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Abstract The Burrows-Wheeler transformation is used for effective data
compression, e.g., in the well known program bzip2. Compression and de-
compression are done in a block-wise fashion; larger blocks usually result
in better compression rates. With the currently used algorithms for de-
compression, 4n bytes of auxiliary memory for processing a block of n
bytes are needed, 0 < n < 232. This may pose a problem in embed-
ded systems (e.g., mobile phones), where RAM is a scarce resource. In
this paper we present algorithms that reduce the memory need without
sacrificing speed too much.
The main results are: Assuming an input string of n characters, 0 <
n < 232, the reverse Burrows-Wheeler transformation can be done with
1.625 n bytes of auxiliary memory and O(n) runtime, using just a few
operations per input character. Alternatively, we can use n/t bytes and
256 t n operations. The theoretical results are backed up by experimental
data showing the space-time tradeoff.

1 Introduction

The Burrows-Wheeler transformation (BWT) [6] is at the heart of modern, very
effective data compression algorithms and programs, e.g., bzip2 [13]. BWT-based
compressors usually work in a block-wise manner, i.e., the input is divided into
blocks and compressed block by block. Larger block sizes tend to result in better
compression results, thus bzip2 uses by default a block size of 900,000 bytes and
in its low memory mode still 100,000 bytes. The standard algorithm for decom-
pression (reverse BWT) needs auxiliary memory of 4 bytes per input character,
assuming 4-byte computer words and thus n < 232. This may pose a problem in
embedded systems (say, a mobile phone receiving a software patch over the air
interface) where RAM is a scarce resource. In such a scenario, space requirements
for compression (8n bytes when a suffix array [10] is used to calculate the for-
ward BWT) is not an issue, as compression is done on a full fledged host. In the
target system, however, cutting down memory requirements may be essential.

1.1 The BWT Backtransformation

We will not go into details of the BW-transformation here, as it has been de-
scribed in a number of papers [2,4,6,7,8,11] and tutorials [1,12] nor do we give a



proof of the reverse BWT algorithm. Instead, we give the bare essentials needed
to understand the problem we solve in the following sections. The BWT (con-
ceptually) builds a matrix whose rows contain n copies of the n character input
string, row i rotated i steps. The n strings are then sorted lexicographically and
the last column is saved as the result, together with the ”primary index”, i.e.,
the index of the row that contains - after sorting - the original string. The first
column of the sorted matrix is also needed for the backtransformation, but it
needs not to be saved, as it can be reconstructed by sorting the elements of
the last column. (Actually, as we will see, the first column is also needed only
conceptually.)

Figure 1 shows the first and
last columns resulting from the
input string ”CARINA”. The
arrow indicates the primary in-
dex. Note that we have num-
bered the occurrences of each
character in both columns, e.g.,
row 2 contains the occurrence 0
of character ”A” in L, row 5 con-
tains occurrence 1. We call these
numbers the rank of the charac-
ter within column L.
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Figure 1. First (F ) and last (L) column for
the input string ”CARINA”.

To reconstruct the input string, we start at the primary index in L and
output the corresponding character, ”A”, whose rank is 0. We look for A0 in
column F , find it at position 0 and output ”N”. Proceeding in the same way,
we get ”I”, ”R”, ”A”, and eventually ”C”, i.e., the input string in reverse order.
The position in F for a character/rank pair can easily be found if we store for
each character of the alphabet the position of its first occurrence in F ; these
values are called base in Figure 1.

This gives us a simple algorithm when the vectors rank and base are available:

int h = primary_index;

for (int i = 0; i < n; i++) {

char c = L[h];

output(c);

h = base[c] + rank[h];

}

The base-vector and rank can easily be calculated with one pass over L and
another pass over all characters of the alphabet. (We assume an alphabet of 256
symbols throughout this paper.)

for (int i = 0; i < 256; i++) base[i] = 0;

for (int i = 0; i < n; i++) {

char c = L[i];

rank[i] = base[c];

base[c]++;

}



int total = 0;

for (int i = 0; i < 256; i++) {

int h = base[i];

base[i] = total;

total += h;

}

These algorithms need O(n) space (n words for the rank-vector) and O(n)
time. Alternatively, we could do without precalculation of rank-values and cal-
culate rank[h] whenever we need it, by scanning L and counting occurrences of
L[h]. This would give us O(1) space and O(n2) time.

