherwise, reject σj.
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On-line Algorithm: ACE
Theorem: Assume, minv((v)) ≥ log . Then ACE 
 never violates capacity and length constraints and 
 is O(log L) competitive.

Proof sketch:
 Set of requests admitted by ACE respects constraints. 
 W: sum of node costs, 

|A|: # requests admitted by ACE.
At any moment, W ≤ |A| · O(L · log μ). 

 |A*|: # requests admitted by the optimal offline algorithm 
but rejected by ACE. Then |A*| ≤ W / L.

 |OPT| ≤ |A| + |A*| ≤ |A| + |W| / L 
≤ |A| + |A| · O(L · log μ) / L  
= |A| O(log ).
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Lower bound on the 
Competetive Ratio

Theorem: Assume, ≥ log . Any on-line algorithm 
for SCEP must have a competitive ratio of at least 
Ω(log L).

Proof sketch:
 c=(v1, ... , vL)
 Different chains overlap at c.
 Requests in log L + 1 phases
 Phase i: 2i requests 
 Adversary stops sending 

requests after a phase j, when
the on-line algorithm admitted 
at most 2j+1 κ / log L requests 
until phase j. Such a j must exist.

 Optimal offline algorithm rejects all requests except the 2j κ 
requests of phase j.

v1 vL

Phase 0

Phase 1

Phase log Lκ
κ

κ
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Offline SCEP

Theorem: Let L ≥ 3 be a constant and  κ(v) = 1, for 
all v. Then the offline SCEP is APX-hard.

Proof idea:
 Reduction of Maximum L-Set Packing Problem 
(LSP) to SCEP 

 Approximation preserving reduction
 LSP is APX-complete
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Offline SCEP: Inapproximability
Theorem: Let L ≥ 3 be a constant and  κ(v) = 1, 
for all v. Then the offline SCEP is APX-hard and not 
approximable within Lε for some ε > 0. 
Without a bound on the chain length the SCEP with
κ(v) = 1, for all nodes v, is Poly-APX-hard.

Proof idea:
 Reduction of Maximum Independent Set Problem (MIS) 

to SCEP 
 Approximation preserving reduction
 MIS is APX-complete and cannot be approximated 

within Lε for some ε > 0.
 For graphs without degree bound, the MIS is Poly-APX-

complete.
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0-1 Integer Linear Program – 
NP-completeness

Exact optimal solution via 0-1-ILP
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Summary
 Trend: Network Function Virtualization
 First step towards a better understanding of the 

algorithmic problem
 First algoritm with quality guarantee
 Main contributions:

 O(log L)-competetive on-line algorithm
 (log L) lower bound on the competetive ratio of 

any on-line algorithm
 Offline SCEP:

 APX-hard for unit capacities and constant L ≥ 3
 Poly-APX-hard, when there is no bound on L
 Exact optimal solution via 0-1-ILP
 NP-completeness for constant L



Thank you!
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