Filling Arbitrary Connected Areas by Silent Robots with Minimal Visibility Range

Attila Hideg¹, Tamás Lukovszki², Bertalan Forstner¹

1 Budapest University of Technology and Economics, Hungary Attila.Hideg@aut.bme.hu, Bertalan.Forstner@aut.bme.hu

> 2 Eötvös Lóránd University, Budapest, Hungary lukovszki@inf.elte.hu

Filling

- n robots with restricted capabilities
 - > Limited visibility range
 - > No communication
 - > Limited persistent memory
- Area to fill is represented by a graph
 - > Unknown, connected
 - > 3D or more complex settings

https://ssr.seas.harvard.edu/

- Robots enter at the Door (or multiple Doors)
 - > When a Door becomes empty, a robot is placed immediately
- They have to cover the area (graph)

Anonymous Restricted Robots

- Identical and anonymous
- Silent
- 1 hop visibility
- Limited memory
- Arbitrary graph
 Connected

- > Fixed cyclic order of neighbors at each vertex
- Robots can move to neighboring vertices

Synchronous Look-Compute-Move (LCM)

- Look: take a snapshot
- Compute: calculate the destination
- Move: move to the destination

Lower bounds

• Visibility: 1 hop

• $\Omega(n)$ running time

• Memory: $\Omega(1)$ bits [Barrameda et al. 2008]

State of the art

Method	Doors	Visibility	Comm.	Memory	Area
DFLF [Hsiang et al. 2004]]	Single	2	2	2	Arbitrary
TALK [Barrameda et al 2013]	Single	2	2	4	Orthogonal
MUTE [Barrameda et al 2013]	Single	6	0	9	Orthogonal
MULTIPLE [Barrameda et al 2008]	Multiple	3	0	4	Orthogonal
Single Door [Hideg, Lukovszki 2017]	Single	1	0	13	Orthogonal
Multiple Door [Hideg, Lukovszki 2017]	Multiple	1	0	13	Orthogonal

- Visibility range: # hops
- Communication range: # hops
- Memory: # bits

State of the art

Method	Doors	Visibility	Comm.	Memory	Area
DFLF [Hsiang et al. 2004]]	Single	2	2	2	Arbitrary
TALK [Barrameda et al 2013]	Single	2	2	4	Orthogonal
MUTE [Barrameda et al 2013]	Single	6	0	9	Orthogonal
MULTIPLE [Barrameda et al 2008]	Multiple	3	0	4	Orthogonal
Single Door [Hideg, Lukovszki 2017]	Single	1	0	13	Orthogonal
Multiple Door [Hideg, Lukovszki 2017]	Multiple	1	0	13	Orthogonal
VCM (new)	Single	1	0	Ο(Δ)	Arbitrary
MD-VCM (new)	Multiple	1	0	$O(\Delta \cdot \log k)$	Arbitrary

Orthogonal

Arbitrary

Previous Result

Arbitrary

Orthogonal

Previous Result

Attila Hideg and Tamás Lukovszki

Orthogonal

Previous Result

Attila Hideg and Tamás Lukovszki

Orthogonal

Previous Result

Attila Hideg and Tamás Lukovszki

Filling Arbitrary Connected Areas by Silent Robots with Minimal Visibility Range

Orthogonal

Previous Result

Filling Arbitrary Connected Areas by Silent Robots with Minimal Visibility Range

Attila Hideg and Tamás Lukovszki

Our Contribution (1)

- Single Door
- Requirements
 - >1 hop visibility
 - > No communication
 - > O(Δ) bits memory
 - > Cyclic order of neighboring vertices
- Running time
 - > O($\Delta \cdot$ n) LCM cycles

Our Contribution (2)

- Multiple Door
- Requirements
 - >1 hop visibility
 - > No communication
 - > O($\Delta \cdot \log k$) bits memory
 - > Cyclic order for neighboring vertices
 - > Robots know the index of their entry Door
- Running time
 - > O($\Delta \cdot \mathbf{k} \cdot \mathbf{n}$) LCM cycles

Virtual Chain Method (VCM)

- Mimics a DFS traversal of the graph
- Main ideas:
 - > Follow the Leader method
 - > Timing of movements
- Chain
 - > Path of the current Leader from the Door
- Main tasks to solve:
 - > Prevent collisions
 - > Fill the whole graph

Virtual Chain Method (VCM)

• Mimics a DFS traversal of the area

• DFS tree

> Unknown for the robots> Traversed by the robots

> Branches are filled

VCM – States

Leader-Follower method

• Four possible states

- There is at most one Leader
 - > After the Leader gets stuck, the Leadership is transferred
- Followers only follow their predecessor
 > Predecessor is either in a neighboring vertex or
 > It moved away, then in the next round the follower moves to its previous position
- Each Follower has one predecessor in the chain
 Different Followers have different predecessors

 There is at most one Leader
 > After the Leader gets stuck, the Leadership is transferred

- Followers only follow their predecessor
 > Predecessor is either in a neighboring vertex or
 > It moved away, then in the next round the follower moves to its previous position
- Each Follower has one predecessor in the chain
 > Different Followers have different predecessors

 There is at most one Leader
 > After the Leader gets stuck, the Leadership is transferred

- Followers only follow their predecessor
 > Predecessor is either in a neighboring vertex or
 > It moved away, then in the next round the follower moves to its previous position
- Each Follower has one predecessor in the chain
 > Different Followers have different predecessors

 There is at most one Leader
 > After the Leader gets stuck, the Leadership is transferred

- Followers only follow their predecessor
 > Predecessor is either in a neighboring vertex or
 > It moved away, then in the next round the follower moves to its previous position
- Each Follower has one predecessor in the chain
 > Different Followers have different predecessors

VCM – Rounds and Steps

- Timing of the movements
- Step

> LCM cycle with an index i $\in [1..\Delta]$

- Round
 - > Δ steps
 - > Odd and Even rounds for the robots
 - > Odd: observing, Even: moving

VCM – Rounds and Steps

In the ith step robots can go to the ith neighbor

• Task

- > Follow its predecessor
- > One hop visibility

- Task
 - > Follow its predecessor
 - > One hop visibility
- Odd rounds
 - > Observes the predecessor and empty neighbors
 - > Stores which direction the predecessor moves (known from the timing!)