The question, now, is: is there a data structure that needs significantly less
than n words without increasing run time excessively?

In this paper we present efficient data structures and algorithms solving
following problems:

Rank searching: The input must be preprocessed into a data structure, such
that for a given index i, it supports a query for rank(i). This query is referred
to as rank-query.

Rank-position searching: The input must be preprocessed into a data struc-
ture, such that for a given character c and rank r, it supports a query for index
i, such that rank(i) = r. This query is referred to as rank-position-query. (This
allows traversing L and F in the direction opposite to that discussed so far,
producing the input string in forward order).

1.2 Computation Model

As computation model we use a random access machine (RAM) (see e.g., in
[3]). The RAM allows indirect addressing, i.e., accessing the value at a relative
address, given by an integer number, in constant time. In this model it is also
assumed that the length of the input n can be stored in a computer word.
Additionally, we assume that the size |A| of the alphabet A is a constant, and
particularly, |A| − 1 can be stored in a byte. Furthermore, we assume that a bit
shift operation in a computer word, word-wise and and or operations, converting
a bit string stored in a computer word into an integer number and vice-versa
and algebraic operations on integer numbers (’+’, ’-’, ’*’, ’/’, ’mod’, where ’/’
denotes the integer division with remainder) are possible in constant time.

1.3 Previous Results

In [14] Seward describes a slightly different method for the reverse BWT by
handling the so-called transformation vector in a more explicit way. He presents
several algorithms and experimental results for the reverse BWT and answering
rank-queries (more precisely, queries ”how many symbols x occur in column L
up to position i?”, without the requirement L[i] = x). A rigorous analysis of the
algorithms is omitted in [14]. The algorithms described in [14], basis and bw94



need 5n bytes of memory storage and support a constant query time; algoritm
MergedTL needs 4n bytes if n is limited to 224 and supports a constant query
time. The algorithm indexF needs 2.5n bytes if n < 220 and O(log |A|) query
time. The algorithms tree and treeopt build 256 trees (one for each symbol) on
sections of the vector L. They need 2n and 1.5n bytes, respectively, if n < 220 and
support O(log(n/∆)+cx∆) query time, where ∆ is a given parameter depending
on the allowed storage and cx is a relatively big multiplicator which can depend
on the queried symbol x.

1.4 Our Contributions

We present a data structure which supports answering a rank-query Q(i) in

O(1) time using n( ℓ−1
8 + w|A|

2ℓ ) bytes, where w denotes the length of a computer
word in bytes, and |A| is the size of the alphabet. If |A| ≤ 256 and w = 4 (32
bit words), by setting ℓ ∈ {12, 13}, we obtain a data structure of 13

8 n or 1.625
bytes. For w = 2 we get a data structure of 25

16n or 1.5625 bytes. Thus, the space
requirement is strictly less than that of the trivial data structure, which stores
the rank for each position as an integer in a computer word and that of the
methods in [14] with constant query time. The preprocessing needs O(n) time
and O(|A|) working storage.

We also present data structures of n bytes, where we allow at most L = 29

sequential accesses to a data block of L bytes. Because of caching and hardware
prefetching mechanism of todays processors, with this data structure we obtain
a reasonable query time.

Furthermore, we present a data structure, which supports answering a rank-
query Q(i) in O(t) time using t random accesses and c · t sequential accesses to
the memory storage, where c is a constant, which can be chosen, such that the
speed difference between non-local (random) accesses and sequential accesses

is utilized optimally. The data structure needs n(8+|A| log ct)
8ct + n|A|w

ct2 bytes. For

t = ω(1), this results in a sub-linear space data structure, e.g., for t = Θ(n1/d)
we obtain a data structure of 1

dn1−1/d|A|(1 + o(1)) bytes. The preprocessing
needs O(n) time and O(|A|) working storage.

