Asynchronous Filling by Myopic Luminous Robots

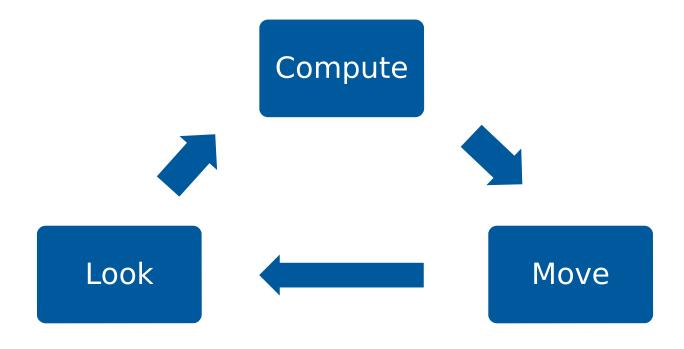
Attila Hideg and <u>Tamás Lukovszki</u>

Budapest University of Technology and Economics, Hungary Eötvös Loránd University (ELTE), Budapest, Hungary

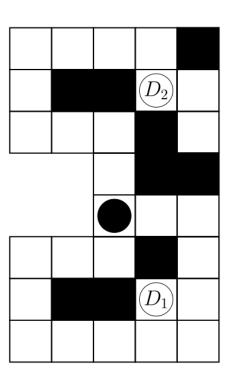
Attila.Hideg@aut.bme.hu lukovszki@inf.elte.hu

FILLING, UNIFORM DISPERSING

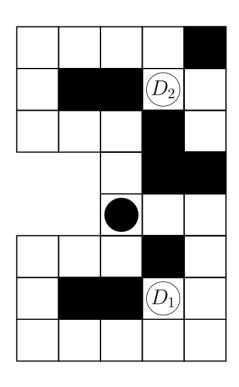
- n robots
- Area:
 - represented by a graph of n vertices
 - unknown
 - connected
 - For each vertex, the adjacent vertices are arranged in a fixed cyclic order
- Robots enter at "Door" vertices
- Robots can move to neighboring vertices
- Robots have to occupy all vertices
- Collision must be prevented


ROBOTS

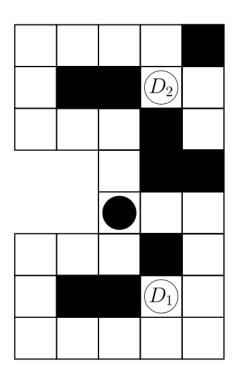
- Robots have restricted capabilities
 - homogeneus
 - anonymous
 - limited viewig range
 - limited memory
 - no explicit communication
 - visible lights
 - asynchronous