- Task
 - > Follow its predecessor
 - > One hop visibility
- Odd rounds
 - > Observes the predecessor and empty neighbors
 - > Stores which direction the predecessor moves (known from the timing!)
- Even rounds
 - > Moves to the previous position of the predecessor

- Task
 - > Follow its predecessor
 - > One hop visibility
- Odd rounds
 - > Observes the predecessor and empty neighbors
 - > Stores which direction the predecessor moves (known from the timing!)
- Even rounds
 - > Moves to the previous position of the predecessor
- If predecessor did not move
 Switches to Leader state

State: Leader

- Task
 - > Has to move to an unvisited vertex (unvisited: can be decided in 2 rounds)
- Odd rounds
 - > Takes a snapshot, and stores occupied vertices

• Even round

> Moves to the neighboring vertex corresponding to the index of the step if it is unoccupied

Switch to Finished if no unvisited vertices around

State: None

- Robot placed at the Door
 - > After predecessor moved from it
 - > Initial state is None
 - Assumption: degree of the Door is 1 (predecessor is at the unique neighbor)
 - > Moves from Door in step S_{Δ}
 - > New robot always placed in step S_1

Result

Theorem 1: The VCM fills an arbitrary connected graph with a single door

- In O($\Delta \cdot$ n) rounds
- Requirements
 - > Visibility range of 1 hop
 - > O(Δ) bits of persistent memory
 - > Cyclic order of neighboring vertices is known at each vertex

- The Leader only moves to unvisited vertices
 > Takes snapshots in each step of the odd round
 > Knows which vertices are unvisited in the next even
 - round

The Leader only moves to unvisited vertices
 > Takes snapshots in each step of the odd round
 > Knows which vertices are unvisited in the next even

round

- The Leader only moves to unvisited vertices
 Takes snapshots in each step of the odd round
 Knows which vertices are unvisited in the next even
 - round

The Leader only moves to unvisited vertices
 > Takes snapshots in each step of the odd round
 > Knows which vertices are unvisited in the next even

round

- The Leader only moves to unvisited vertices
 > Takes snapshots in each step of the odd round
 > Knows which vertices are unvisited in the next even
 - round

- Each Follower knows where its predecessor is
 > Odd round:
 - knows which neighbor is the predecessor
 - observes its movement
 - > Even round: follows

At most one Leader is present in the area > Leadership transferred

At most one Leader is present in the area > Leadership transferred

• No collisions can occur during the dispersion

Filling Arbitrary Connected Areas by Silent Robots with Minimal Visibility Range

No collisions can occur during the dispersion Follower: follows its unique predecessor

No collisions can occur during the dispersion

> Follower: follows its unique predecessor

> Leader: unvisited vertex

The proposed method fills the graph For contradiction: Assume robots terminated and

the graph is not filled

- The proposed method fills the graph
 - > r : first robot terminating which has an empty neighbor
 - > Before *r* terminated, *r* was a Leader

 The proposed method fills the graph
 Contradiction: robots cannot terminate if unoccupied vertices are present

Multiple Door VCM (MD-VCM)

- Multiple Door or k-Door filling
- Assume each Door has enough robots
- Doors have a degree of 1
 Two sides of a doorstep
- Different time slots are assigned to different Doors

Results

Theorem 2: The MD-VCM fills an arbitrary connected graph with multiple Doors

- In O($\Delta \cdot \mathbf{k} \cdot \mathbf{n}$) rounds
- Requirements
 - > Visibility range of 1 hop
 - > O($\Delta \cdot \log k$) bits of persistent memory
 - > Cyclic order of neighboring vertices
 - > Degree of Door vertices are 1

• A Leader cannot collide with another Leader

Attila Hideg and Tamás Lukovszki

Filling Arbitrary Connected Areas by Silent Robots with Minimal Visibility Range

- A Leader cannot collide with a Follower
 > Leaders can determine unvisited vertices
- Paths of different Leaders cannot cross each other
 - > Leader moves to unvisited vertices
 - > Leaders cannot collide

Worst-case

- > c is a bottleneck
- > Only robots from D_k are filling the area
- > Robots from $D_1 \dots D_{k-1}$ are blocked by robots from D_k
- Runtime is $O(\Delta \cdot k \cdot n)$
- Optimal: O(n)

Worst-case

- > c is a bottleneck
- > Only robots from D_k are filling the area
- > Robots from $D_1 \dots D_{k-1}$ are blocked by robots from D_k
- Runtime is $O(\Delta \cdot k \cdot n)$
- Optimal: O(n)

Summary

- Solve the Filling problem for arbitrary connected graphs with robots having
 - > 1 hop visibility (optimal)
 - > O($\Delta \cdot \log k$) bits memory
 - > O($\Delta \cdot \mathbf{k} \cdot \mathbf{n}$) rounds
- Algorithm is simple enough to implement
 Complex scenes
- Open question
 - > Reduce the runtime (by factor of k)?

Thank you for your attention