After this, we turn to the inverse problem, the problem of answering rank-

position-queries. We present a data structure of n( |A|(ℓ+8w)
2ℓ + ℓ) bits, which

supports answering rank-position-queries in O(log(n/2ℓ)) time. The preprocess-
ing needs O(n) time and O(|A| + 2ℓ) working storage. For ℓ = 13, we obtain a
data structure of 14 3

8 · n bits.
Finally, we present experimental results, that show that our algorithms per-

form quite well in practice. Thus, they give significant improvement for decom-
pression in embedded devices for the mentioned scenarios.

1.5 Outline of the Paper

In Section 2 we describe various data structures supporting rank-queries. Sec-
tion 3 is dedicated to data structures for rank-position-queries. In Section 4 we



present experimental results for the reverse BWT. Finally, in Section 5 we give
conclusions and discuss open problems.

2 Algorithms for Rank-Queries

Before we describe the algorithm we need some definitions. For a string S of
length n (i.e. of n symbols) and integer number i, 0 ≤ i < n we denote by S[i]
the symbol of S at the position (or index) i, i.e., the index counts from 0. For
a string S and integers 0 ≤ i, j < n, we denote by S[i..j] the substring of S
starting at index i and ending at j, if i ≤ j, and the empty string if i > j.
S[i..i] = S[i] is the symbol at index i. The rank of symbol S[i] at the position
i is defined as rank(i) := |{j : 0 ≤ j < i, S[j] = S[i]}|, i.e., the rank of the kth
occurrence of a symbol is k − 1.

2.1 A Data Structure of 13

8
· n Bytes

We divide the string S into n′ = ⌈n/L⌉ blocks, each of L = 2ℓ consecutive
symbols (bytes). L will be determined later. (The last block may contain less
than L symbols.) The jth block B[j] of the string S, 0 ≤ j < n′, starts at the
position j · L, i.e. B[j] = S[j · L .. min{n, (j + 1)L} − 1].

In our data structure, for each block B[j], 0 ≤ j < n′ and each symbol x ∈ A,
we store an integer value b[j, x], which contains the number of occurrences of
symbol x in blocks B[0], ..., B[j], i.e. in S[0..L(j + 1) − 1]. In the following we
assume b[−1, x] = 0, x ∈ A, but there is no need to store these values explicitly.
For storing the values b[j, x], 0 ≤ j < n′, x ∈ A, we need n′|A| = ⌈n/L⌉|A|
computer words, i.e. ⌈n/L⌉8w|A| bits.

Additionally, for each index i, 0 ≤ i < n, we store the reduced rank r[i]
of the symbol x = S[i], r[i] = rank(i) − b[i/L − 1, x]. Then a rank query Q(i)
obviously can be answered by reporting the value b[i/L − 1, x] + r[i]. Note that
0 ≤ r[i] < L, and thus, each r[i] can be stored in ℓ bits. We can save an additional
bit (or equivalently, double the block size), if we define the reduced rank r[i] in
a slightly different way:

r[i] =

{

rank(i) − b[i/L− 1, x] if i mod L < L/2,
b[i/L, x]− rank(i) − 1 otherwise.

For storing the whole vector r, we need n · (ℓ − 1) bits.

Storage requirement: The storage requirement for storing r[i] and b[j, x],

0 ≤ i < n, 0 ≤ j < n′, x ∈ A is n(ℓ − 1 + 8w|A|
L ) = n(ℓ − 1 + 8w|A|2−ℓ) bits.

We obtain the continuous minimum of this expression at the point, in which the
derivative is 0. Thus, we need 1 + 8w|A|2−ℓ(− ln 2) = 0. After reorganizing this
equality, we obtain

2−ℓ =
1

8w|A| ln 2
and thus

ℓ = log(8w|A|) + log ln 2.