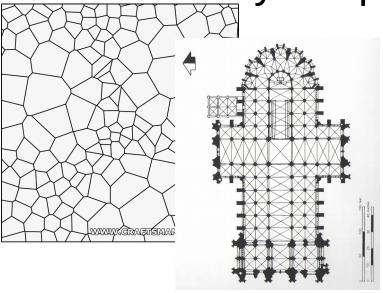


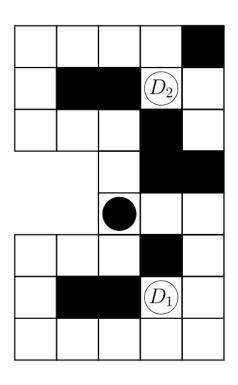
https://ssr.seas.harvard.edu/

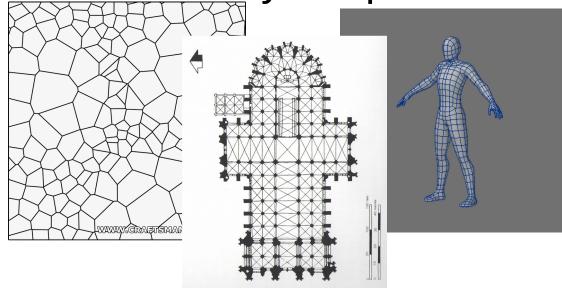

LOOK-COMPUTE-MOVE CYCLES

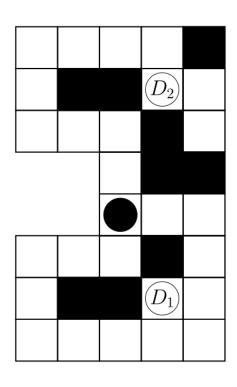
Orthogonal

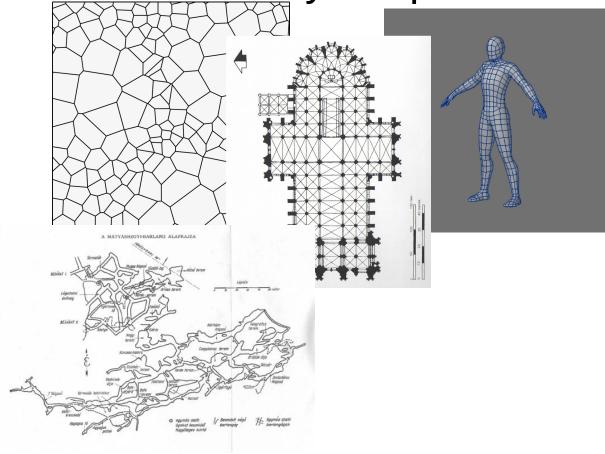


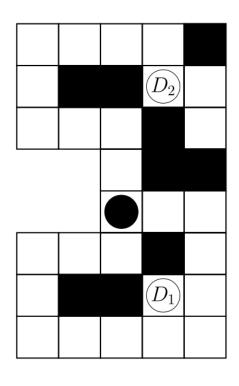

Orthogonal

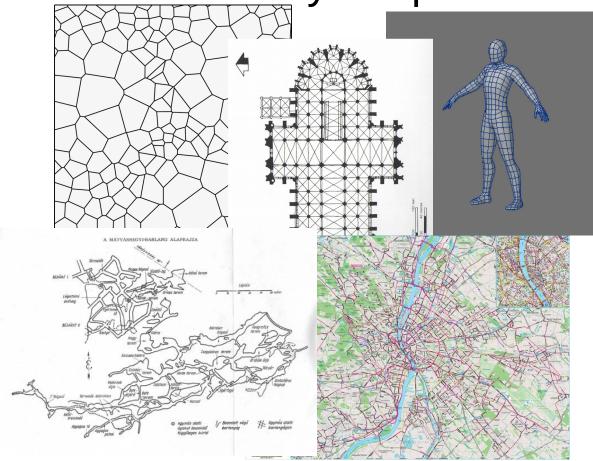



Orthogonal

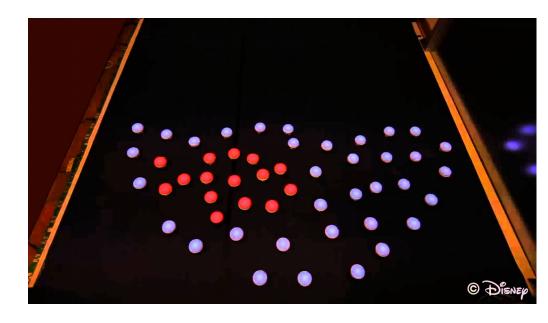



Orthogonal




Orthogonal

Orthogonal



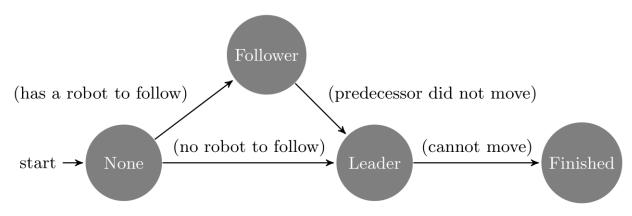
STATE OF THE ART – COLLISIONLESS DISPERSION

Method	FSYNC/ ASYNC	Doors	Viewing range	Comm. range	Memory bits	Area (Orthogonal/ Arbitrary)
BFLF, DFLF [Hsiang et al. 2004]	FSYNC	Single	2	2	2	0
TALK [Barrameda et al. 2013]	ASYNC	Single	2	2	4	0
MUTE [Barrameda et al. 2013]	ASYNC	Single	6	-	9	0
MULTIPLE [Barrameda et al. 2008]	ASYNC	Multiple	3	- k colors	4	0
Single Door [Hideg, Lukovszki 2017]	FSYNC	Single	1	-	13	0
Multiple Door [Hideg, Lukovszki 2017]	FSYNC	Multiple	1	-	13	0
VCM [Hideg, Lukovszki 2018]	FSYNC	Single	1	-	Ο(Δ)	Α
MD-VCM [Hideg, Lukovszki 2018]	FSYNC	Multiple	1	-	O(Δ·log k)	Α

