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Abstract

The virtualization of modern computer networks introduces interesting new
opportunities for a more flexible placement of network functions and mid-
dleboxes (firewalls, proxies, traffic optimizers, virtual switches, etc.). This
paper studies approximation algorithms for the incremental deployment of a
minimum number of middleboxes, such that capacity constraints at the mid-
dleboxes and length constraints on the communication routes are respected.

Based on a new, purely combinatorial and rigorous proof of submodular-
ity, we obtain our main result: a deterministic greedy approximation algo-
rithm which only employs augmenting paths to serve future communication
pairs. Hence, our algorithm does not require any changes to the locations
of existing middleboxes or the preemption of previously served communica-
tion pairs when additional middleboxes are deployed. It is hence particu-
larly attractive for incremental deployments. We prove that the achieved
polynomial-time approximation bound is optimal, unless P = NP holds.

This paper also initiates the study of a weighted problem variant, in
which entire groups of nodes need to communicate via a middlebox, possibly
at different rates. We present an LP relaxation and randomized rounding al-
gorithm for this problem, leveraging an interesting connection to scheduling.

We complement our formal results with a simulation study of a large set
of synthetically generated instances. Our results indicate that the presented
algorithms yield near-optimal solutions in practice.
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1. Introduction

Middleboxes are ubiquitous in modern computer networks and provide
a wide spectrum of in-network functions related to security, performance,
and policy compliance. It has recently been reported that the number of
middleboxes in enterprise networks can be of the same order of magnitude
as the number of routers [39].

While in-network functions were traditionally implemented in specialized
hardware appliances and middleboxes, computer networks in general and
middleboxes in particular become more and more software-defined and vir-
tualized [18]: network functions can be implemented in software and deployed
fast and flexibly on the virtualized network nodes, e.g., running in a virtual
machine on a commodity x86 server. Modern computer networks also offer
new flexibilities in terms of how traffic can be routed through middleboxes
and virtualized data plane appliances (often called Virtual Network Func-
tions, short VNFs) [36]. In particular, the advent of Software-Defined Net-
work (SDN) technology allows network operators to steer traffic through mid-
dleboxes (or chains of middleboxes) using arbitrary routes, i.e., along routes
which are not necessarily shortest paths, or not even loop-free [3, 34, 13, 33].
In fact, OpenFlow, the standard SDN protocol today, not only introduces a
more flexible routing, but itself allows to implement basic middlebox func-
tionality, on the switches [14]: an OpenFlow switch can match, and perform
actions upon, not only layer-2, but also layer-3 and layer-4 header fields.

However, not much is known today about how to exploit these flexibilities
algorithmically. A particularly interesting problem regards the question of
where to deploy a minimum number of middleboxes such that basic routing
and capacity constraints are fulfilled. Intuitively, the smaller the number of
deployed network functions, the longer the routes via these functions, and
a good tradeoff between deployment costs and additional latency must be
found. Moreover, ideally, middleboxes should be incrementally deployable:
when additional middleboxes are deployed, existing placements do not have
to be changed. This is desirable especially in deployment scenarios with
budget constraints, where an existing deployment has to be extended by new
middleboxes.

1.1. Our Contributions

We initiate the study of the natural problem of (incrementally) placing a
minimum number of middleboxes or network functions.
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Our main technical result is a deterministic and greedy (polynomial-time)
O(log (min{κ, n}))-approximation algorithm for the (incremental) middlebox
placement problem in n-node networks where capacities are bounded by κ.
The algorithm is attractive for incremental deployments: it does not require
changes to the locations of existing middleboxes or the preemption of previ-
ously served communication pairs when additional middleboxes are deployed.

At the heart of our algorithm lies a new and purely combinatorial proof of
the submodularity of the function maximizing the number of pairs that can
be served by a given set of middleboxes. The submodularity proof directly
implies a deterministic approximation algorithm for the minimum middlebox
deployment problem. We show that the derived approximation bound is
asympotically optimal, unless P = NP.

We believe that our model and approach has ramifications beyond mid-
dlebox deployment. For instance, our model also captures fundamental prob-
lems arising in the context of incremental SDN deployment (solving an open
problem in [9, 29]) or distributed cloud computing where resources need to
be allocated for large user groups.

We also initiate the study of a weighted problem variant, where entire
groups of nodes need to communicate via a shared network function (e.g., a
multiplexer of a multi-media conference application or a shared object), pos-
sibly at different rates. Based on an interesting connection to scheduling [23],
we obtain a greedy approximation algorithm for this problem as well, while
losing the incremental deployment property.

We also investigate the performance of both algorithms in an extensive
computational evaluation. In particular, we study the empirical approxima-
tion factors for both approximation algorithms and their runtime. We also
study the incremental deployment property in detail and show that greed-
ily deploying the middleboxes initially allows to consistently serve nearly
as many communication requests as when optimally deploying middleboxes;
only when the number of deployed middleboxes approaches the number of
required middleboxes in the optimal solution, the ability to arbitrarily (re-
)place middleboxes pays off. In order to ensure reproducability as well
as to ease future research, we have published our implementation as open
source [37].

1.2. Novelty and Related Work

In this paper we are interested in algorithms which provide formal ap-
proximation guarantees. In contrast to classic covering problems [8, 15, 41]:
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(1) we are interested in the distance between communicating pairs, via the
covering nodes, and not to the covering nodes; (2) we aim to support incre-
mental deployments : middlebox locations selected earlier in time as well as
the supported communication pairs should not have to be changed when de-
ploying additional middleboxes; (3) we consider a capacitated setting where
the number of items which can be assigned to a node is bounded by κ.

To the best of our knowledge, so far, only heuristics or informal studies
without complete or combinatorial proofs of the approximability [2, 25, 30,
39] as well as algorithms with an exponential runtime in the worst-case [20,
25], of the (incremental and non-incremental) middlebox deployment problem
have been presented in the literature. Our work also differs from function
chain embedding problems [12, 27, 11] which often revolve around other
objectives such as maximum request admission or minimum link load.

Nevertheless, we in this paper show that we can build upon hardness
results on uncapacitated covering problems [28] as well as Wolsey’s study
of vertex and set covering problems with hard capacities [41]. An elegant
alternative proof to Wolsey’s dual fitting approach, based on combinatorial
arguments, is due to Chuzhoy and Naor [7]. In [7] the authors also show that
using LP-relaxation approaches is generally difficult, as the integrality gap
of a natural linear program for the weighted and capacitated vertex and set
covering problems is unbounded.

Bibliographic Note. A preliminary version of this paper appeared in
CCR [26].

