
Uniform dispersal of robots with minimum
visibility range

Attila Hideg1 and Tamás Lukovszki2

1 Department of Automation and Applied Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

attila.hideg@aut.bme.hu
2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

lukovszki@inf.elte.hu

Abstract. We consider the filling problem, in which autonomous mo-
bile robots enter a connected orthogonal area from several entry points
and have to disperse in order to reach full coverage. The entry points
are called doors. The area is decomposed into cells. The robots are au-
tonomous, anonymous, they have a limited visibility range of one unit,
and do not use explicit communication. Collision of the robots is not
allowed. First we describe an algorithm solving the filling problem for
the single door case in O(n) time steps in the synchronous model, where
n is the number of cells in the area. This algorithm is optimal in terms
of visibility range, and asymptotically optimal in running time and size
of persistent memory used by the robots. Moreover, we show that our
algorithm solves the multiple door filling problem in O(n) time, as well.
For the multiple door case, our algorithm is asymptotically worst-case
optimal, and its running time is at most k times the running time of the
optimal algorithm for any input, where k is the number of doors.

1 Introduction

In swarm robotics a huge number of simple, cheap, tiny robots can perform com-
plex tasks collectively. The greatest advantages of such systems are scalability,
reliability, and fault tolerance. Contrary to a single-robot system, which requires
complex, expensive hardware and software components with redundancy, the
same attributes can be achieved by simply adding more robots to a multi-robot
system. In case of mobile robots, the spatial distribution of the robots has huge
advantage in problems related to exploration, coverage, demining, toxic waste
cleanup, etc. In this paper we study the uniform dispersal (or filling) of syn-
chronous robots in an unknown, connected area.

The area is decomposed into cells and the robots are injected one by one into
the area through an entry point, which is called the door. The robots have to
reach full coverage by occupying all cells. This problem is called filling, and was
introduced by Hsiang et al. [5]. When more than one door is present in the area
the problem is called multiple door filling or k-door filling.

In [5] the goal was to achieve a rapid filling, minimizing the make-span (time
to reach full coverage) of the algorithm. Their solution required 2n− 1 cycles to
reach full coverage, where n was the number of cells in the area.

Barrameda et al. [1] investigated the minimum hardware requirements and
the possibilities of solving the filling problem by robots with constant visibility
radius, communication range, and constant number of bits of persistent memory.

The algorithms in [1, 2, 5] used the Leader-Follower method, where one robot
is elected as a leader and the rest of the robots follow it until the leader is blocked,
then the leadership is transferred to another robot. The leader-follower method
results in a DFS-like dispersion in the area. Collisions are prevented through the
property that the leader explores new cells (cells that were never visited before)
and the followers simply moving towards their predecessor (the robot they are
following).

In case of the multiple door filling problem the robots enter through multiple
doors and there are several leaders in the area. In [1] the robots were colored
according to the door they entered, and the robots required to have their color
visible to other robots within the visibility range. In [3] Das et al. showed that
allowing visible colors or lights yields a more powerful computational model than
allowing infinite visibility range but no lights.

In this paper a fundamental question is, whether it is possible to reduce the
hardware requirements of the robots and still fill an unknown connected orthog-
onal area, even in presence of holes, and maintain O(n) runtime. These hardware
requirements are: visibility range, size of persistent memory, and avoidance of
explicit communication and the usage of lights.

1.1 Our Contribution

We present a method for filling an unknown, connected orthogonal region S
consisting of |S| = n square shaped cells by a set of n autonomous anonymous
robots with a visibility radius of 1 hop in O(n) time in the synchronous compu-
tational model. The robots require O(1) bits of persistent memory and cannot
communicate (they do not use explicit communication, nor colors or lights). The
only precondition is that they require a common coordinate system.

First, we consider the single door case, and present an algorithm which solves
the problem without collisions and terminates in O(n) time. Then, we show that
the presented approach solves both the single door and multiple door filling
problem in orthogonal areas.

