
Filling Arbitrary Connected Areas by Silent
Robots with Minimum Visibility Range

Attila Hideg1, Tamás Lukovszki2, and Bertalan Forstner1

1 Department of Automation and Applied Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

{Attila.Hideg,Bertalan.Forstner}@aut.bme.hu
2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

lukovszki@inf.elte.hu

Abstract. We study the uniform dispersal problem (also called the fill-
ing problem) in arbitrary connected areas. In the filling problem robots
are injected one-by-one at k ≥ 1 Doors into an unknown area, subdivided
into cells. The goal is to cover the area, i.e. each cell must be occupied
by a robot. The robots are homogeneous, anonymous, autonomous, have
limited visibility radius, limited persistent memory, and silent, i.e. do
not use explicit communication. A fundamental question is how ’weak’
those robots can be in terms of hardware requirements and still be able
to solve the problem, which was initiated by Barrameda et al. [4]. In
our previous paper [11] we presented an algorithm which solves the fill-
ing problem for orthogonal areas with O(1) bits of persistent memory, 1
hop visibility range and without explicit communication. The algorithm
utilized the timing of movements and had O(n) runtime, where n is the
number of cells in the area. In this paper, we generalize the problem
for silent robots for an arbitrary connected area represented by a graph,
while maintaining the 1 hop visibility range. The algorithm is collision-
free, it terminates in O(k ·∆ · n) rounds, and requires O(∆ · log k) bits
of persistent memory, where ∆ is the maximum degree of the graph.

Keywords: Autonomous Robots · Filling · Dispersion.

1 Introduction

In swarm robotics a huge number of simple, cheap, tiny robots can perform com-
plex tasks collectively. Advantages of such systems are scalability, reliability, and
fault tolerance. In recent years much attention has been paid to the cooperative
behavior of simple, tiny robots which have to complete a particular task col-
lectively. Many distributed protocols have been developed for a wide range of
problems, like gathering, flocking, pattern formation, dispersing, filling, cover-
age, exploration (e.g. [1–6, 8, 12]; see [7, 10] for recent surveys). In this paper we
study the uniform dispersal (or filling) of synchronous robots in an unknown,
connected area.

The filling problem was introduced by Hsiang et al. [12] for an orthogonal
area, where the area is represented by pixels that form a connected subset of



2 A. Hideg, T. Lukovszki and B. Forstner

integer grid. The robots are placed at the same entry point, called the Door,
one-by-one and have to occupy all the pixels. There can be at most one robot
per pixel at any given time. When more than one door is present in the area the
problem is called multiple door filling or k-door filling.

Barrameda et al. [4, 5] investigated the minimum hardware requirements and
the possibilities of solving the filling problem for orthogonal regions by robots
with constant visibility radius, constant communication range, and constant
number of bits of persistent memory.

In [5], the authors allowed holes to be present in the map. Two methods were
proposed: one without communication (MUTE) and one with communication
(TALK). Both methods worked in the asynchronous (ASYNC) model, there-
fore, it can be used in the fully-synchronous (FSYNC) model, as well. MUTE
required a visibility range of 6 and was inspired by the dance of bees, where
robots implicitly communicated using only their movements. In TALK they
required a visibility and communication range of 1 and worked strictly in or-
thogonal areas as they could see diagonally. Both solutions [4, 5] only required a
constant amount of memory.

In [4], common top-down and left-right directions and externally visible colors
were assumed for the multiple door filling. In [9] Das et al. showed that allowing
visible colors or lights yields a more powerful computational model than allowing
infinite visibility range but no lights.

r1
r2

r3

v

Fig. 1. Robots r1, r2 and r3
would move to vertex v. Only one
can move to v at any given time,
however, they are not visible by
each-other (1 hop visibility means
they can see adjacent vertices).

In our previous paper [11], we have fur-
ther reduced the hardware requirements of
the robots for filling orthogonal regions. The
robots do not use any communication and also
no lights. The robots have a common sense
of North and East directions, but they can-
not measure their absolute position and do not
share a common coordinate system. They need
a O(1) bits of persistent memory and the visi-
bility range of the robots is reduced to 1 hop.
We have presented an algorithm solving the
single-door and the multiple-door filling prob-
lem for orthogonal regions in O(n) time in the
synchronous computational model. A key ele-
ment of the algorithm is to reserve time-slots
for each possible direction of the movement (la-
beled as North, East, South, and West) in order to prevent collisions. Unfortu-
nately, this idea could not be extended for the general case, where the area is
represented by an arbitrary connected graph (moreover, it relies on notions that
are not available in arbitrary graphs: north, south, orientation). A problematic
scenario is illustrated in Fig. 1. Using a fixed assignment of time-slots to the
edges incident to the occupied vertex of a robot r1 can lead to collision with
other robot(s) r2, r3, since another robots can choose the same time slot to
target the unvisited vertex v.