LUMINOUS ROBOTS

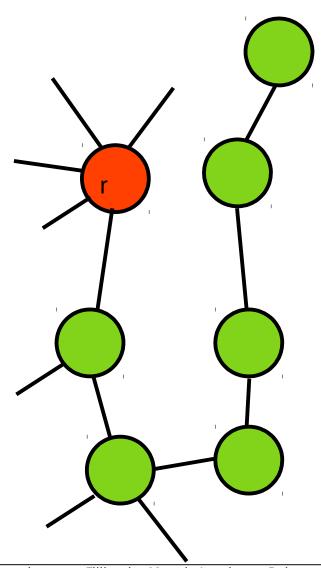
- Robots are enhanced with VISIBLE LIGHTS
- that can change color
- Model [Peleg 2005]

Pixelbots, Disney & ETH Zürich

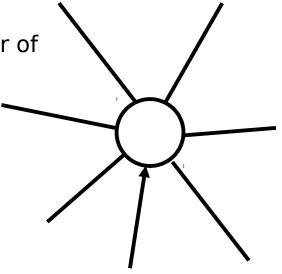

• FSYNC ≰ ASYNC^{O(1)} and ASYNC^{O(1)} ≰ FSYNC [D'Emidio et al. 2016]

OUR CONTRIBUTION

Method	FSYNC/ ASYNC	Doors	Viewing range	Runtime #async rounds	Persistent memory bits	Colors	Area (Orthogonal/ Arbitrary)
PACK	ASYNC	Single	1	O(n²)	O(log Δ)	Δ+4	Α
Mod-PACK	ASYNC	Single	1	$O(n^2 \log \Delta)$	O(log Δ)	O(1)	Α
BLOCK	ASYNC	Single	2	O(n)	O(log Δ)	Δ+4	Α
k-Door- BLOCK	ASYNC	Multiple	2	O(n)	$O(log(\Delta+k))$	Δ+k+4	Α

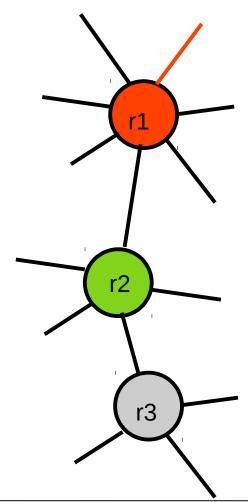

First asymptotic bounds for filling in the ASYNC model. Only termination in finite time has been proven in previous works.

 Follow-the-Leader basic concept:

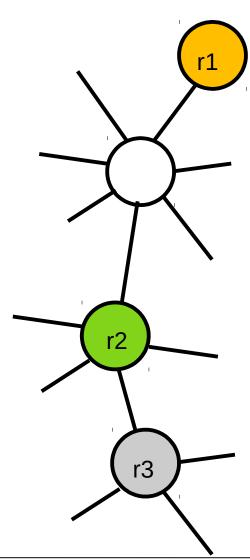


- Mimics a DFS traversal of the unknown graph
- Virtual Chain: Path of the current Leader from the Door
 - All not "Finished" robots are on the virtual chain
- Tasks to solve:
 - Prevent collision