Regarding this model our algorithm is optimal in terms of visibility range
and asymptotically optimal in the size of the memory. Moreover, it is asymptot-
ically optimal in running time in the single door case, asymptotically worst-case
optimal in the multiple door case, and its running time is at most k times the run-
ning time of the optimal algorithm for any input. The optimality regarding the
visibility range follows from the fact that with a visibility range less than 1 the
robots cannot even distinguish between occupied and unoccupied neighboring
cells. The asymptotic optimality of the memory size O(1) follows from the result
by Barrameda et al. [1]; they proved that oblivious (memoryless) robots cannot

deterministically solve the problem. The asymptotic optimality of the running
time O(n) follows from the fact that we can place one robot per round in the
single door case and n robots must be placed. For the asymptotically worst-case
optimality for the k-door case, we show inputs where almost all robots must pass
through a single cell to get into a large component of the area. This single cell
behaves similarly to a single door, and the dispersion must take Ω(n) time.

Organization: In Section 2 we define our model. In Section 3 we present
previous results on the filling problem and related problems. Then in Section 4
we describe and analyze our algorithm for the single door and for the multiple
door cases. Finally, Section 5 summarizes the paper.

2 Model

We are given an orthogonal area, i.e. polygonal with sides either parallel or per-
pendicular to one another, which is decomposed into equal sized, square shaped
cells (see [2]). The size of each cell allows only one robot to occupy it at any
given time. Each cell has at most four adjacent cells in fixed directions: North,
South, East, and West.

The robots’ actions are divided into three phases: Look, Compute, and Move.
During the Look phase, the robots take a snapshot of their surroundings, in the
Compute phase they perform their computations (e.g. which action should they
perform), and during the Move phase they move there. This is called the Look-
Compute-Move (LCM) model, which is commonly used in distributed robotics.

When the robots perform their LCM cycles at the same time, the model
is called fully synchronous (FSYNC). In the FSYNC model, each robot takes
snapshots at the same time, compute, and move at the same time based on a
global tick.

The robots are anonymous, i.e. they cannot distinguish each other, and are
equipped with limited hardware. They have a visibility range of 1 hop, i.e. each
robot can ’see’ only the cells which they are occupying and the cells adjacent to
it. In one LCM cycle a robot can move to one of its neighboring cells or stay
at place. The robots are silent, i.e. they cannot communicate at all. They are
finite-state robots, i.e. they have a constant number of bits of persistent memory.
The robots have a common notion of North, South, East, and West.

The entry points, called doors are always occupied by a robot. Whenever a
robot moves from a door cell, a new one is placed there. The doors cannot be
distinguished from other cells by the robots, moreover, the robots do not know
which door they used to enter the area.

3 Related Work

Hsiang et al. [5] investigated the make-span (i.e. the time to reach full coverage)
of filling of a connected orthogonal region measured in rounds. They assumed
that robots have a limited ability to communicate with nearby robots, i.e. a

robot is able to exchange a constant-size message. They proposed two solutions,
BFLF and DFLF, both modeling generally known algorithms: BFS and DFS. In
DFLF, the method maintained a distance of 2 hops between the robot and its
successor. As a consequence the method only required visibility range of 2 hops.
However, the robots had to be able to detect the orientation of each other.

Barrameda et al. [1] assumed common top-down and left-right directions for
the robots and showed that robots with visibility range of 1 hop and 2 bits of
persistent memory can solve the problem in an orthogonal area if the area does
not contain holes, without using explicit communication. Holes are cells in the
area which cannot be occupied by robots (e.g. obstacles).

In [2] Barrameda et al. presented two methods for filling an unknown or-
thogonal area in presence of obstacles (holes). Their first method, called TALK,
requires a visibility range of 1 hop if the robots have explicit communication.
The other method, called MUTE, do not use explicit communication between
the robots, but it requires visibility range of 6. Both methods need O(1) bits of
persistent memory.