Filling Connected Areas by Silent Robots with Minimum Visibility Range 3

Our contribution: In this paper we present an approach, which is different
from [11], to solve the filling problem for any arbitrary connected graphs with
robots of visibility range of 1 hop, i.e. the robots can see adjacent vertices. (Note:
three-dimensional scenarios and more complex topologies can be modeled.)

First, we present a method, the Virtual Chain Method (VCM), for the
single door filling by a set of autonomous anonymous robots with a visibility
radius of 1 hop in O(∆ ·n) time in the synchronous computational model, where
n is the number of vertices of the graph with a maximum degree of ∆. The
robots require O(∆) bits of persistent memory.

Then, we consider the multiple door case, when the robots enter in k > 1
doors and we generalize the VCM algorithm for solving this problem. The robots
need a visibility range of 1 hop, O(∆ · log k) bits of persistent memory, and the
algorithm terminates in O(k ·∆ · n) time.

Both algorithms are simple enough to be implemented by a swarm of ele-
mentary robots.

Our algorithm is optimal in term of visibility range. This follows from the
fact that with a visibility range of less than 1 the robots cannot even distinguish
between occupied and unoccupied neighbors. For constant k and constant ∆,
our algorithm is asymptotically optimal in the size of the memory. This follows
from the result of Barrameda et al. [4]; they proved that oblivious (memory-
less) robots cannot deterministically solve the problem. Moreover, for constant
k and constant ∆, our algorithm is asymptotically optimal in running time. The
asymptotic optimality of the running time O(n) follows from the fact that we
can place one robot per round in the single door case and n robots must be
placed.

A summary of these previous results and a comparison to our contribution
is presented in Table 1.

Requirements of Filling algorithms

Method Visibility
range (hops)

Communication
range (hops)

Memory
(bits)

Graph Type

DFLF [12] 2 2 2 Arbitrary
TALK [5] 2 2 4 Orthogonal
MUTE [5] 6 0 9 Orthogonal
k-Door in [4] 2 0 O(1) Orthogonal
Filling in [11] 1 0 13 Orthogonal
k-Door in [11] 1 0 13 Orthogonal

Here: VCM 1 0 O(∆) Orthogonal
MD-VCM 1 0 O(∆ · log k) Arbitrary

Table 1. Summary of the requirements of different Filling algorithms. All of these
algorithms have O(n) running time in the synchronous model.

Organization: In Section 2 we define our model. In Section 3 we describe the
Virtual Chain Method for filling a connected regions represented by an arbitrary



4 A. Hideg, T. Lukovszki and B. Forstner

graph. Section 4 extends our algorithm to solve the k-door filling. Finally, Section
5 summarizes the paper.

2 Model

We are given an unknown, connected area, represented by a graph. Each vertex
of the graph allows only one robot to occupy it at any given time. We assume
that for each vertex the adjacent vertices are arranged in a fixed cyclic order,
which does not change during the dispersion. The entry points of the graph are
called Doors. For simplicity we assume the degree of the Door vertices are 1.
Otherwise, we introduce an auxiliary vertex of Degree 1 connected only to the
Door, which takes the role of the original Door. This models the two side of a
doorstep.

In our model we use common concepts in distributed mobile robotics. For an
excellent overview we refer to the book by Flocchini et al. [10].

Each robot has a sensor allowing it to gather information from its vicinity, a
computational unit, and locomotion capabilities. They are autonomous, i.e. no
central coordination is present, homogeneous, i.e. all the robots have the same
capabilities and behaviors, and anonymous, i.e. they cannot distinguish each
other. They have a visibility range of 1 hop, i.e. each robot can ’see’ only the
vertex it occupies and the vertices adjacent to it. The robots are silent, i.e. they
cannot communicate at all. They have limited bits of persistent memory, which
is O(∆) bits in the single door case and O(∆ · log k) when k-doors are present.