Since |A| ≤ 256, for w = 4 (32 bit words), the continuous minimum is reached
in ℓ ≈ 3 + 2 + 8 − 0.159. Setting ℓ = 12 or ℓ = 13 (and the block size L = 4096
or L = 8192, respectively), the size of the data structure becomes 13

8 n bytes.

Computing the values b[j, x] and r[i]: The values b[j, x], 0 ≤ j < n′, x ∈ A,
can be computed in O(n) time using O(|A|) space by scanning the input as
follows. We maintain an array b0 of |A| integers, such that after processing the
ith symbol of the input string S, b0[x] will contain the number of occurrences of
symbol x in S[0..i]. At the beginning of the algorithm we initialize each element
of b0 to be 0. We can maintain the above invariant by incrementing the value of
b0[x], when we read the symbol x. After processing the symbol at a position i
with i ≡ −1 mod L, i.e. after processing the last symbol in a block, we copy the
array b0 into b[i/L].

The values of r[i], 0 ≤ i < n, are computed in a second pass, when all the
b-values are known. Here, we maintain an array r0 of |A| integers, such that
just before processing the ith symbol of the input string S, r0[x] will contain
the number of occurrences of symbol x in S[0..i − 1]. Thus, we can set r[i] =
r0[x] − b[i/L − 1, x] or r[i] = b[i/L] − r0[x] − 1, respectively. At the beginning
of the algorithm we initialize each element of r0 to be 0. We can maintain the
above invariant by incrementing the value of r0[x], after reading the symbol x.

Clearly, the above algorithm needs O(n) time and O(|A|) working storage
(for the arrays b0 and r0).

Answering a query Q(i): If we have the correct values for r[i] and b[j, x],
0 ≤ i < n, 0 ≤ j < n′, x ∈ A, then a query Q(i), 0 ≤ i < n can be answered
easily by determining the symbol x = S[i] in the string S and combining the
reduced rank r[i] with the appropriate b-value:

rank(i) =

{

r[i] + b[i/L, x] if i mod L < L/2,
b[i/L + 1, x] − r[i] − 1 otherwise.

This sum can be computed using at most 2 memory accesses and a constant
number of unit time operations on computer words. Summarizing the results of
this section we obtain the following.

Theorem 1. Let S be a string of length n. S can be preprocessed into a data
structure which supports answering a rank query Q(i) in O(1) time. The data
structure uses n(ℓ − 1 + 8w|A|/2ℓ) bits, where w is the number of bytes in a
computer word. For |A| ≤ 256, w = 4, and ℓ ∈ {12, 13}, the size of the data
structure is 13

8 n bytes. The preprocessing needs O(n) time and O(|A|) working
storage.

Remark: If the maximum number of occurrences of any symbol in the input
is smaller than the largest integer that can be stored in a computer word, i.e.
n < 2p and p < 8w, then we can store the values of b[j, x] using p bits instead

of a complete word. Then the size of the data structure is n(ℓ − 1 + p|A|
2ℓ ) bits.

For instance, for p = 16 we obtain a data structure of n 25
16 bytes, and for p = 24

one of n 51
32 bytes.



Utilizing processor caching – data structure of ≤ n bytes: The pro-
cessors in modern computers use caching, hardware prefetching, and pipelining
techniques, which results in significantly higher processing speed, if the algorithm
accesses consecutive computer words than in the case of non-local accesses (re-
ferred to as random accesses). In case of processor caching, when we access a
computer word, a complete block of the memory will be moved into the proces-
sor cache. For instance, in Intel Pentium 4 processors, the size of such a block
(the so-called L2 cache line size) is 128 bytes (see, e.g. [9]). Using this feature,
we also obtain a fast answering time, if we get rid of storing the values of r[i],
but instead of this, we compute r[i] during the query by scanning the block (of L
bytes) containing the string index i. More precisely, it is enough to scan the half
of the block: the lower half in increasing order of indices, if i mod L < L/2, and
the upper half in decreasing order of indices, otherwise. In that way we obtain
a data structure of size n|A|w/L bytes.