For the multiple door case, in [1] a method, called MULTIPLE, has been
presented. It solves the problem for robots with visibility range of 2 hops, no
explicit communication and a O(1) bits of persistent memory. In this solution
the doors are colored with different colors and the robots are colored according
to the door they enter. The color of the robots is visible to other robots within
the visibility range.

A summary of these previous results and a comparison to our contribution
is presented in Table 1.

Method Visibility Comm. Memory (bits) Area
range (hops)1 range (hops)1

DFLF [5] 2 2 2 Arbitrary

TALK [2] 2 2 4 Orthogonal
MUTE [2] 6 0 9 Orthogonal

MULTIPLE [1] 3 0 4 Orthogonal

our method: (here)
Single door 1 0 13 bits Orthogonal
Multiple doors 1 0 13 bits Orthogonal

Table 1. Summary of the requirements of Filling algorithms.

In [6] a related problem, the pattern formation problem has been investigated
in the FSYNC model. In the pattern formation problem n robots are placed
arbitrarily in the 2 dimensional grid and they have to form a given connected
pattern F , known for all robots. In [6] a common coordinate system for the robots

1 In [2], grid cells sharing a common edge or a common corner with the current cell c
of the robot are assumed within the visibility range of the robot. In our model a cell
sharing only one corner with c has a hop distance of two. Thus, it is outside of the
visibility range. Only the cells sharing a common edge have hop distance of one.

has been assumed. The presented solution requires no explicit communication,
a visibility range of 2 hops, and 2 bits of persistent memory. The robots are
gathered in a certain point. They reach this point one-by-one and then start
to traverse a spanning tree of F and fill the tree by this traversal. The pattern
formation algorithm needs O(|F | + d) rounds, where d is the diameter of the
initial configuration. Only considering the filling phase of this algorithm, it needs
O(|F |) rounds.

For an excellent overview of distributed mobile robotics, we refer to the book
by Flocchini et al. [4].

4 Method

In this section we describe the algorithm for the filling problem, i.e. we define
the states and state-transitions of the robots. Then we prove that the algorithm
solves both the single door and multiple door filling problem without collisions.

4.1 Concept

Our algorithm is based on the leader-follower approach, which means a certain
robot is the leader while the rest are following it. This is a common approach to
eliminate collisions, as the leader is the only robot which is capable of moving
to cells, that were never occupied before. Such cells are called free cells. Each
follower has a predecessor which is the robot it is following during the dispersion,
and each robot, except the one at the door, has a successor which follows it.

Each robot stores its state, which can be one of the following: None, Leader,
Follower, Stopped. The state of the robot is not visible for other robots. The
transitions between these states are shown in Fig. 1. The robots placed at the
door are initialized with None state. They can switch to either Leader or Follower
state. In Follower state, the robot can switch to Leader state if and only if its
predecessor was the Leader and that Leader switched to Stopped state. This
ensures that the number of Leaders does not increase.

Nonestart Leader

Follower

Stopped

(has a robot to follow)

(no robot to follow)

(predecessor did not move)

(cannot move)

Fig. 1. States and state-transitions of the robots. The edges are labeled with the con-
dition for the transition.

The robots repeatedly perform their LCM cycles. We label each cycle with
a direction and call it a step. There are four possible directions: North, East,
West, South; the steps are labeled correspondingly N-step, E-step, S-step, W-
step. In each step the robots can only move toward the cell in the corresponding
direction. A round is a sequence of four consecutive steps starting with an N-
step, followed by an E-step, followed by an S-step, ending with a W-step (see
Fig. 2). The rounds and the steps start synchronously at the robots.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

R1 R2 R3

N-step E-step S-step W-step N-step E-step S-step W-step N-step E-step S-step W-step

Fig. 2. The structure of the rounds. Three rounds (denoted by R1,R2,R3), each consists
of four consecutive steps in fixed order: step s1 is an N-step, s2 is an E-step and so
forth.

After a robot r is placed, in the first round (and then in every odd round) it
always observes its surroundings, then it can only move during the second round
(and during every even round), irrespective of its current state. Note: odd and
even rounds are relative to the starting round for r.

s1 s2 s3 s4

N-step E-step S-step W-step

r r′

s1 s2 s3 s4

N-step E-step S-step W-step

r

r′

Fig. 3. Robot r following r′.