The robots operate corresponding to the Look-Compute-Move (LCM) model.
During the Look phase, the robots take a snapshot of their surroundings. In
the Compute phase, based on the snapshot they decide whether to stay idle
or to move to one of its neighboring vertices, and during the Move phase they
move there. The movement is atomic between two vertices, meaning it is either
performed and the robot appears at the destination vertex, or does not move
at all. We use the FSYNC model, where the robots perform their LCM cycles
at the same time, i.e. each robot takes snapshots, computes, and moves at the
same time.

The robots are placed on a predefined vertex, which is called the Door. At
the beginning of each cycle, if the Door is empty, a new robot is placed there
and performs its Look-Compute-Move phases during the same cycle.

3 Virtual Chain Method

We now present the Virtual Chain Method (VCM) for the single door case which
is based on the traditional follow-the-leader principle. This principle has also
been used in [4, 5, 12, 11]. One robot becomes a leader and the rest of the robots
follow it until the leader is blocked, then another robot takes the leadership.
During our dispersion algorithm the robots create a virtual chain and move
along it. The method mimics a depth first search like exploration of the area.
An example for the dispersion can be seen on Fig. 2.



Filling Connected Areas by Silent Robots with Minimum Visibility Range 5

Fig. 2. The robots enter through one vertex called the Door (top right vertex), and
follow the leader. The vertices occupied by Followers are blue, while the vertex occupied
by the Leader is red. The red line denotes the path of the leader.

3.1 Concept

In the Virtual Chain Method the following states are permitted to the robots:

– None: starting state immediately after the robot is placed at the Door.
– Leader : the first robot placed at the Door switches to Leader state. Only the

leader moves to previously unoccupied, so called unvisited vertices. We will
ensure that there can only be at most one leader at a time.

– Follower : the robots following their predecessor are in Follower state. A
follower can promote itself to leader, when its predecessor is in Finished
state.

– Finished : the final state of the robots. If a robot detects it cannot move
anymore it switches to this state. A Finished robot can never move again.
Only the leader can switch to Finished state.

The chain is defined by the path of the current leader from the Door. The
followers are following that path, other robots in the area are already in Finished
state.

The chain is not visible nor can be detected by the robots; their successor
or predecessor might not even be in their visibility range at certain times. To
avoid breaking the chain, each robot must follow its predecessor. To ensure the
robots can detect their predecessor they are only allowed to move after their
successor arrived to their previous vertex. That previous vertex on the chain is
called the entry vertex of that robot. This way a robot and its predecessor can
never be farther than two hops. Only the Leader is allowed to move to vertices,
which were never occupied. These vertices are called unvisited vertices. When
the Leader cannot move anymore, either because its vertex does not have any



6 A. Hideg, T. Lukovszki and B. Forstner

neighbors (other than its entry) or the movement would result in a collision,
the Leader switches to Finished state and the leadership will be taken by its
successor. Therefore, there can be at most one Leader at a time during the
dispersion. The algorithm terminates when each robot is in Finished state. The
rules followed by the robots can be seen on Algorithm 1.

Algorithm 1 (VCM): Rules followed by robot r.

1: If r.State is None:
r promotes itself to Leader if r has no neighbors, or to Follower otherwise

2: If r.State is Follower:
If r.Predecessor moved from its place, r follows it.
If r.Predecessor did not move for two rounds, r switches to Leader state
and performs the actions of a Leader in the same round.

3: If r.State is Leader:
If r is an observer, it stores visited neighbors.
If r is an observed, it finds the first unvisited neighbor in the cyclical order.
If r has an unvisited neighbor, it moves there, otherwise it switches to

Finished.

Round Structure The algorithm operates in rounds. A round is a sequence
of ∆ consecutive steps S1 . . . S∆ (a step is an LCM cycle of the robots). The
rounds and the steps are illustrated in Fig. 3. During each round each robot is
either an observer or an observed robot. The observed robot has to schedule its
movement, and can move to one of its neighboring vertex vi, which is the ith

vertex in the fixed cyclic order starting from the entry vertex of the robot. It
can only perform this movement in step si (as in Fig. 4), and not allowed to
move more than once in each round. The observer robot counts the number of
steps its predecessor has waited before moving. At the end of each round the
robots switch their roles (i.e. the observed robots become observers and vice
versa). Each robot starts as an observer when it is placed at the Door. The
robots also store the occupancy information of the neighboring vertices in order
to determine which of them are unvisited vertices. Now we describe the exact
behavior of the robots in the different states:

Finished: Robots that are in Finished state have terminated their actions
and do not move anymore.