1.3. Putting Things into Perspective

Our problem is a natural one and, as mentioned, features some interesting
connections to and has implications for classic (capacitated) problems. To
make things more clear and put things into perspective, in the following, we
will elaborate more on this relationship.

The generalized dominating set problem [4] asks for a set of dominating
nodes of minimal cardinality, such that the distance from any network node
to a dominator is at most `. In the capacitated version of the problem, the
number of network nodes which can be dominated by a node is limited. Sim-
ilarly, capacitated facility location problems [1, 5] ask for locations to deploy
facilities, subject to capacity constraints, such that the number of facilities
as well as the distance to the facilities are jointly optimized. In contrast to
these problems where the distance to a dominator or facility from a given

4



t1 

s1 

s2 

t2 

s3 

t3 

m 

Figure 1: Example: A minimum cardinality dominating set (three nodes, in light grey) is
a bad approximation for the middlebox deployment problem (one node in center, in darker
grey).

node is measured, in our middlebox deployment problem, we are interested
in the distance (resp. stretch) between node pairs, via the middlebox. At first
sight, one may intuitively expect that optimal solutions to dominating set
or facility location problems are also good approximations for the middlebox
deployment problem. However, this is not the case, as we illustrate in the
following. Consider an optimal solution to the distance `/2 dominating set
problem: since the distance to any dominator is at most `/2, the locations
of the dominators are also feasible locations for the middleboxes: the route
between two nodes via the dominator is at most `/2 + `/2 = `. However, the
number of dominators in this solution can be much larger than the number
of required middleboxes.

Consider the example in Figure 1: in a star network where communicat-
ing node pairs are located at the leaves, at depth 1 and `−1, and where node
capacities are sufficiently high such that they do not constitute a bottleneck,
a single middlebox m in the center is sufficient. However, the stricter re-
quirement that dominating nodes must be at distance at most `/2, results in
a dominating set of cardinality Ω(n/`), i.e., Ω(n) for constant `.

While our discussion revolved around constraints on the length `, similar
arguments and bounds also apply to the stretch, the main focus of this paper:
the ratio of the length of the path through a middlebox, and the length of the
shortest path between the communicating pair. To see this, simply modify
the example in Figure 1 by adding a direct edge between each communicating
pair si and ti. Let c = `. Then the length of the shortest path between each
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Figure 2: Example: The communication between node pairs (si, ti), for i ∈ {1, 2, 3, 4}, as
well as between the group of nodes {g1, g2, g3} needs to be routed via a network function
resp. middlebox M . Due to capacity constraints and constraints on the route length, M
is instantiated at four locations {m1,m2,m3,m4} in this example.

pair is one. The dominating nodes must be at distance at most c/2 from the
communicating nodes. Consequently, the cardinality of the dominating set
is Ω(n/c), i.e., Ω(n) for constant c; deploying one single middlebox m at the
center and routing the communication between each pair through m results
in paths of stretch c.

1.4. Organization

The remainder of this paper is organized as follows. Section 2 introduces
our model and discusses different use cases. In Section 3 we present our
approximation algorithm together with its analysis. Section 4 extends our
study to weighted and group models. After reporting on our simulation
results in Section 5, we conclude our contribution in Section 6.

2. Model and Use Cases

2.1. Formal Model

We model the computer network as a graph connecting a set V of n = |V |
nodes. The input to our problem is a set of communicating node pairs P : the
route of each node pair (s, t) ∈ P needs to traverse an instance of a middlebox
resp. network function (e.g., a firewall). Node pairs do not have to be disjoint:
nodes can participate in many communications simultaneously.

For the sake of generality, we assume that middleboxes can only be in-
stalled on a subset of nodes U ⊆ V . We will refer to the set of middleboxes
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locations (and equivalently, the set of middleboxes instances) by M , and
we are interested in deploying a minimal number of middleboxes at legal
locations M ⊆ U such that:

1. Each pair p = (s, t) ∈ P is assigned to an instance m ∈M , denoted by
m = µ(p).

2. For each pair p = (s, t) ∈ P , there is a route from s via m = µ(p) to t of
length at most ρ ·d(s, t), i.e., d(s,m)+d(m, t) ≤ ρ ·d(s, t), where d(u, v)
denotes the length of the shortest path between nodes u, v ∈ V in the
network G, and where ρ ≥ 1 is called the stretch. For example, a stretch
ρ = 1.2 implies that the distance (and the latency accordingly) when
routing via a middlebox is at most 20% more than the distance (and the
latency accordingly) when connecting directly. Our approach supports
many alternative constraints, e.g., on the maximal route length.

3. Capacities are respected: at most κ node pairs can be served by any
middlebox instance.

Our objective is to minimize the number of required middlebox instances,
subject to the above constraints.

In this paper, we will also initiate the study of a weighted model, where
different communication pairs have different demands, as well as a group
model, where network functions need to serve entire groups of communication
partners. See Figure 2 for an example.

2.2. Use Cases

Let us give three concrete examples motivating our formal model.

Middlebox Deployment. Our model is mainly motivated by the middle-
box placement flexibilities introduced in network function virtualized and
software-defined networks. Deploying additional middleboxes, network pro-
cessors or so-called “universal nodes” can be costly, and a good tradeoff
should be found between deployment cost and routing efficiency. For ex-
ample, today, network policies can often be defined in terms of adjacency
matrices or big switch abstractions, specifying which traffic is allowed be-
tween an ingress port s and an outgress network port t. In order to enforce
such a policy, traffic from s to t needs to traverse a middlebox instance in-
specting and classifying the flows. The location of every middlebox can be
optimized, but is subject to the constraint that the route from s to t via the
middlebox should not be much longer than the shortest path from s to t.
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Deploying Hybrid Software-Defined Networks. There is a wide consensus that
the transition of existing networks to SDN will not be instantaneous, and that
SDN technology will be deployed incrementally, for cost reasons and to gain
confidence. The incremental OpenFlow switch deployment problem can be
solved using waypointing (routing flows via OpenFlow switches); our paper
solves the algorithmic problem in the Panopticon [25] system.

Distributed Cloud Computing. The first two use cases discussed above come
with per-pair requirements: each communicating pair must traverse at least
one function. However, there are also scenarios where entire groups Gi of
nodes need to share a waypoint: for example, a multiplexer of a group com-
munication (a multi-media conference) or a shared object in a distributed
system, e.g., a shared and collaborative editor: An example could be a dis-
tributed cloud application: imagine a set of users Gi who would like to use
a collaborative editor application à la Google Docs. The application should
be hosted on a server which is located close to the users, i.e., minimizing the
latency between user pairs.