Our algorithm mimics a DFS exploration of the unknown region simultane-
ously started from the doors. A current Leader defines a path in the DFS tree
from the root (door) it entered, which path is traversed by it. When the Leader
switches to Stopped state it is in a leaf of the DFS-tree. The Follower robots
will fill the path segment between the last branch vertex and the Leader (in the
leaf). Then the leadership transfers backwards until we reach a branch vertex.
Then the robot on that branch vertex becomes a new Leader and traverses to the

next branch. As the destination selection is deterministic, the robots on branch
vertices are checking the neighbors in the same order, even without the explicit
knowledge of the DFS-trees, or if the predecessor becomes Stopped. Therefore,
they will move in the direction of the first free branch.

The main difficulty to realize this concept is that it must be ensured during
the algorithm that the Leaders are able to determine which neighboring cells
are free and the Followers must know where their predecessors are, despite the
fact that the predecessors can be outside of the 1 hop visibility range. Now we
describe the exact behavior of the robots in the different states.

Stopped: If a robot r is in Stopped state it does not move anymore. Other
robots will treat it like it would be an obstacle.

Follower: If a robot r is a Follower it follows its predecessor r′ until r′ stops
for two consecutive rounds (r′ is not able to move in its even round). Then the
leadership will be transfered from r′ to r. In the odd rounds of r it checks the
occupancy of the cell where its predecessor is. When r takes a snapshot in the
Look phase in its odd rounds it always sees its predecessor in the N-step. If r′

moves in a certain step, then r will not see r′ in the next step. E.g., if r′ moves
to north in the N-step, then after the Look phase of the E-step r does not see r′,
but it knows that r′ moved to the north. Therefore, r knows where r′ is, even if
the distance between them is 2 and r does not have r′ in its visibility range. In
the next round r occupies the former cell of r′ and r′ becomes visible again. In
every even round r moves toward its predecessor, occupying the previous cell of
r′ in the step corresponding to the direction r moves. As a result, the successor
of r also knows which direction r moves to and follows r.

There might be a case during the odd round of r, that r′ does not move
in that round. It is only possible if r′ does not have any cells it can move to,
either because it is surrounded by obstacles or other robots. It implies that r′

switches to Stopped state and r can switch to Leader state after this round
(more precisely, after the Look phase of the N-step of the next round, when r
recognizes that r′ did not move in the odd round of r). We refer to this event
as the transfer of the leadership. It guarantees that r can only switch to Leader
state after its predecessor r′ switched to Stopped state. Therefore, the invariant
that there can only be one Leader at any time (or k Leaders in the multiply door
case) is fulfilled. Note: r switches to Leader state only in the N-step of its even
round. Then in that round r performs the actions of robots in Leader state.

Leader: If r is a Leader it moves to a free cell in every second (even) round.
In each step of every odd round r checks each of its neighboring cells if it is
occupied. Occupied cells can not be free and they can be excluded from the set
of potential moving directions in the next (even) round. In the next (even) round
in each step r checks the neighboring cell c corresponding to the direction of the
step again. If c is unoccupied and it has been unoccupied in the previous (odd)
round, r moves to c and r does not check the remaining directions in that round.
If r cannot move in any direction it switches to Stopped state and terminates
its actions. Note: r can switch to Stopped state in the same round it switched
to Leader state.

None: After r has been placed at a door in round Ri, its initial state is None.
It only has to know, which step is currently performed by the system, i.e. an N-,
E-, S-, or W-step. If the current step is an N-step and no robots are visible, then
r is the first robot placed at that door and it has to switch to Leader state. In
every other scenario, its predecessor robot r′ is in the direction corresponding
to the previous step, e.g., if the current step is an E-step then the predecessor
r′ leaved in the previous step, which is an N-step. Therefore, it must be in the
northern neighbor cell. Let Ri′ be the round in which r′ has moved from the
door. Note that i′ = i − 1 if r is placed in an N-step, and i′ = i otherwise. If
i′ = i then round Ri is a shortened round for the newly placed robot r and r
does not perform any actions in this round. Then the first round of r starts with
the next N-step.