Leader: If robot r is a Leader it leads the chain and moves to unvisited
vertices. Thus, the number of unvisited vertices is monotonically decreasing.
Robot r can move to vertex vi in step si if and only if vi is an unvisited vertex.
In its observer round r registers each neighbor which is occupied in any step of
the round. In its observed round, r moves to only those vertices which had not
been registered as occupied in the current or previous round (later we show, it



Filling Connected Areas by Silent Robots with Minimum Visibility Range 7

s1 s2 . . . s∆

Ri

s1 s2 . . . s∆

Ri+1

s1 s2 . . . s∆

Ri+2

Fig. 3. The structure of the rounds. Three rounds (denoted by Ri,Ri+1, and Ri+2),
each consists of ∆ consecutive steps (sj).

r

Entryv1

s1 s2 s3 s4 s5 s6

v2

s1 s2 s3 s4 s5 s6 v3

s1 s2 s3 s4 s5 s6

v4
s1 s2 s3 s4 s5 s6

Fig. 4. Robot r, entered from below, with several neighbors. It can only move to vi in
si, where vi is the ith vertex in the cyclic order starting from the entry vertex of r.

is sufficient to determine that vi is an unvisited vertex). If no such vertices are
available, r switches to Finished state.

Follower: Each Follower robot has to know which robot to follow, i.e. which
robot is its predecessor. We will keep the invariant that for each Follower robot r
in the beginning of its observer round the predecessor r′ of r is in a neighboring
vertex and r′ moves in that round. We will ensure that r is able to determine
the next position of r′ based on that in which step r′ moves away (similarly to
the Leader, r′ has to move to vi in si). In the next observed round of r, r moves
to the previous position of r′ in step sj , where j is the jth neighbor in the cyclic
order from the previous position of r.

There are two special cases. First, if r′ moves in s∆, r will only notice it in s1
of its next observed round, which will be taken into account. The second special
case, if r′ cannot move anymore, which can only happen if r′ is the leader and
do not have any more unvisited neighboring vertices, r will notice it in s1 of its
next observed round. In this case r switches to Leader state and acts accordingly
in the same round (i.e. r moves to an unvisited neighbor, or switches to Finished



8 A. Hideg, T. Lukovszki and B. Forstner

state if there is no unvisited neighboring vertex). For this reason Followers have
to maintain unvisited vertices around them.

None: The robot r placed at the Door is initialized with None state. In this
state the robot does not move and waits for state transition. This transition
can be one of the following: if the neighboring vertex v of r is occupied then r
becomes a Follower of the robot on v, otherwise it becomes a Leader. Before this
state transition the robot must perform the following tasks.

The first task to solve is how the robots know which step they are in. The
first robot is placed in the area in step s1 of the first round. However, if that
robot would move from the Door, the next one would be placed in s2. Based on
its surroundings, the new robot cannot acquire this information and it should
not be provided explicitly when it is placed. If the robots are only allowed to
move from the Door in s∆ the new robot is always placed in s1 of the next
round. This can easily be achieved by not letting the robots in None state to
switch states before s∆. (Note: the robot at the Door does not have a successor
yet, therefore, it does not have to schedule its movement.)

The second task for robots at the Door is to ensure their role (observer/ob-
served) in each round. When robot r moves from the Door in round Ri a new
robot r′ is placed at the Door immediately. The robot r′ becomes active in step
s1 of round Ri+1, which is the observer round of r. As r′ is initialized as an
observer they would be both observers in Ri+1. To achieve distinct roles, r′

stays inactive in Ri+1 and becomes an observer in Ri+2 again (and r′ observes
r moving in that round).

3.2 Analysis

Lemma 1. The predecessor of the Follower is either in a neighboring vertex v
or it was in v in the previous round. In the latter case the Follower moves to the
previous position of the predecessor, which is v.

Proof. Assume r follows its predecessor r′. Let Ri be the round when r observes
r′ from the Door (r was placed in the previous round). In Ri r

′ moves to one of
its neighbors. In Ri+1 r moves to the vertex which is left by r′. After this they
become neighbors again. This argument can also be repeated for the following
rounds. Therefore the claim of the lemma holds. ut

Lemma 2. Each vertex can be considered an unvisited vertex if it is not occupied
in two consecutive rounds.