3. Approximation Algorithm

This section presents a deterministic and polynomial-time
O(log(min{n, κ}))-approximation algorithm for the middlebox deploy-
ment problem. Our algorithm is based on an efficient computation of a
certain submodular set function: it defines the maximum number of pairs
which can be covered by a given set of middleboxes. In a nutshell, the sub-
modular function is computed efficiently using an augmenting path method
on a certain bipartite graph, which also determines the corresponding as-
signment of communication pairs to the middleboxes. The augmenting path
algorithm is based on a simple, linear-time breadth-first graph traversal.
The augmenting path method is attractive and may be of independent
interest: similarly to the flow-based approaches in the literature [6], it does
not require changes to previously deployed middleboxes, but removes the
disadvantage of [6] that the set of served communication pairs changes over
time: an attractive property for incremental deployments.

Our solution with augmenting paths results (theoretically and practically)
in significantly faster computations of the submodular function value as well
as of the corresponding assignment compared to the flow based approach.
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In fact, computing all augmenting paths takes O(|E|min{
√
|V |, κ}) by us-

ing the Hopcroft-Karp algorithm [21] performing at most O(min{
√
|V |, κ})

breadth-first search and depth-first search traversals of the graph. Com-
puting a maximum flow takes O(|V | · |E|2) time by the Edmonds-Karp al-
gorithm [10], O(|V |3) time by the push-relabel algorithm of Goldberg and
Tarjan [19], and O(|V | · |E|) time by the algorithm of Orlin [31] (see [19] for
an overview on efficient maximum flow algorithms).

Concretely, we can start with an empty set of middlebox locations M = ∅,
and in each step, we add a middlebox at location m to M , which maximizes
the number of totally covered (by middleboxes at locations M∪{m}) commu-
nicating pairs, without violating capacity and route stretch constraints. The
algorithm terminates, when all pairs were successfully assigned to middlebox
instances in M . More precisely, for any set of middlebox instances M ⊆ U ,
we define φ(M) to be the maximum number of communication pairs that can
be assigned to M , given the capacity constraints at the nodes and the route
stretch constraints. We show that φ is non-decreasing and submodular, and
φ(M) – and the corresponding assignment of pairs to middlebox instances in
M – can be computed in polynomial time. This allows us to use Wolsey’s
Theorem [41] to prove an approximation factor of 1 + O(log φmax), where
φmax = maxm∈U φ({m}). Since in our case, φmax = min{κ, |P |} and |P | ≤ n2,
this implies that Algorithm 1 computes an O(log(min{κ, n}))-approximation
for the minimum number of middlebox instances that can cover all pairs P
(i.e., all pairs can be assigned to the deployed middleboxes).

3.1. Maximum Assignment

In order to compute function φ(M), for any M ⊆ U , we construct a
bipartite graph B(M) = (M ∪ P,E), where P is the set of communicating
pairs. We will simply refer to the middlebox instances m ∈ M and pairs
p ∈ P in the bipartite graph as the nodes. The edge set E connects middlebox
instances m ∈ M to those communicating pairs p ∈ P which can be routed
via m without exceeding the stretch constraint, i.e. E = {(m, p) : m ∈
M, p = (s, t) ∈ P, d(s,m) + d(m, t) ≤ ρ · d(s, t)}, where d(u, v) denotes the
length of shortest path between nodes u and v in the network. For each p,
the set of such middlebox nodes can be computed in a pre-processing step by
performing an all-pair shortest paths algorithm to calculate d(u, v) for each
u, v in the network, and for each p = (s, t) ∈ P , selecting the nodes m ∈ M
with d(s,m) + d(m, t) ≤ ρ · d(s, t).
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Figure 3: Bipartite graph with possible middlebox locations U (empty: white, deployed:
grey) on the left side and pairs P on the right side of the bipartite graph. The capacity of
the middleboxes κ = 2. Middleboxes are deployed greedily, one-by-one, without requiring
relocation of previously mapped middleboxes. Assignment edges are indicated in bold.
The deployment of the first middlebox left creates two assigment edges incident to the
middlebox. The deployment of the second middlebox middle involves two new assigment
edges incident to the second middlebox. Lastly, the botttom middlebox is used to serve
the bottom pair, which was previously served by the middle middlebox.

A partial assignment A(M) ⊆ B(M) of pairs p ∈ P to middlebox in-
stances in M is a subgraph of B(M), in which each p ∈ P is connected to
at most one middlebox m ∈ M by an edge, i.e., degA(M)(p) ≤ 1 where deg
denotes the degree. A pair p ∈ P with degA(M)(p) = 1 is called an assigned
pair and with degA(M)(p) = 0 an unassigned pair of a free pair. A partial as-
signment A(M) without free pairs is called an assignment. The size |A(M)|
of a (partial) assignment A(M) is defined as the number of edges in A(M).

Our goal is to compute a partial assignment A(M) of pairs p ∈ P to
middlebox instances in M maximizing the number of assigned pairs. Ac-
cordingly, we distinguish between assignment edges EA and non-assignment
edges EA, where EA ∪ EA = E is a partition of the edge set E of B(M).

Our algorithm ensures that at any moment of time, the partial assign-
ments are feasible, i.e., the assignment fulfills the following capacity con-
straints. The current load of a middlebox m in M , denoted by λ(m), is the
number of communicating pairs served by m according to the current partial
assignment A(M). Moreover, we define the free capacity κ∗(m) of m to be
κ∗(m) = κ− λ(m). A (partial) assignment A(M) is feasible if and only if it
does not violate capacities, i.e., λ(v) ≤ κ, for all v in any middlebox in M .

In order to compute the integer function φ(M), which is essentially the
cardinality of a maximum feasible partial assignment A∗(M), we make use of
augmenting paths. Let A(M) be a feasible partial assignment. An augment-
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Figure 4: Illustration of augmenting path computation. Bipartite graph with possible
middlebox locations U (empty: white, deployed: grey) on the left side and pairs P on the
right side of the bipartite graph. The capacity of the middleboxes κ = 2. Assignment edges
are indicated in bold. Left: The assignment before deploying the third middlebox. Middle:
Augmenting path starting at the new middlebox. Right : The resulting new assignment.

ing path π = (v1, v2, . . . , vj) relative to A(M) in B(M) starts at a middlebox
m ∈M with free capacity, ends at a free pair p ∈ P , and alternates between
assignment edges and non-assignment edges, i.e.,

1. v1 ∈M with κ∗(v1) > 0 and vj ∈ P with degA(M)(vj) = 0,

2. (vi, vi+1) ∈ B(M) \ A(M), for any odd i,

3. (vi, vi+1) ∈ A(M), for any even i.