As the predecessor r′ of the newly placed robot r has moved during round
Ri′ , round Ri′+2 is the next even round for r′ (i.e. the next round r′ moves). We
have to ensure that Ri′+2 will be an odd round round for r. Therefore, the only
action r performs in Ri′+1 is switching in Follower state at the end of the round.
The first round when r performs its actions is Ri′+2, which is an odd round for
r, and it acts as a Follower. Note: in Ri′+3, robot r can switch to Leader state
if it recognizes that r′ is in Stopped state, and r can switch even to Stopped if
r cannot find any free cells.

4.2 Single Door Case

First, we show that the described algorithm fills the area without collisions in
the case, when the robots are entering in a single door.

Lemma 1. No collisions can occur during the dispersion.

Proof. In each step each cell can only be occupied from one sole direction. Even
if two robots would move to the same cell during the same round, only one will
move there, depending on the direction it wants to enter. ut

Lemma 2. During each step each Follower knows where its predecessor is.

Proof. Consider a Follower r. Let r′ be its predecessor. Based on the timing of
the movement, i.e. in which step r′ moved, r knows the target cell of r′. With
other words, when a robot r sees its predecessor r′ on cell c during step si,
but if r detects c is unoccupied in si+1, it implies that r′ has moved during si.
The robot r′ can only move to one direction which corresponds to the direction
of si. Consequently, after the Look phase of si+1 the robot r knows where its
predecessor r′ is, even if r′ is outside of its visibility range. In the next round r
moves to c and r′ becomes visible again.

The argument above does not apply when r′ moves from the door, as r has
not been placed yet. However, r knows, in which step it has been placed. Let si
be the step in which r′ has moved from the door and si+1 the step, in which r
has been placed. Then r′ had to move in the direction corresponding to step si.
Therefore, r knows where r′ is. ut

Lemma 3. The Leader only moves to free cells.

Proof. The leader has to move to free cells to increase the coverage with each
of its movement and to prevent infinite loops. Based on one single snapshot the
Leader r can only distinguish between occupied and unoccupied cells. Let Ri

be the round in which r has moved (its even round), then Ri+1 will be its odd
round. In Ri+1, if a neighboring cell is occupied at any time during Ri+1, r
recognizes it as not being free. In the next (even) round Ri+2 in each step r
checks the neighboring cell c corresponding to the direction of the step again. If
c is unoccupied and it has been unoccupied in the previous round, r recognizes
c as a free cell and moves to c. Then r does not check the remaining directions
in that round.

r′r′′

r

a)

c r′r′′

r

b)

r′r′′

r

c)

Fig. 4. A non-free cell c and its neighborhood in three consecutive rounds.

Assume r would like to determine whether a neighboring cell c is free in Ri,
and assume c is not a free cell. There are two cases: c contains a robot at the
beginning of Ri (Fig. 4.a) and c)) or not. If c is occupied, then r recognizes it as
not being free and will not try to move there. If c is unoccupied at the beginning
of Ri and it is not a free cell (Fig. 4.b)), there was a robot r′ in c at the beginning
of Ri−1 and moved from it to a neighbor of c which is not visible by r. Then,
r′′ (the successor of r′) will enter c in Ri to follow r′. At the beginning of the
next round (Ri+1), c will be occupied by r′′ (as in Fig. 4 c)) and r will not move
there.

As a result two consecutive rounds, Ri and Ri+1, are sufficient for r to identify
c as a non-free cell. In other case, c is identified as a free cell and r can move to
c in Ri+1. ut

Lemma 4. At most one Leader is present in the area.