Theorem 2. Let S be a string of length n. S can be preprocessed into a data
structure D(S), which supports answering a rank query Q(i) by performing 1
random access to D(S) (and to S) and at most L/2 sequential accesses to S.
The data structure uses n|A|w/L bytes, where w is the length of a computer word
in bytes. The preprocessing needs O(n) time and O(|A|) working storage.

For |A| ≤ 256, w = 4 and L = 210, the size of the data structure is n bytes. If
n < 2p, p < 8w, then we get a data structure of n bytes by using a block size of
L = p|A|/8 bytes.

2.2 A Sub-linear Space Data Structure

In this Section we describe a sub-linear space data structure for supporting rank-
queries in strings in O(t) time for t = ω(1).

Similarly to the data structure described in Section 2.1, we divide the string
S into n∗ = ⌈ n

c·t⌉ blocks, each of size L = c · t bytes, where c is a constant.
(The constant c can be determined for instance, such that the effect of processor
caching and pipelining is being exploited optimally).

We store the values b∗[j, x], where b∗[j, x] is the number of occurrence of
symbol x ∈ A in the jth block. The value of b∗[j, x] is stored as a bit-string
of ⌊log ct⌋ + 1 bits. Note that 0 ≤ b∗[j, x] ≤ L. Let b′[j, x] = b∗[j, x] mod L.
Then 0 ≤ b′[j, x] ≤ L, and thus, each b′[j, x] can be stored in log ct⌋ + 1 bits.
Furthermore, the value of b∗[j, x] can be reconstructed from the value of b′[j, x]
in constant time: if b′[j, x] = 0 and an arbitrary symbol (say the first symbol) of
block B[j] is equal to x, then b∗[j, x] = L, otherwise b∗[j, x] = b′[j, x]. For this
test, we store in c[j] the first symbol in B[j], for each block B[j]. Storing b∗[j, x]

and c[j], for 0 ≤ j < ⌈ n
c·t⌉ and x ∈ A needs n·(8+|A| log cn)

c·t bits, i.e. n·(8+|A| log cn)
8·c·t

bytes.
Additionally to the linear space data structure, the blocks are organized in

n̂ = ⌈ n
cṫ2

⌉ super-blocks, such that each super-block contains t consecutive blocks.

We compute the values of b̂[k, x], for 0 ≤ k < ⌈ n
c·t2 ⌉ and x ∈ A, such that b̂[k, x]



contains the number of occurrences of symbol x in the super-blocks 0, ..., k. These

values are stored as integers. Storing all values needs n·|A|
c·t2 computer words.

The values of b∗[j, x] and b̂[k, x], 0 ≤ j < n∗, 0 ≤ k < n̂, x ∈ A can be
computed in O(n) time using O(|A|) space by scanning the input string S in a
similar way as in Section 2.1.

Answering a query: Using this data structure, a query Q(i) can be answered
as follows. Let B̂ be the super-block containing the query position i, i.e. B̂ is the
super-block with index k = i/(c·t2). Let B be the block containing the position i,
i.e. B is the block with index j∗ = i/(c · t). Let x = S[i]. The query Q(i) can

be answered by summing b̂[k − 1, x] and the values of b∗[j, x], for each index j
of a block in the super-block B̂, such that j < j∗, i.e. (i/(c · t2)) · t ≤ j < j∗.
Then we scan the block B and compute the rank r[i] of S[i] in block B during
the query time (by scanning the half of the block, as described in the previous
section). Then

rank(i) = r[i] + b̂[i/(c · t2) − 1, x] +

i/(c·t)−1
∑

j=(i/(c·t2))·t

b∗[j, x].

Since we have one random access to the value b̂[k − 1, x], at most t random
accesses to the values of b∗[j, x], and c · t/2 sequential accesses to the input
string, we can perform a rank-query in O(t) time.