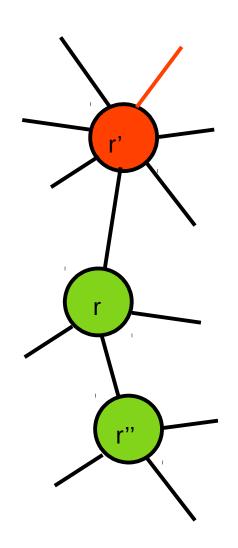
- Leader moves to unvisited vertices
- Packed state: Each Follower is immediately behind its predecessor
 - All vertices of the chain are occupied by a robot
- Leader only moves, when packed state is reached
 - No other robot can move in this state
 - Collision-freeness


- $\Delta+4$ colors:
 - Δ colors (DIR) indicating the direction of the target vertex (relative to the entry direction in cyclic order of neighbors)
 - 2 colors (CONF, CONF2) for confirmation
 - Robot can only move if the successor is behind it and the DIR color is confirmed
 - 1 color (MOV) during movement
 - Light is off (considered as color)
- Leader moves to an unoccupied neighboring vertex if exists.
- If there is no unoccupied neighboring vertex, then
 - the Leader switches to Finished state and
 - the successor becomes the new Leader "Taking the Leadership"

Entry direction

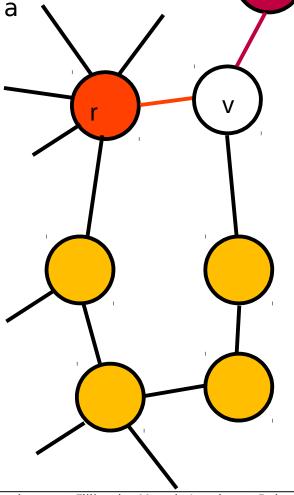

Leader:

- Can only move to an unvisited vertex. When it wants to move, it
- shows the direction: setting the DIR color, and
- it waits until its successor allows to move by setting its CONF color. During the movement, the Leader shows the MOV color.
- When its successor sets CONF color, the chain is in Packed state.



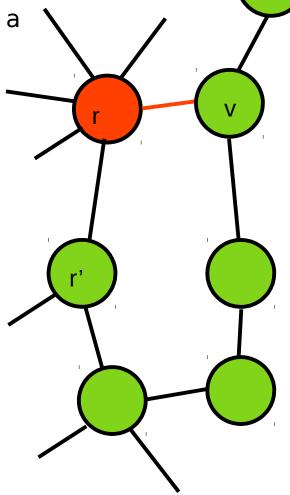
Leader:

- Can only move to an unvisited vertex. When it wants to move, it
- shows the direction: setting the DIR color, and
- it waits until its successor allows to move by setting its CONF color. During the movement, the Leader shows the MOV color.
- When its successor sets CONF color, the chain is in Packed state.


- Follower: Follows its predecessor.
 - Follower r sets the CONF color if and only if
 - i) the predecessor of r is showing its direction, and
 - ii) the successor r'' of r if exists have set its CONF color (i.e. the successor knows in which direction r will move).
 - This allows the predecessor r' of r to move to its destination knowing:
 - i) all the robots behind r' have set CONF color, and
 - ii) the robots behind r' will not move until r' moved.
 - When r' is the Leader, the chain is in Packed state.

Leader target change:

• It might happen that the Leader r chooses a target v, which is unoccupied when r


performs its Look operation.

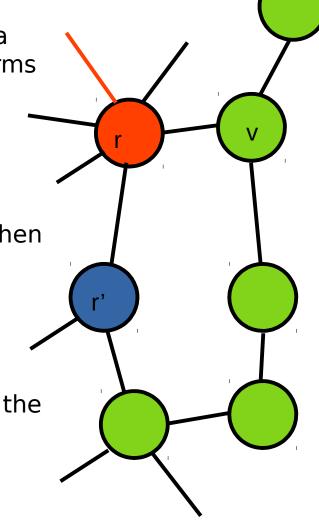
Leader target change:

 It might happen that the Leader r chooses a target v, which is unoccupied when r performs its Look operation.