Proof. Recall the event transfer of the leadership. The Leader r switches to
Stopped state during Ri. Its successor r′ can only switch to Leader state once it
has detected that r is in Stopped state, which will be in the first step of Ri+1. ut

Lemma 5. The proposed method fills the area.

Proof. For contradiction, assume a cell c is left unoccupied after the algorithm
is terminated. There are two cases: i) c is unoccupied but not free (some robots
visited c already but c left it unoccupied), ii) c is a free cell.

For i), assume r is the last robot which left the cell c. The successor of r
must have followed r and occupied c, which is a contradiction.

For ii), consider a cell c′ which is a closest occupied cell to c. There is a path
between c and c′ consisting only of unoccupied cells (or c′ is a neighbor of c).
By i) all unoccupied cells are free cells, as well. Let r be the robot in c′, which
is in Stopped state as the algorithm has been already terminated. However, r
has a free neighboring cell, therefore, r can move there. This prevents r from
switching to Stopped state, which is a contradiction.

ut

Theorem 1. By using the presented algorithm a connected orthogonal area with
a single door is filled in O(n) rounds without collisions by robots with visibility
range of 1 hop and O(1) bits of persistent memory.

Proof. According to the previous lemmas, the algorithm fills the area and pre-
vents collisions. The robots move in their even rounds. Whenever a robot r is
placed at the door, its first odd round is started with the first N-step, i.e. if r is
placed in a E-, S-, or W-step, it waits for the next N-step. Then in the odd round
it just observes and in the next even round it moves, allowing the placement of
a new robot. Therefore, a new robot can be placed in every third round. Since
the number of cells in the area is n, placing n robots requires 3n rounds, which
takes 12n LCM cycles.

The persistent memory of the robots must store the state of the robots (2
bits), the parity of the current round (1 bit), and the step of the current round
(2 bits). Leaders must additionally store information about the occupancy of the
neighboring cells observed in the odd round (4 bits). Followers must store the
direction they will move in their next even round (2 bits), which is the direction
their predecessor is in their odd round. Additionally, Followers must store where
the predecessor moves in their odd round (2 bits) and the information about the
occupancy of the neighboring cells for the case when the Follower has to switch
to Leader state. ut

4.3 Multiple Door Case

In the multiple door case, also called k-door filling, the robots are entering the
area through k ≥ 1 doors. The k = 1 case is the single door case. In the k-door
filling we assume that each door has enough robot, thus, when a robot leaves a
door, a new one can be placed there.

During the analysis of the multiple door case, we examine how multiple
Leaders and the set of Followers following them interact with each other. We
prove that robots entering from distinct doors cannot collide or block each other.

An invariant of the algorithm is that each Follower only follows its predecessor
or becomes a Leader. First, we have to prove that robots in Leader state are not
colliding with other robots. Then, we have to show that the paths of the Leaders
do not cross each other (for the single door case, we have already shown that
the leader does not cross its own path).

Lemma 6. A Leader cannot collide with a Follower.

Proof. Lemma 3 still holds: each robot in Leader state can determine which cells
are free within two rounds. Therefore, they will not go to cells where a Follower
would. ut

Lemma 7. A Leader cannot collide with another Leader.

c′ r1

r3 r2 c

Fig. 5. Leaders can not collide. The Leader r1 occupies c in the N-step. In the E-step
r2 sees c as an occupied cell. An important aspect is that in this scenario the robot r2
still has to move to a cell c′ different from c, if it can. Then it remains a Leader. If c′

is not free, then r2 cannot move and in step s4 and switches to Stopped state.

Proof. Assume a scenario where two leaders r1 and r2 would move to the same
cell c (see Fig. 5). Furthermore, assume both r1 and r2 are in their even round
and recognized c as free cell. Let Ri be this round, consisting of steps s1 . . . s4,
and as Ri+1 is their even round, they both will try to move there. Since c is
visible by r1 and r2 from different directions, therefore they try to move to c in
different steps, which means one of the robots (w.l.o.g. r1) will move and the
other one (r2) will be prohibited to move to c after it has been occupied by
r1. ut

Lemma 8. Paths of different Leaders cannot cross each other.