An augmenting path relative to A(M) is a witness for a better partial
assignment: The symmetric difference A′(M) = (A(M) \ π) ∪ (π \ A(M))
is also a (partial) assignment with size |A′(M)| = |A(M)| + 1. Due to the
properties of the augmenting path, by this reassignment, one additional pair
will be covered by the same set of middlebox instances, without violating
node capacities: in A(M), the first node had free capacity and the last node
represents a free pair. Furthermore, the degree at each internal node of
π remains unchanged, since one incident assignment edge gets unassigned
and one incident unassigned edge gets assigned. Therefore, the load of the
internal nodes in π remains unchanged. Conversely, suppose that a partial
assignment A(M) is not a maximum partial assignment. Let A∗(M) be a
maximum partial assignment. Consider the bipartite graph X = (A(M) ∪
A∗(M)) \ (A(M) ∩ A∗(M)).

Figure 3 illustrates the greedy placement strategy and Figure 4 shows the
augmenting path computation.

Note that an augmenting path must always exist for suboptimal covers.
To see this, consider the following reduction to matching: replace each mid-
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dlebox node with κ many clones of capacity 1, and assign each pair p ∈ P to
the clones in the canonical way. Feasible assignments constitute a matching
in this graph, with node degrees one. Given any suboptimal cover, we find a
witness for a augmenting path as follows. We take the symmetric difference
of the suboptimal and the optimal solution, which gives us a set of paths and
cycles of even length. Thus, a path must exist where the optimal solution
has one additional edge.

Augmenting paths can be computed efficiently, by simply performing
breadth-first searches in B(M), by using the nodes m ∈ M with free ca-
pacities as the starting nodes.

3.2. Submodularity

The set function φ : 2U → N is called non-decreasing iff φ(U1) ≤ φ(U2) for
all U1 ⊆ U2 ∈ 2U , and submodular iff φ(U1)+φ(U2) ≥ φ(U1∩U2)+φ(U1∪U2)
for all U1, U2 ∈ 2U . Equivalently, submodularity can be defined as follows
(See, e.g. in [38] pp. 766): for any U1, U2 ⊆ U with U1 ⊆ U2 and every
u ∈ U \ U2, we have that φ(U1 ∪ {u})− φ(U1) ≥ φ(U2 ∪ {u})− φ(U2). This
is in turn equivalent to: for every U1 ⊆ U and u1, u2 ∈ U \ U1 we have that
φ(U1 ∪ {u1}) + φ(U1 ∪ {u2}) ≥ φ(U1 ∪ {u1, u2}) + φ(U1).

Let U1 ⊆ U2 be two arbitrary subsets of U . Consider a maximum assign-
ment A(U1) for U1. Let A(U2) be a maximum assignment for U2 obtained
from A(U1) by adding the members u2 ∈ U2 \ U1 to U1 one-by-one, and per-
forming the augmenting path method until we have a maximum assignment
for the incremented set U1 ∪ {u2}. Let AΠ(U1) be the projection of A(U2)
to U1, i.e., for each u1 ∈ U1, p ∈ P , the pair p is assigned to u1 in AΠ(U1)
if and only if p is assigned to u1 in A(U2). First we show that AΠ(U1) is a
maximum assignment for U1.

Lemma 1. Let A(U1) be a maximum assignment for U1. Let A(U2) be a
maximum assignment for U2 obtained from A(U1) by adding all u ∈ U2 \ U1

to U1 one-by-one, and performing the augmenting path method until we have
a maximum assignment for U1 ∪ {u}. Let AΠ(U1) be the projection of A(U2)
to U1. Then AΠ(U1) is a maximum assignment for U1.

Proof. By adding u2 ∈ U2 \ U1 to U1 and performing the augmenting path
method until an augmenting path exists (i.e., until we obtain a maximum
assignment for U1∪{u2}), it holds that, for each u1 ∈ U1, the number of pairs
assigned to u1 does not change: along the augmenting path each internal node
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has one incident assignment edge and one non-assignment edge. This also
holds after exchanging the assignment edges and the non-assignment edges,
i.e., each assignment edge on the augmenting path becomes a non-assignment
edge and vice versa. The degrees of the start and end nodes increases by one.
Consequently, the degree of each u1 ∈ U1 in AΠ(U1) is the same as in A(U1).
Since A(U1) is a maximum assignment and each u1 has the same degree in
AΠ(U1), AΠ(U1) must be also a maximum assignment.

Theorem 2. Let U be the set of all possible middlebox instance locations.
Let φ : 2U → N be the set function, such that for M ⊆ U , φ(M) is the
maximum number of pairs in P that can be assigned to M without violating
the capacity constraints. Then φ is submodular.

Proof. We show that for all M1,M2 ⊆ U , M1 ⊆ M2 and for all m ∈ U \M2

we have that

φ(M1 ∪ {m})− φ(M1) ≥ φ(M2 ∪ {m})− φ(M2). (1)

This is equivalent to the definition of the submodularity of φ.
Consider a maximum assignment A(M1) for M1 and a maximum assign-

ment A(M2) for M2 obtained from A(M1) as described in Lemma 1. Now we
add m to M2. Let A(M2 ∪ {m}) be the maximum assignment for M2 ∪ {m}
obtained from A(M2) by adding m to M2 and performing the augment-
ing path method until we have a maximum assignment for M2 ∪ {m}. Let
AΠ(M2) be the projection of A(M2 ∪ {u}) to M2 and let AΠ(M1) be the
projection of A(M2 ∪ {u}) to M1. Let |AΠ(M2)| and |AΠ(M1)| be the num-
ber of assigned pairs of P in the assignments. By Lemma 1, AΠ(M2) is
a maximum assignment for M2 and AΠ(M1) is a maximum assignment for
M1. Therefore, φ(M2) = |AΠ(M2)| and φ(M1) = |AΠ(M1)|. Furthermore,
φ(M2 ∪ {u}) = |A(M2 ∪ {u})|.

Consider the pairs Pm ⊆ P assigned to m in the assignment A(M2∪{m}).
Let AΠ(m) be the projection of A(M2 ∪ {m}) to m. Then |AΠ(m)| = |Pm|.
Since AΠ(M2) contains all elements that are assigned to any element of M2

in A(M2 ∪ {m}), clearly |A(M2 ∪ {m})| = |AΠ(M2)|+ |AΠ(m)|, and thus

φ(M2 ∪ {m})− φ(M2) = |AΠ(m)|. (2)

On the other side, the assignment A∗(M1 ∪ {m}) which is obtained as the
union of AΠ(M1) and AΠ(m) is a valid assignment for M1 ∪ {m}. Therefore,
|A(M1 ∪ {m})| ≥ |A∗(M1 ∪ {m})| = |AΠ(M1)|+ |AΠ(m)|, and thus

φ(M1 ∪ {m})− φ(M1) ≥ |AΠ(m)|. (3)
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Algorithm 1: Greedy Algorithm

1: init M ← ∅, A(M)← empty assignment
2: while A(M) is not a feasible assignment do
3: init m∗ ← ∅, opt← 0, tmp← 0
4: for each m ∈ U \M

(* compute all augmenting paths *)
5: tmp← φ(M ∪ {m})− φ(M)
6: if tmp > opt then
7: opt← tmp, m∗ ← m
8: end if
9: end for

10: M ←M ∪ {m∗}, update A(M)
11: end while

Using (2) and (3) we obtain

φ(M1 ∪ {m})− φ(M1) ≥ φ(M2 ∪ {m})− φ(M2) , (4)

completing our proof.