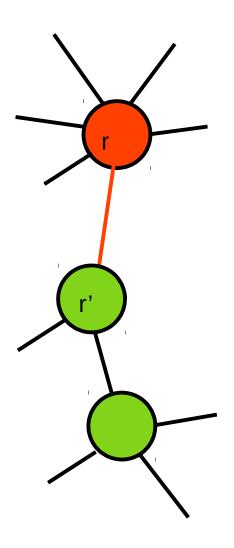
 When the successor r' of r sets the CONF color, another robot already moved to v.

• Leader target change:

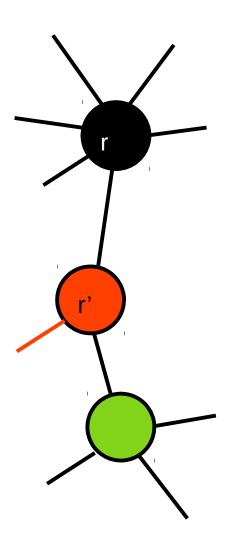
• It might happen that the Leader r chooses a target v, which is unoccupied when r performs its Look operation.


 When the successor r' of r sets the CONF color, another robot already moved to v.

• If r has an unoccupied neighboring vertex then

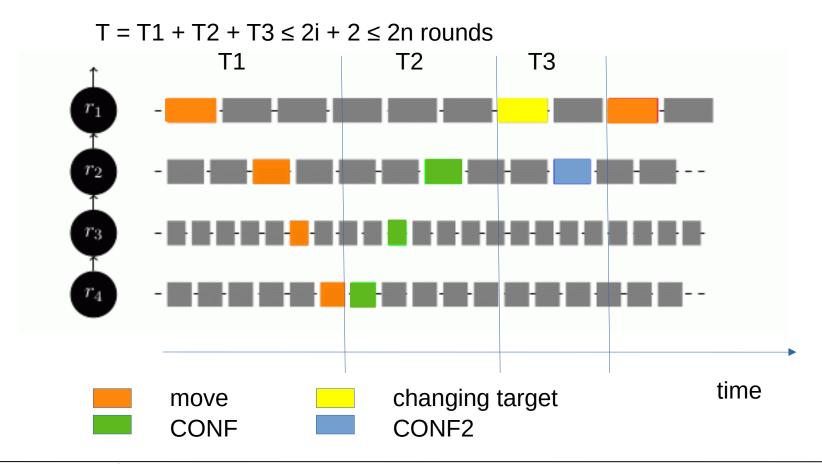

 r sets the new DIR color and waits until its successor sets the CONF2 color.

r moves to the target.


 Otherwise, r switches to Finished state and the Leadership is taken by r'

- Taking the Leadership:
 - When the Leader r cannot move anymore, its successor has to become the new Leader.
 - •r sets its DIR color to Δ.
 - color Δ indicates that the Leader cannot move anymore and wants to switch to Finished state, and the leadership must be taken by its successor.
 - successor r' of r sets its CONF color, waits for the previous Leader to turn off its light.
 - Then r' becomes the Leader.
 r' tries to move to an unvisited vertex.

- Taking the Leadership:
 - When the Leader r cannot move anymore, its successor has to become the new Leader.
 - •r sets its DIR color to Δ.
 - color Δ indicates that the Leader cannot move anymore and wants to switch to Finished state, and the leadership must be taken by its successor.
 - successor r' of r sets its CONF color, waits for the previous Leader to turn off its light.
 - Then r' becomes the Leader.
 r' tries to move to an unvisited vertex.


PACK ANALYSIS

- Theorem 1. Algorithm PACK fills a connected graph in the ASYNC model by robots having a
 - visibility range of 1 hop,
 - $O(\log \Delta)$ bits of persistent storage, and
 - Δ + 4 colors, including the color when the light is off.
 - PACK runs in O(n²) asynchronous rounds.