Proof. Lemma 3 still holds for the multiple door case. It means that the Leader
only moves to free cells, which implies that a Leader will not cross the path,
where Followers are already moving. In Lemma 7 we have shown that two Leaders
cannot collide (and will not cross the path of each other). Therefore, the path
of the Leaders will not cross each other during the dispersion.

Theorem 2. By using the presented algorithm a connected orthogonal area with
multiple doors is filled in O(n) rounds without collisions by robots with visibility
range of 1 hop and O(1) bits of persistent memory.

Proof. As in the single door case, the robots do not collide with each other.
Furthermore, the paths of the Leaders cannot cross, they do not block robots
entering from other doors. ut

Lemma 9. The algorithm is asymptotically worst-case optimal in the multiple
door case.

D1 D2 D3 D1 D2 D3

c

A’

Fig. 6. Best-case (left) and worst-case (right) examples for the make-span of multiple
door filling. The best-case is, when the robots entering at disjoint doors fill equal sized
partitions of the area. A worst case input, when single door is used to fill almost
the whole area. D1, D2, D3 are the doors. Red represents the path of the first Leader
entering through the given door.

Proof. Consider a region A, as depicted in Fig. 6 b). Removing the cell c from
A disconnects the region, such that all doors are separated from the major
connected component A′ of A\ c. Therefore, all robots must enter to A′ through
c. Since collision is not allowed, only one robot per round can enter to A′ in any
algorithm. If A′ contains Ω(n) cells, then each algorithm requires Ω(n) rounds.
Our algorithm fills A in O(n) time. ut

For any input, even in the best-case, at most k robots per round can be
placed in the area. Therefore, Ω(n/k) is a lower bound on the filling time of any
algorithm for each input. Consequently, for each input the O(n) running time of
our algorithm is at most k times the running time of the optimal algorithm.

Note: for certain inputs our algorithm also reaches k speedup (see Fig. 6.a)),
When robots entering from different doors fill equal sized partitions of the region,
the runtime is O(n/k).

5 Summary

We have considered the filling problem in an unknown, connected, orthogonal
region, where the robots enter the region through several doors and they have to
disperse in order to reach full coverage. The robots are autonomous, anonymous,
silent, they have a limited visibility range of 1 hop, and use O(1) bits of persistent
memory. They have a common notion of North, South, East, and West. Collision
of the robots is not allowed. We have presented an algorithm solving the filling
problem with multiply doors in O(n) time steps in the synchronous model, where
n is the number of cells in the area. This algorithm is optimal in terms of visibility
range, and asymptotically optimal in size of persistent memory used by the
robots. The running time is asymptotically optimal for the single door case. For
the multiple door case, our algorithm is asymptotically worst-case optimal, and
its running time is at most k times the running time of the optimal algorithm
for any input, where k is he number of doors.

References

1. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sensors
in unknown orthogonal environments. In: Algorithmic Aspects of Wireless Sensor
Networks: 4th Int. Workshop (ALGOSENSORS 2008), Revised Selected Papers. pp.
125–140 (2008)

2. Barrameda, E.M., Das, S., Santoro, N.: Uniform dispersal of asynchronous finite-
state mobile robots in presence of holes. In: Algorithms for Sensor Systems: 9th
Int. Sym. on Algorithms and Experiments for Sensor Systems, Wireless Networks
and Distributed Robotics (ALGOSENSORS 2013), Revised Selected Papers. pp.
228–243 (2014)

3. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile
robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

4. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile
Robots. Synthesis Lectures on Distributed Computing Theory, Morgan & Claypool
Publishers (2012)

5. Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms
for rapidly dispersing robot swarms in unknown environments. Algorithmic Foun-
dations of Robotics V, Springer Tracts in Advanced Robotics 7, 77–93 (2004)

6. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by
anonymous, position-aware robots. In: Proc. 18th International Conference on Prin-
ciples of Distributed Systems (OPODIS). pp. 248–262 (2014)