3.3. The Algorithm

Essentially, Algorithm 1 starts with an empty set M and cycles through
the possible middlebox locations m ∈ U \M , always deploying the middlebox
resulting (with the already deployed ones) in the highest function value φ.

Given the submodularity and the augmenting path construction, we have
derived our main result. Per middlebox, an augmenting paths problem is
solved. Using the Hopcroft-Karp algorithm, we can compute all (at most
κ many) augmenting paths starting at a newly added middlebox in time
O(min{κ,

√
|V |} · |E|), where |V | denotes the number of nodes and |E| the

number of edges in B(M).

Theorem 3. Our greedy and incremental middlebox deployment algorithm
computes a O(log n)-approximation.

3.4. Lower Bound and Optimality

Theorem 3 is essentially the best we can hope for:
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Theorem 4. The middlebox deployment problem is NP-hard and cannot
be approximated within c log n, for some c > 0 unless P = NP . Further-
more, it is not approximable within (1 − ε) lnn, for any ε > 0, unless NP
⊂ Dtime(nlog logn).

Proof. We present a polynomial time reduction from the Minimum Set Cover
(MSC) problem, defined as follows: Given a finite set S of n elements and a
collection C of subsets of S. A set cover for S is a subset C ′ ⊆ C such that
every element in S is contained in at least one member of C ′. The objective
is to minimize the cardinality of the set cover C ′.

Consider an instance of the MSC problem: let S = {v1, ..., vn} be a set
of n elements, C = {Si ⊆ S, i = 1, ...,m}. We define the instance of the
corresponding middlebox deployment problem in a network G = (V,E) with
a set of communicating pairs P and stretch ρ = 1 as follows. For each element
v ∈ S, we introduce two nodes vs and vt in V . For each subset Si ∈ C, we
introduce a node vSi

in V as well. The edge set E of the network G = (V,E)
is defined by the following rule: there is an edge (vs, vSi

) ∈ E and an edge
(vSi

, vt) ∈ E iff the corresponding element v is contained in Si. The set of
communicating pairs is defined as P = {(vs, vt) : v ∈ S} and the set of
potential middlebox locations is defined as U = {vSi

: Si ∈ C}. G = (V,E)
is a bipartite graph with partitions U and {vs : v ∈ S} ∪ {vt : v ∈ S}. If
v ∈ S is contained in a set Si ∈ C then there is a path of length 2 between
the corresponding pair (vs, vt) in G. This is also the shortest path between
vs and vt. In the middlebox deployment problem with stretch ρ = 1, a set of
nodes M ⊆ U of minimum cardinality must be selected such that between
each pair (vs, vt) ∈ P there is a route of length of at most 2 and it contains
at least one node of M . By the construction of the network, for each pair
(vs, vt) ∈ P , there is a route vs, vSi

, vt of length 2 in G if and only if v ∈ Si.
Let M ⊆ U be a minimum cardinality solution of the middlebox deployment
problem. The node set M implies a minimum cardinality solution for the
MSC problem and vice versa. This proves the NP-hardness of the problem.

An important property of the above reduction is that it preserves the
approximation factor of the MSC problem. Each deployed middlebox in the
solution of the resulting middlebox deployment problem corresponds to a
selected set of the original MSC problem. Therefore, the optimal solution
of an MSC problem instance and the solution of the corresponding mid-
dlebox deployment problem instance have the same cardinality and any k-
approximate solution for the middlebox deployment problem corresponds to
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a k-approximate solution of the original MSC problem. The solution of the
MSC problem can be obtained from the corresponding middlebox deployment
solution in polynomial time.

The inapproximability results then follow from the combination of the
above reduction, which preserves the approximation factor, and the inapprox-
imability results of the MSC problem by Raz and Safra [35] and by Feige [15].
Raz and Safra [35] proved that the MSC problem is not approximable within
c log n, for some c > 0, unless P = NP . Feige [15] showed the inapproxima-
bility within (1− ε) lnn, for any ε > 0, unless NP ⊂ Dtime(nlog logn). If we
had a polynomial time approximation algorithm for the middlebox deploy-
ment problem with an approximation factor better than (1− ε) lnn, for any
ε > 0, by the above reduction, we would have a better approximation factor
for the MSC problem, as well.

4. Group and Weighted Variant

There are scenarios in which more than two nodes may have to share a
network function. For example, consider the problem of placing a multiplexer
for a group of users involved in a teleconference. Or imagine the problem of
mapping a shared object or entire virtual server server of a multi-user game:
in order to avoid state synchronization overheads, the users should be served
from a single location which is also located close to all the users. Also in the
context of distributed cloud computing, the problem of placing functionality
for larger groups may be relevant. When considering communication groups
of heterogeneous size, it is reasonable to assume that the load induced on
the network function is also heterogeneous. Furthermore, in reality, different
communication pairs will often communicate at different rates, which likely
also results in heterogeneous middlebox loads.

In this section, we show that the weighted communication request variant,
and therefore also the group variant, can be solved by exploiting an interest-
ing connection to energy-efficient scheduling [16, 17, 23]. As we will see, in
order to make this generalization, we will however need to sacrifice the incre-
mental property. Moreover, we need a constant factor resource augmentation
(concretely, a factor of 2).

4.1. Formal Model

Instead of considering communication pairs with unit demands we now
slightly extend the formal model presented in Section 2.1. Concretely, we gen-
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eralize the notion of communication pairs to requests which can be weighted,
i.e. different requests may induce different loads on middlebox instances.
Hence, a communication request p ∈ P may now actually be an tuple of ar-
bitrarily many communication partners. Additionally, to capture the stretch
constraints, we assume that for each request p ∈ P a subset of allowed mid-
dlebox locations Up ⊆ U is computed in a preprocessing step. The task is
again to determine a minimum set of locations M ⊆ U together with an
assignment µ : P →M , such that:

1. Each request p ∈ P is connected to a valid middlebox instance, i.e.
µ(p) ∈ Up holds.

2. For all middlebox instances m ∈ M the load does not exceed the ca-
pacity κ, i.e.

∑
p∈P :µ(p)=m dp ≤ κ holds.