PACK - ANALYSIS

Proof idea for the running time:

- T: time until occupying a new unvisited vertex
- a) Leader has an unoccupied neighboring vertex

PACK - ANALYSIS

Proof idea for the running time:

b) Leader has no unoccupied neighboring vertex Taking the leadership : ≤ 5 rounds

Each vertex can take the leadership only once. Time for all leadership taking: ≤ 5 n rounds.

Overall time for PACK: \leq n (2n + 5) = O(n²) rounds.

O(1) COLORS - MOD-PACK ALGORITHM

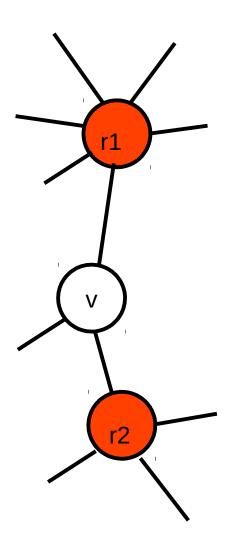
- •Idea:
 - •Encode the $L = \Delta + 4$ colors by a sequence of $\lceil \log L \rceil$ bits and
 - •transmit this sequence by emulating the Alternating Bit Protocol (ABP), also referred to as Stop-and-wait ARQ

- Theorem 2: The modified PACK algorithm fills a connected graph in the ASYNC model by robots having a
 - visibility range of 1 hop,
 - •O($\log \Delta$) bits of persistent storage, and
 - •O(1) colors.
 - •The algorithm needs $O(n^2 \log \Delta)$ asynchronous rounds.

2-HOP VISIBILITY – BLOCK ALGORITHM

• Idea:

- The Leader r sees all robots, that could move to the same target
- The Leader only chooses a vertex v as the target, if the 1 hop neighborhood of v does not contain any other robot with the light turned on
 - except when the light showing direction Δ (wants to switch to Finished state)
- A vertex neighboring to a robot with its light on (except the color Δ) is considered as blocked vertex for the Leader.

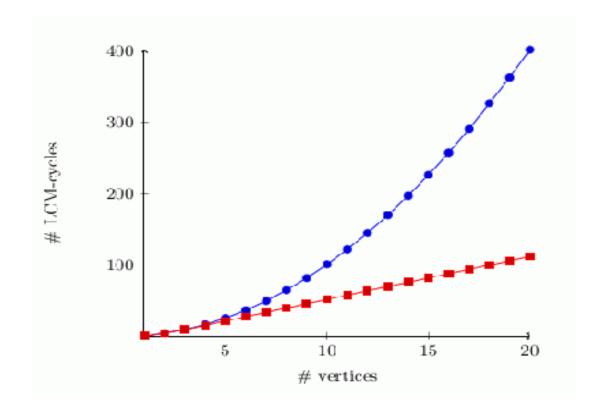

VISIBILITY: 2-HOP – BLOCK ALGORITHM

Theorem 3: Algorithm BLOCK fills the area represented by a connected graph in the ASYNC model by robots having a

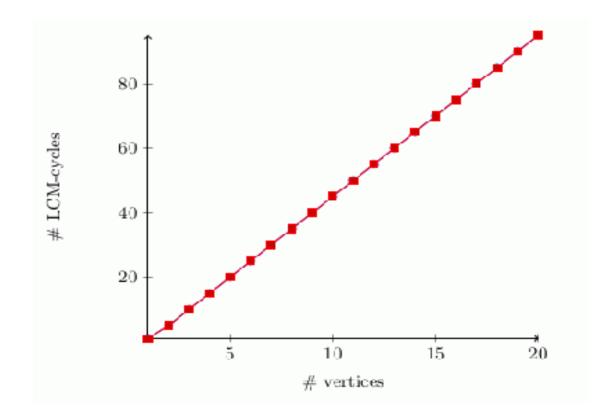
- visibility range of 2 hops,
- O($\log \Delta$) bits of persistent storage, and using
- $^{\bullet}\Delta$ + 4 colors, including the color when the light is off.