Summarizing the description, we obtain:

Theorem 3. Let S be a string of length n. S can be preprocessed into a data
structure which supports answering a rank-query Q(i) in O(t) time. The data

structure uses n( |A|(8+log ct)
ct + 8w|A|

ct2 ) bits. For t = ω(1), it uses (n·(8+|A| log ct)
ct )(1+

o(1)) bits. The preprocessing needs O(n) time and O(|A|) working storage.

Note, that for a block size of L = ct = 29 bytes and t ≥ 16
7 w, we obtain a data

structure of n bytes. With other words, we can guarantee a data structure of n
bytes using smaller blocks than in Section 2.1 to the cost of t random storage
accesses.

Corollary 1. Let S be a string of length n. S can be preprocessed into a data
structure of n bytes, which for t ≥ 16

7 w, supports answering a rank-query Q(i)
in O(t) time using t random accesses and ct/2 sequential accesses. The prepro-
cessing needs O(n) time and O(|A|) working storage.

If we allow in Theorem 3, for instance, a query time O(n1/d), then we can store
the value of b∗[j, x] in log n

d bits and the whole matrix b∗ in 1
dn1−1/d|A| computer

words.

Corollary 2. Let S be a string of length n. S can be preprocessed into a data
structure which supports answering a rank-query Q(i) in O(n1/d) time. The data
structure uses 1

dn1−1/d|A|(1 + o(1)) computer words. The preprocessing needs
O(n) time and O(|A|) working storage.



3 An Algorithm for Rank-Position-Queries

In this Section we consider the inverse problem of answering rank-queries, the
problem of answering rank-position-queries. A rank-position-query Q∗(x, k), x ∈
A, r ∈ IN0, reports the index 0 ≤ i < n in the string S, such that S[i] = x and
rank(i) = k, if such an index exist, and ”no index” otherwise. We show, how to

preprocess S into a data structure of n( |A|w
L + ℓ

8 ) bytes, which supports answering
rank-position-queries in O(log(n/L)) time.

We divide the string S into n′ = ⌈n/L⌉ blocks, each containing L = 2ℓ

consecutive symbols. The rank-position-query Q∗(x, k) will work in two steps:

1. Find the block B[j], which contains the index of the kth occurrence of x in
S, and determine k0 the overall number of occurrences of x in the blocks
B[0], ..., B[j − 1].

2. Find the relative index i′ of the k′(:= k − k0)th occurrence of x within B[j],
if i′ exists, and return with index i = i′ + jL, and return with ”no index”
otherwise.

Data structure for Step 1: For each block B[j], 0 ≤ j < n′ and each symbol
x ∈ A, we store an integer value b[j, x], which contains the overall number of
occurrences of symbol x in blocks B[0], ..., B[j − 1], i.e. in S[0 .. jL − 1]. For
storing the values b[j, x], 0 ≤ j < n′, x ∈ A, we need n′|A| = ⌈n/L⌉|A| computer
words, i.e. ⌈n/L⌉8w|A| bits. The values of all b[j, x] can be computed in O(n)
time using O(|A|) working storage.

Let j be the largest number, such that b[j, x] < k. Then B[j] is the block,
which contains the index of the kth occurrence of x, if S contains at least k
occurrences of x, and B[j] is the last block otherwise. We set k0 = b[j, x]. Using
this data structure, Step 1 can be performed in O(log(n/L)) time by logarithmic
search for determining j.