We note that this model naturally generalizes the previously studied model:
the problem instance considering communication pairs P ⊆ V × V with
feasible middlebox locations U ⊆ V and stretch ρ can be modeled by setting
d(s,t) = 1 and U(s,t) = {u ∈ U : d(s, u) + d(u, t) ≤ ρ · d(s, t)} for (s, t) ∈ R.

4.2. Relationship to Datacenter Scheduling

There exists an interesting relationship of this generalized problem to
scheduling jobs in datacenters. Concretely, Khuller et al. consider in [23] the
following scheduling problem. Given are a set of m machines and a set of
n jobs which are to be executed. The processing time of job j on machine
i is given as pi,j and each machine i has an activation cost ai. The task is
to find a set of machines to activate, such that either (1) the makespan is
minimized while the activation costs are bounded by a budget, or (2) the
activation costs are minimized while the makespan is bounded by a time
budget T . The makespan here refers to the maximum cumulative processing
time of jobs assigned to a single machine.

For the latter problem variant, i.e. when minimizing the activation costs
given a bound T on the makespan, Khuller et al. [23] present a greedy
(2, lnn + 1) approximation algorithm, such that the solution’s activation
cost is within a factor of 1 + lnn, where n denotes the number of jobs, of the
optimal activation cost and the makespan of the assignment is bounded by
two times the bound T (if a solution exists).

By a reduction of the generalized (weighted) variant of the network func-
tion placement problem to the datacenter scheduling problem, we obtain the
following:
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Theorem 5. The generalized network function placement problem can be
(2, 1 + ln |U |)-approximated via the greedy algorithm of Khuller et al. [23] in
polynomial time, i.e., the number of deployed middleboxes exceeds the min-
imum number of middleboxes by a factor of at most (1 + ln |U |) and the
maximum load on each middlebox is at most 2 · κ.

Reduction. Given an instance to the generalized network function placement
problem, we model the given instance as a datacenter scheduling instance as
follows. The machines correspond to middlebox locations U , and the jobs
correspond to the request set R. The processing time pu,p for scheduling
job (request) p on machine (middlebox) u is set to equal the demand of the
request, i.e. dp, if p may be assigned to u. In case that request p ∈ P
cannot be assigned to the location u, i.e. if p /∈ Up holds, we set pu,p = ∞
such that p can never be scheduled on u. Lastly, the activation costs of all
machines are set to 1, i.e. au = 1 holds for all machines (middlebox locations)
u ∈ U , and the bound on the makespan is set to κ. If a solution to the
generalized network function placement instance using h middleboxes (not
exceeding the middlebox capacity κ) exists, then the greedy approximation
of Khuller et al. [23] yields a solution that uses at most h·(1+lnm), m = |U |,
many machines (i.e. middlebox instances) and that exceeds the makespan
(capacity) of any machine (middlebox instance) by at most a factor of 2.

4.3. Greedy Approximation for the Generalized Middlebox Deployment

In the following section we present the greedy approximation algorithm
of Khuller et al. [23] in the light of the middlebox deployment problem, i.e.
simplified to the case in which activation costs of machines are uniform and
job processing times are independent of the machine. We include our adap-
tation to the middlebox deployment problem for the sake of completeness,
since we evaluate its performance in Section 5, as well as to highlight, that
the incremental deployment property is lost in this case.

The greedy approximation for the generalized setting works similarly to
greedy algorithm presented in Section 3 by iteratively selecting the loca-
tion maximizing the number of connected requests. However, while for the
simpler problem variant augmenting paths could be employed to exactly de-
termine the next optimal location, this is not possible in the weighted case:
determining the optimal assignment of requests under non-uniform demands
is NP-hard (cf. [23, 40]). Instead, given a set M ⊂ U of middlebox locations,
the maximum fractional assignment is computed using the Linear Program 1:
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LP 1: Maximum Fractional Assignment

max f(M) =
∑
p∈P

∑
m∈M∩Up

xm,p

subject to
∑

m∈M∩Up

xm,p≤ 1 ∀ p ∈ P∑
p∈P :m∈Up

dp · xm,p≤ κ ∀ m ∈M

0 ≤ xm,p ≤ 1 ∀ p ∈ P,m ∈M ∩ Up

Algorithm 2: Generalized Greedy Algorithm

1: init M ← ∅
2: while |M | < |U | and f(M) ≤ |P | − 1 do
3: choose m ∈ U \M s.t. f(M ∪ {m})− f(M) is maximized
4: set M = M ∪ {m}
5: end while
6: if f(M) ≤ |P | − 1 then
7: return ‘no solution exists’
8: else
9: place middleboxes at locations in M

10: extract request-middlebox assignment from solution to LP 1
11: end if

the variable xm,p indicates for each valid combination of (placed) middlebox
m ∈M and request p the fractional assignment of p tom. The constraints en-
force that any request is (fractionally) assigned to at most one location and
that the (fractional) assignments do not violate the middlebox capacities.
Accordingly, starting with no placed middleboxes (M = ∅), the generalized
greedy algorithm (see Algorithm 2) selects in each iteration the middlebox
m ∈ U \M maximizing the fractional assignment value f(M ∪ {m})−f(M).
The algorithm proceeds until strictly more than |P |− 1 many requests could
be assigned; stopping prematurely is required (and feasible) due to the frac-
tional nature of the solution and the rounding procedure to obtain an integral
assignment later on (cf. [23]). In particular, to compute the integral assign-
ments of requests P to the selected middleboxes M , the rounding procedure
by Tardos and Shmoys [40] is employed:
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1. A bipartite graph B(~x) is constructed from the fractional LP solution ~x
of LP 1: one color class consists of the request nodes corresponding to P
and the other color class represents (copies) of the middlebox locations
of M . In particular, each middlebox location m ∈M is represented by
d
∑

p∈P :m∈M∩Up
xm,pe many nodes. The weighted edges of B(~x) are also

created according to the vector ~x, such that the sum of weights at each
request node (in B(~x)) sums to 1 and such that the cumulative weight
at the nodes corresponding to a single middlebox location m ∈ M
equals

∑
p∈P xm,p (cf. [40] for further details).

2. An (integral) matching X covering all request nodes of minimum cost
is computed in B(~x). Such a matching can be easily computed as a
minimum-cost flows of value df(M) =

∑
p∈P,m∈M∩Up

xm,pe = |P |.
3. The request j is assigned to middlebox location i if j is connected to a

copy of i in the matching X.