Proof. There are three cases regarding vertex v: i) it is occupied, ii) it is unoccu-
pied, but has been occupied before, or iii) it is an unvisited vertex (unoccupied,
and never been occupied before). In case i), any robot observing v knows it is not
an unvisited vertex. In case ii), let r be the last robot that occupied v, and let
Ri be the round in which r moved from v. According to Lemma 1 the successor
of r moves to v in round Ri+1. Consequently, v will not be unoccupied through
two consecutive rounds. Therefore, observing v for two consecutive rounds allows
any robot to identify cases i) and ii). In any other case vertex v is an unvisited
vertex, i.e. case iii) holds. ut



Filling Connected Areas by Silent Robots with Minimum Visibility Range 9

Lemma 3. Each robot in Follower state always knows where its predecessor is.

Proof. Using induction, we show that after movement i ≥ 0 a Follower r knows
where its predecessor r′ is.

Induction start: We show that after movement 0 (i.e. before its first move-
ment), r knows where r′ is.

Movement 0 means r did not move yet, and is still at the Door. Let v be its
only neighboring vertex. Assume a robot is occupying v, as r is in Follower state
(if v had not been occupied, r would became a Leader). We show that the robot
on v must be predecessor r′ of r.

The robots placed at the Door can only move to v. After this movement a
new robot is placed at the Door, whose predecessor is the robot which has moved
to v. If any other robot had moved to v, a new robot would not been placed at
the Door. Therefore, if r is placed at the Door its predecessor is on v.

Inductive step: We show, if r knows where its predecessor is after movement
i, it will know where it is after movement i+ 1.

After movement i robots r and its predecessor r′ are in two neighboring
vertices (v and v′) as r just moved after r′. Therefore, r knows which robot is
to observe. If r′ moves, it can only move during an observed round while r is
observing it. While observing r counts the steps until r′ move to its next vertex
v′′. As assumed, the neighbors of v′ are in a fixed cyclic order, r will know which
is the next vertex v′′ when it moves to v′ (after movement i+ 1) and the robot
occupying v′′ will be r′. ut

Lemma 4. Two Followers cannot have the same predecessor.

Proof. When a robot r moves from the Door, only one robot will be placed at a
time, therefore, only one robot can Follow r (and choose it as its predecessor).
According to Lemma 3. each Follower knows where its predecessor is after every
movement and will not change predecessors. As a result r will never be the
predecessor of two (or more) different robots. ut

Lemma 5. The Leader only moves to unvisited vertices.

Proof. As stated in Lemma 2. it is enough to observe each neighboring vertex
for two consecutive rounds to determine whether it is an unvisited vertex or not.
Assume Rj is the observer round of r and Rj+1 is the observed round. In Rj+1,
in which r moves, it already knows which neighbor is unvisited and – if any –
it moves to the first unvisited vertex in the cyclic order of the neighbors in the
corresponding step of Rj+1. ut

Lemma 6. There can be at most one Leader at a time.

Proof. The first robot placed at the Door becomes the Leader. Afterwards, the
Leader only moves to unvisited vertices. If there is no unvisited neighboring
vertex (this can be determined in two rounds), the Leader changes its state
to Finished. After changing the state its successor becomes a new Leader, the



10 A. Hideg, T. Lukovszki and B. Forstner

number of Leaders is still one. The condition of becoming a new Leader is that
the old Leader did not move for two consecutive rounds, which implies it has
changed to Finished state (otherwise, the old leader would have moved to an
unvisited vertex).

Lemma 7. No collision can occur during the dispersion.

Proof. The robots in None and Finished states are not allowed to move, there-
fore, it only has to be shown that robots in Follower and Leader state cannot
collide with other robots.

The robots in Follower state are following their predecessor and, according
to Lemma 1, if they are not in neighboring vertices, the successor can only move
to the previous position of the predecessor. As two robots cannot have the same
predecessor (see Lemma 4), it is not possible that multiple Followers would move
to the same vertex at the same time.

The Leader can only move to unvisited vertices (see Lemma 5) and Followers
can only move to the position of its predecessor (i.e. not unvisited vertices), and
as only one Leader is in the system (see Lemma 6), it cannot collide with other
robots.