MULTIPLE DOORS – K-DOOR-BLOCK ALGORITHM

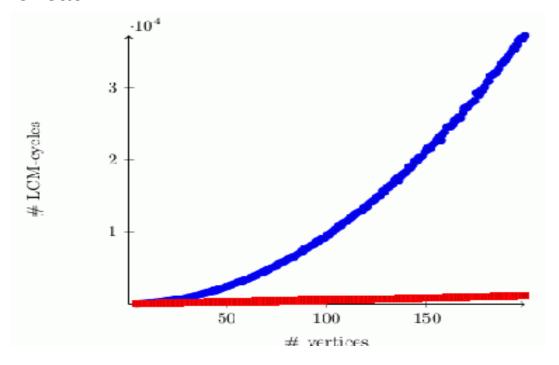
- k Doors, k ≥2
- k chains
- Assume, robots entering from different doors have distinct colors.
- Priority protocol:
 - We define a strict total order between these colors, called priority order.
 - Taking leadership: new Leader takes the color of the old (Finished) Leader



MULTIPLE DOORS – K-DOOR-BLOCK ALGORITHM

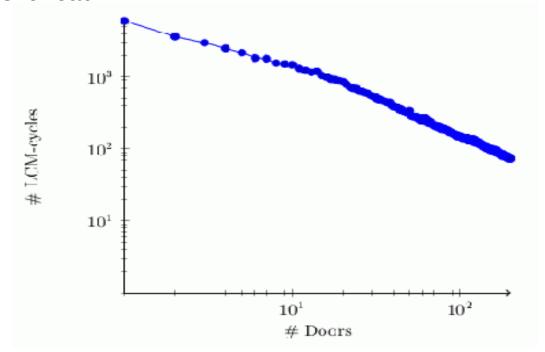

Theorem 4: Algorithm BLOCK extended with the Priority protocol solves the k-Door Filling problem, $k \ge 2$, in the ASYNC model with robots having a

- visibility range of 2 hops,
- O($\log \Delta$) bits of persistent memory and using
- $^{\bullet}\Delta$ + k + 4 colors including the color when the light is off.
- BLOCK needs O(n) asynchronous rounds.


Synchronous scheduler Line graph, n = 1,...,20

Synchronous scheduler Star graph, n = 1,...,20

Synchronous scheduler Delaunay graph, vertices distributed uniformly at random in $[0,1]^2$ n = 3,...,200 50 runs for each n


Synchronous scheduler

Delaunay graph, vertices distributed uniformly at random in [0,1]²

n = 1000

k = 1,...,200

50 runs for each k

SUMMARY

Method	FSYNC/ ASYNC	Doors	Viewing range	Runtime #async rounds	Persistent memory bits	Colors	Area (Orthogonal/ Arbitrary)
PACK	ASYNC	Single	1	O(n²)	O(log Δ)	Δ+4	Α
Mod-PACK	ASYNC	Single	1	$O(n^2 \log \Delta)$	O(log Δ)	O(1)	Α
BLOCK	ASYNC	Single	2	O(n)	O(log Δ)	Δ+4	Α
k-Door- BLOCK	ASYNC	Multiple	2	O(n)	$O(log(\Delta+k))$	Δ+k+4	Α

First asymptotic bounds for filling in the ASYNC model. Only termination in finite time has been proven in previous works.

SUMMARY

Method	FSYNC/ ASYNC	Doors	Viewing range	Runtime #async rounds	Persistent memory bits	Colors	Area (Orthogonal/ Arbitrary)
PACK	ASYNC	Single	1	O(n²)	O(log Δ)	Δ+4	Α
Mod-PACK	ASYNC	Single	1	$O(n^2 \log \Delta)$	O(log Δ)	O(1)	Α
BLOCK	ASYNC	Single	2	O(n)	O(log Δ)	Δ+4	Α
k-Door- BLOCK	ASYNC	Multiple	2	O(n)	$O(log(\Delta+k))$	Δ+k+4	Α

First asymptotic bounds for filling in the ASYNC model. Only termination in finite time has been proven in previous works.

Open question:

Can the runtime be reduced for robots with visibility range 1?

Thank you for your attention!