The above procedure always yields a matching of cost df(M) =∑
p∈P,m∈M∩Up

xm,pe = |P |, while the capacities are violated by a factor of

at most 2 (by cleverly creating the edges in B(~x)) [40].
The correctness of the algorithm follows from the correctness of [23]

and [40] and we lastly note that the algorithm does not allow for incremental
deployments: whenever a middlebox m is added to M in Algorithm 2, pre-
viously connected (accepted) requests might be disconnected (preempted),
since solutions to the fractional matching solution computed using LP 1 are
computed independently of previous assignments.

Name Type |V | |E|
Quest Continent 20 62

GtsHungary Country 30 62
Geant Continent 40 122
Surfnet Country 50 136

Forthnet Country 62 124
Telcove Country 71 140
Ulaknet Country 82 164

Name Type |V | |E| |D|
nobel-eu Continent 28 41 378
cost266 Continent 37 55 1,332

germany50 Country 50 88 662
ta2 Country 65 108 1,869

Figure 5: Topology Zoo Instances (left) as well as SNDlib instances (right) used in the
evaluation. |D| denotes the number of defined end-to-end communication requests.
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5. Evaluation

In order to complement our formal analysis, we conduct a simulation
study comparing the approximation algorithms presented above to the re-
spective optimal solutions computed using Integer Programming (IP). We
evaluate the performance of the greedy approximation algorithm in terms of
number of installed middleboxes and runtime. Furthermore, we explore the
performance of the approximation algorithm for the weighted variant and
when incrementally deploying single middleboxes.

Our computational study encompasses more than 10,000 instances, which
are all generated at random based on real-world wide-area network topolo-
gies. The results of our study indicate that the approximation algorithms
presented in this paper typically yield good results and place only marginally
more middleboxes than in the optimal solution. However, based on the uni-
formity of the generation procedure (cf. Section 5.1), we note that our study
captures only the average case behavior under uniform communication de-
mands between nodes in the network. To enable the future study of our algo-
rithms in different settings, we have made our evaluation framework (Python
3.6) publicly available on GitHub [37].

All experiments were conducted on servers with two Intel XEON L5420
processors (8 cores overall) equipped with 16 GB RAM. The runtimes we
report on are wall-clock time.

5.1. Datasets

We have generated two datasets, one for the unweighted approximation
algorithm presented in Section 3 and one for the weighted approximation
algorithm presented in Section 4.

For the unweighted variant, we use real-world wide-area topologies ob-
tained from the topology zoo collection [24]. As shown in Figure 5 (top), the
topologies are either country-wide or continent-wide ISP, backbone, or – in
case of Geant – research networks. The topologies were selected so that the
number of nodes is equally spread across the range 20 to 82. Additionally,
the topologies provide geographical information for nodes, such that commu-
nication latencies can be estimated based on the geographical distance.

For each graph, we generate instances as follows: Each of the |V | · (|V | −
1)/2 potential communication pairs is selected with probability p, set to 0.2,
0.3, or 0.4, respectively. Hence, the number of expected communication pairs
to be created overall is p · |V | · (|V | − 1)/2.
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To ensure comparability across topologies, all nodes are allowed to host
middlebox functionality. The capacity κ is set to d2 · (|V | − 1) · pe: Hence,
(in expectancy) around |V |/4 many middleboxes are likely to be neces-
sary to serve the communication pairs. All communication pairs have the
same (latency) stretch. Concretely we set the maximal allowed latency to
{1.00, 1.05, 1.10, . . . 2.50} times the latency of the shortest path between the
nodes of the communication pair. For each topology and each probability,
we generated 11 scenarios uniformly at random, yielding more than 7,000
instances overall.

We employ a similar approach for the evaluation of the approximation al-
gorithm for the weighted variant. Concretely, we consider four instances (see
Figure 5 (bottom)) of the SNDlib [32], which already define communication
pairs exhibiting a diverse demand structure. Analogously, we again consider
stretches of {1.0, 1.05, . . . , 2.5}. To generate multiple instances from a single
SNDlib instance, we sample requests by selecting each original communica-
tion pair independently at random with a probability of 0.5. We again allow
to place middleboxes on all nodes in the network and set the capacity of each
of the potential middlebox locations to 4 · D/|V |, where D denotes the cu-
mulative demand of the chosen requests, such that at least 1/4 many nodes
must be equipped with middleboxes. We generate 3,100 scenarios in total by
generating 25 instances per stretch parameter and per topology.

5.2. Baseline Algorithms

Besides employing the approximation algorithms presented above, we use
Integer Programs to compute optimal solutions. Integer Program 2 com-
putes optimal solutions for the middlebox deployment problem with unitary
demands1 and works as follows:

For all potential communication pairs p ∈ P we define Up = {u ∈ U :
(s, u) + d(u, t) ≤ ρ · d(s, t)} to denote the feasible set of middlebox locations
which may serve p (cf. Section 4.1). Clearly, Up can be precomputed effi-
ciently. For all potential middlebox locations u ∈ U , we introduce the binary
variable xu ∈ {0, 1}, which indicates whether on u a middlebox is placed.
For all p ∈ P, u ∈ Up, we introduce the binary variable xu,p ∈ {0, 1}. The
variable xu,p indicates that the pair p = (s, t) ∈ P is assigned to the node
u ∈ Up, s.t. the path stretch from s to t through u is at most ρ.

1The existence of a 0-1 integer linear program, together with our NP-hardness result,
also proves the NP-completeness [22].
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Integer Program 2: Minimizing the Number of Middleboxes

min
∑
u∈U

xu (5)

subject to
∑
u∈Up

xu,p= 1 ∀ p ∈ P (6)∑
p∈P :u∈Up

xu,p≤ κ · xu ∀ u ∈ U (7)

xu ∈ {0, 1} ∀u ∈ U , xu,p ∈ {0, 1} ∀ p ∈ P, u ∈ Up (8)

Integer Program 3: Maximum Assignment for exactly n Middleboxes

max
∑

p∈P,u∈Up

xu,p (9)

subject to
∑
u∈Up

xu,p≤ 1 ∀ p ∈ P (10)∑
p∈P :u∈Up

xu,p≤ κ · xu ∀ u ∈ U (11)∑
u∈U

xu = n (12)

xu ∈ {0, 1} ∀u ∈ U , xu,p ∈ {0, 1} ∀ p ∈ P, u ∈ Up (13)

The Objective Function (5) requires that a minimum cardinality middle-
box set must be selected. Constraints (6) declare that each pair p = (s, t) ∈ P
is assigned to exactly one node u ∈ Up, hence satisfying the constraint on
the stretch. Constraints (7) describe that the capacity limit κ must not be
exceeded at any node, and nodes u ∈ U which are not selected in the solution
M (where the corresponding variable xu becomes 0 in the solution) are not
used by any pair p ∈ P .