Therefore, no collision can occur. ut

Lemma 8. Algorithm VCM fills the area (represented by the graph).

Proof. By contradiction, assume some vertices left unoccupied after the algo-
rithm terminated (meaning each robot is in Finished state). Since the graph is
connected and the Door is occupied all of the time, there exists an unoccupied
vertex v having at least one occupied neighbor v′. Let r be the robot on v′,
which is in Finished state. The condition for a robot to switch to Finished state
is to be a Leader and not to have unvisited neighbors. However, according to
Lemma 2, v will be identified as an unvisited vertex by r and r can occupy it.
This contradicts the assumption that v remains unoccupied. ut

Theorem 1. By algorithm VCM an area (represented by a connected graph)
with a single door is filled in O(∆ · n) rounds without collisions by robots with
visibility range of 1 hop and O(∆) bits of persistent memory.

Proof. After placing the robot at the Door it is in None state, in which the robot
skips one round. In the next round it observes its predecessor moving, then it
moves in the third round. In the same round the next robot will be placed at the
Door. For this reason, the robots are placed in every third round at the Door.
As each round consists of ∆ steps it takes 3 ·∆ · n = O(∆ · n) steps to place n
robots.

Regarding the memory requirement, the robots require to store the index of
the current step within a round, the unvisited neighbors, the direction of their
predecessor known from the index in which step it moved away (each requiring
at most ∆ bits of memory), and some additional information, requiring constant
amount of bits: current state, observer/observed role, entry vertex. As a result,
O(∆) bits of persistent memory is required for the Virtual Chain Method. ut



Filling Connected Areas by Silent Robots with Minimum Visibility Range 11

4 Multiple Doors

In the Multiple Door Filling, the biggest challenge is how the robots entering
from different Doors avoid collisions. This is usually defined by some sort of pri-
ority order, e.g. in [4], the robots had 2 hops visibility and k different externally
visible colors, where k > 1 is the number of Doors. In [11] the cells could be
entered form different directions in each step.

In the Multiple Door Virtual Chain Method, (MD-VCM) the robots from
each distinct Door will form a distinct chain, which are lead by their Leader
robot. For each Door (for each chain) we introduce distinct time-slots, in which
they can perform their actions. As opposed to the single door case, each step is
substituted by k steps. The new round consists of k ·∆ steps. Step si,j within a
round corresponds to the jth step of the chain originating from the ith Door Di,
1 ≤ i ≤ k, 1 ≤ j ≤ ∆. Each robot from Di only performs their actions in si,∗.

Rules for the k-Doors case: The robots in Finished, Leader, and Follower
state follow the same algorithm as in the original VCM. The actions of the robots
in None state has to be modified, as they are not necessarily placed in first step
of the corresponding chain, e.g., if i < k, the robots entering from Door Di will
move from it in si,∆, resulting the new robot to be placed at Di in step si+1,∆

(which is the time-slot of the next Door). To make sure the new robot starts
their actions in step s1,1 of the next round the newly placed robot stays inactive
for k − i steps. The only exceptions to this rule are the robots which has been
initially placed in the first round R1. They know they are the first robots in that
Door if there are no neighboring robots for two rounds. In this case they become
active immediately (not skipping k− i steps) and switch to Leader state in step
si,∆ of the second round.

Note: on a rare occasion it is possible two Doors are neighbors with each-
other. Since we assumed that the degree of each Door vertex is 1 and the graph
is connected, it is only possible for n = 2. In this very special case, the robots at
the Door do not know correctly in which step they were placed there. However,
the filling problem is solved right after both robots are placed.

4.1 Analysis

In the Multiple Door case Lemma 1, 2, and 3 still hold. In case of Lemma 4, 5
it still has to be considered that there are multiple chains in the area.

Lemma 9. In the MD-VCM, each Leader only moves to unvisited vertices and
cannot collide with each other.

Proof. Unlike in Lemma 5 there can be k > 1 robots in the system with Leader
state, meaning that multiple robots can choose the same unvisited vertex as
their destination. However, different leaders (which are from different Doors)
are assigned to different steps. As a result, one of them moves there first, after
which the vertex cannot be considered an unvisited one and the other Leaders
have to choose a new destination.



12 A. Hideg, T. Lukovszki and B. Forstner

Lemma 10. The MD-VCM distinct chains cannot cross each other.