This Integer Program can easily be adapted for the weighted (and or
group) variant by adapting Constraint (7). Concretely, Constraint 7 needs
to include the additional factor dp, denoting the demand of request p:∑

p∈P

dp · xup ≤ κ · xu ∀u ∈ U .

As we are also interested in studying the opportunities arising in incremental

23



deployment scenarios, we also introduce IP 3 which computes the maximum
assignment for any given number of middleboxes. Concretely, given a num-
ber n ∈ N of middleboxes to activate (see Constraint 12), the number of
connected communication pairs is maximized (see Constraint 9), while en-
suring that a communication pair may at most be assigned to exactly one
middlebox (see Constraint 10).

5.3. Runtime and Number of Middleboxes

We first study the runtime and the empirical approximation factor of
the approximation algorithm 1 on the randomly generated topology zoo in-
stances. Our implementation (cf. [37]) may use multi-threading for the com-
putation of the middlebox-selection in Algorithm 1 (Lines 4-9). The compu-
tation of the Integer Program solutions is implemented via Gurobi 6.5 using
a single thread.

In Figure 6 (center), the average runtime of the greedy (G) approximation
algorithm with 1 and 8 threads, and of the Integer Program (IP) is depicted.
Here, each data point represents the aggregate of 31×11 = 341 experiments.
The average runtime of the sequential greedy-algorithm lies below the one
of the IP for 20 and 30 nodes, and the greedy algorithm with 8 threads
clearly outperforms the IP on the topologies with 62, 71 and 82 nodes. On
the largest topology the computation of the greedy algorithm can be sped
up by a factor of around 5, by using 8 threads. Furthermore, the runtime
of the IP is on the largest topology one magnitude higher than the one of
the 8-threaded greedy algorithm. The right plot of Figure 6 depicts the
runtime of the 8-threaded greedy variant and the IP on the largest topology
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Figure 6: Left: Empirical approximation ratio, i.e. the number of placed middleboxes by
the greedy approximation divided by the optimum number. Center and left: Runtime of
the algorithms as a function of the different topologies and as a function of the stretch on
the Ulaknet topology.
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as a function of the stretch. Starting at a stretch of 1.3, the runtime of
the IP increases dramatically. This is due to the fact that by increasing the
stretch, the number of potential middleboxes, serving a communication pair,
increases. In fact, on the largest topology, the IP consisted of up to 90k
variables.

The right box plot of Figure 6 depicts the quality of the solutions found
by the approximation algorithm, namely the number of middleboxes opened
divided by the optimal number of middleboxes computed by the IP. The
median always lies below 1.5 and the maximum is close to 1.8.

5.4. Weighted Requests

Next, we study the performance of the approximation algorithm discussed
in Section 4, for weighted (or group) problems (cf. Algorithm 2). As dis-
cussed in Section 5.1, we use SNDlib instances exhibiting a diverse demand
structure (see the left plot of Figure 7).

As a first result, the center plot of Figure 7 shows the averaged relative
number of deployed middleboxes of the greedy algorithm with respect to
the optimal solution of the Integer Program. The greedy approximation
algorithm only seldomly opens – on average – more than 20% middleboxes
more than the optimal algorithm. Note that, in some cases, the number of
deployed middleboxes lies even beneath the optimal one. This is possible,
as the considered algorithm may (cf. Figure 7 right) violate the middlebox
capacity up to a factor of 2. Indeed, the approximation algorithm violates
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Figure 7: Left: The demand structure on the SNDlib instances as empirical cumulative
distribution function. Center: The relative number of opened middleboxes compared to
the solution of the baseline Integer Program. Right: The relative load, i.e. load divided
by the available capacity, on the middleboxes computed by the (2, 1+lnn)-approximation
algorithm.
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capacities in less than 25% of all cases and the median load lies beneath
100%.

5.5. Incremental Middlebox Activation

Lastly, we study scenarios in which middleboxes are added one after an-
other. Concretely, we assume that all communication pairs are known in
advance while the network operator can only incrementally install single
middleboxes (e.g. due to the associated cost). The greedy algorithm al-
ways places one additional middlebox while not being allowed to change
previously selected middlebox locations. We study the number of assigned
communication pairs of the greedy algorithm compared to the optimum num-
ber of assignments when middlebox locations may be arbitrarily selected. To
compute the optimum number of assignments the Integer Program 3 is used.

For this set of experiments, we again use the unit-demand instances based
on the topology zoo networks (cf. Section 5.1), while only fixing the proba-
bility to create communication pairs to p = 0.3.

We present the results of this set of experiments in Figure 8. The left plot
depicts the relative difference of assigned communication pairs when using
the greedy algorithm compared to the Integer Programming (IP) baseline.
Concretely, the relative difference is defined as (φIP−φG)/φIP, where φIP and
φG denotes the number of assigned communication pairs of the IP and the
greedy algorithm, respectively. The rows of the left plot averages the results
for all scenarios having the same number of minimal middleboxes to serve
all communication pairs. The number of scenarios averaged in this way is
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Figure 8: Left: The averaged relative difference in the number of served communications
pairs depending on the number of optimally placed middleboxes (y-axis). Right: Minimum
number of middleboxes computed by the Integer Program; the results in the left plot are
averaged over the corresponding number of scenarios accordingly.
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depicted in the right plot of Figure 8: the number of scenarios for which 10
middleboxes suffice and which are averaged in the row 10 is around 500.

Considering any row, we see that the greedy algorithm assigns nearly al-
ways as many communication pairs until the number of middleboxes reaches
the optimum (minimal) number of middleboxes. After coming close to the op-
timum number of middleboxes, the relative difference in assignments reaches
a maximum valiue of 0.15 and then diminishes only slightly with each ad-
ditional greedily placed middlebox. The ability to (re-)place middleboxes in
an arbitrary fashion hence only becomes important when sufficiently many
middleboxes were already placed to serve almost all communication pairs.

6. Summary and Conclusion

This paper initiated the study of the network function placement prob-
lem which is motivated by the increasing flexibilities of modern virtualized
networked systems. Our main contribution is a combinatorial proof of the
submodularity of this problem and an incremental log-approximation net-
work function placement algorithm. We also initate the study of a greedy
approach for a weighted group-version of the problem. Our simulation results
show that this approach computes a nearly optimal placement for real world
network instances.

We understand our work as a first step, and believe that our paper opens
several interesting directions for future research. In particular, it will be
interesting to know whether good approximations exist for the incremental
deployment of entire group requests as well.
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