Proof. The vertices on the paths of the leaders (the chains) are not unvisited
vertices, since they were already occupied by the leader. Unvisited vertices are
detected by the leaders according to Lemma 2. Because of Lemma 5 the Leaders
only move to unvisited vertices. Consequently, the leaders do not cross other
chains. Each Follower only moves on the path of the Leader of the chain, chains
originating from different Doors are disjoint.

Theorem 2. An area (represented by a connected graph) with a multiple doors
is filled by the MD-VCM in O(k ·∆ · n) rounds without collisions by robots with
visibility range of 1 hop and O(∆ · log k) bits of persistent memory.

Proof. Similarly to Theorem 1 the robots are placed in each Door in every three
rounds if the chain from that Door is able to move, otherwise no further robots
can be placed at that Door anymore. In the worst case, when a single chain blocks
all the other Doors, a Door is used to cover the area. Consider a graph which is a
simple chain of n vertices whose first k vertices are the Doors D1 . . . Dk. In this
case only the robots placed on Dk can move, the robot in the other Doors are
blocked. This is equivalent to the single door case, in which the running time is
3n rounds, where each round length consists of k ·∆ steps, yielding O(k ·∆ · n)
runtime.

Regarding the hardware requirements, the robots do not need additional
visibility, nor other equipment. As the round length increases, and the current
step index has to be stored, the memory increases to O(∆ · log k). ut

5 Summary

In this paper, we have presented the Virtual Chain Method for solving the filling
problem in unknown region, represented by an arbitrary connected graph, with
autonomous robots having a minimum visibility range of 1 hop. The robots are
not equipped with communication capabilities, they are working synchronously.
We only assumed that the neighbors of each vertex are arranged in a fixed cyclic
order, which is the same for each robot stepping into that vertex. For the single
door case, the robots need O(∆) bits of persistent memory, and O(∆ · n) time
steps, where n is the number of vertices of the graph. We have extended this
method to solve the k-door filling problem in O(k ·∆ · n) time steps for robots
with memory requirement O(∆·log k). The Multiple Door Virtual Chain Method
does not add further hardware requirements for the robots. It remains an open
question how the multiplicative factor k can be eliminated in the running time.

Acknowledgment

This work was partly performed in the frame of FIEK 16-1-2016-0007 project,
implemented with the support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the FIEK 16 funding
scheme.



Filling Connected Areas by Silent Robots with Minimum Visibility Range 13

References

1. Albers, Kursawe, Schuierer: Exploring unknown environments with obstacles. Al-
gorithmica 32(1), 123–143 (2002)

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

3. Augustine, J., Moses, Jr., W.K.: Dispersion of mobile robots: A study of memory-
time trade-offs. In: Proc. 19th International Conference on Distributed Computing
and Networking (ICDCN ’18). pp. 1:1–1:10 (2018)

4. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sen-
sors in unknown orthogonal environments. In: Algorithmic Aspects of Wireless
Sensor Networks: 4th Int. Workshop (ALGOSENSORS 2008), Revised Selected
Papers. pp. 125–140 (2008)

5. Barrameda, E.M., Das, S., Santoro, N.: Uniform dispersal of asynchronous finite-
state mobile robots in presence of holes. In: Algorithms for Sensor Systems - 9th
Int. Symp. on Algorithms and Experiments for Sensor Systems, Wireless Networks
and Distributed Robotics (ALGOSENSORS 2013), Revised Selected Papers. pp.
228–243 (2014)

6. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph
exploration. IEEE Transactions on Robotics 27(4), 707–717 (2011)

7. Bullo, F., Cortés, J., Marttınez, S.: Distributed algorithms for robotic networks.
Applied Mathematics Series, Princeton University Press (2009)

8. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science 399(1), 71 – 82 (2008)

9. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theoretical Computer Science” 609, 171–184 (2016)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Synthesis Lectures on Distributed Computing Theory, Morgan & Clay-
pool Publishers (2012)

11. Hideg, A., Lukovszki, T.: Uniform dispersal of robots with minimum visibility
range. In: Algorithms for Sensor Systems - 13th Int. Symp. on Algorithms and
Experiments for Wireless Networks (ALGOSENSORS 2017), Revised Selected Pa-
pers. pp. 155–167 (2017)

12. Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms
for rapidly dispersing robot swarms in unknown environments. Algorithmic Foun-
dations of Robotics V, Springer Tracts in Advanced Robotics 7, 77–93 (2004)