Data structure for Step 2: For each block B[j], 0 ≤ j < n′ and each symbol
x ∈ A, we store a sorted list p[j, x] of relative positions of the occurrences of
symbol x in B[j], i.e. if B[j][i′] = x, 0 ≤ i′ < L, then p[j, x] contains an element
for i′. The relative index i′ of the k′th occurrence of x in B[j] is the k′th element
of the list p[j, x]. Note, that the overall number of list elements for a block B[j]
is L and each relative position can be stored in ℓ bits. Therefore, we can store all
lists for B[j] in an array a[j] of L elements, where each element of a[j] consists
of ℓ bits. Additionally, for each 0 ≤ j < n′ and x ∈ A, we store in s[j, x] the
start index of p[j, x] in a[j]. Since 0 ≤ s[j, x] < L, s[j, x] can be stored in ℓ
bits. Therefore, the storage requirement of storing a[j] and s[j, x], 0 ≤ j < n′,
x ∈ A, is nℓ + nℓ|A|/L bits. These values can be computed in O(n) time using
O(L + |A|) working storage. (First we scan B[j] and build linked lists for p[j, x]:
for 0 ≤ i′ < n′, if B[j][i′] = x, then we append a list element for i′ to p[j, x]. Then
we compute a[j] and s[j, x] for each x ∈ A from the linked lists.) Let k′ = k−k0.
Then the index i′ of the k′th occurrence of symbol x in B[j] can be computed
in O(1) time: i′ = a[j][s[j, x] + k′ − 1], if s[j, x] + k′ < s[j, x + 1], where x + 1 is
the symbol following x in the alphabet A. Otherwise, we return ”no index”.



Summarizing the description of this Section we obtain the following.

Theorem 4. Let S be a string of length n and L = 2ℓ. S can be preprocessed
into a data structure which supports answering a rank-position-query Q∗(x, k)

in O(log(n/L)) time. The data structure uses n(8w|A|
L + ℓ + ℓ|A|

L ) bits, where w
is the number of bytes in a computer word. For |A| ≤ 256, w = 4, and ℓ = 12,
the size of the data structure is 14 3

4 ·n bits, and for ℓ = 13 it is 14 3
8 ·n bits. The

preprocessing needs O(n) time and O(|A| + L) working storage.

Remark: If we do not store the values of p[j, x], but instead of this, we compute
the relative index of the k′th occurrence of x for Q∗(x, k) during the query time,
we can obtain a sub-linear space data structure at the cost of longer query times.

4 Experimental Results

As each rank value is used exactly once in the reverse BWT, the space and
runtime requirements depend solely on the size of the input, not on its content
- as long as we ignore caching effects. Therefore, we give a first comparison of
algorithms based on only one file. We used a binary file with 2542412 characters
as input. Experiments were carried out on a 1 GHz Pentium III running Linux
kernel 2.4.18 and using g++-3.4.1 for compilations. When implementing the 13

8 n
data structure we choose the variant with L = 213, where the rank values are
stored in 12 bits (1.5 bytes). That allows reasonably fast access without too
much bit fiddling. Our BWT-based compressor does no division into chunks for
compression; the whole file is handled in one piece. The following table shows
space and runtime requirements for various algorithms. The reported values refer
just to the reverse BWT step, not to complete decompression. The row ”4 byte
rank value” contains the results for the straightforward data structure, where
the rank value is maintained as a 4 byte integer for each position. The other
rows show results for the algorithms discussed.

Algorithm Space Runtime
[byte/input char] [sec/Mbyte]

4 byte rank values 4 0.371

12 bit rank fields, 8192 fields per block 1.625 0.561

no rank fields, 1024 characters per block 1 3.477

no rank fields, 2048 characters per block 0.5 6.504

Table 1. Space and time requirement of the reverse BWT algorithms

We can see that the increase in run time when we avoid fully precalculated
rank-values is moderate (about 50%). Here we remark that in our implemen-
tation the reverse BWT with 4 byte rank values takes about 60% of the of
the total decompression time. Thus, the increase in total decompression time is
about 30%. Even without any rank-fields and one block of counts for every 1024



input characters (resulting in 256 search steps on average for each rank com-
putation) the increase in time for the reverse BWT is less than ten fold. In an
embedded system where decompressed data are written to slow flash memory,
writing to flash might dominate the decompression time.

To further consolidate results, we give run times for the three methods for
the files of the Calgary Corpus [15], which is a standard test suite and collection
of reference results for compression algorithms (see e.g., in [5]). As runtimes were
too low to be reliably measured for some of the files, each file was run ten times.
Table 2 summarizes the running times.

File size 4n byte 13

8
n byte n byte

[bytes] data structure data structure data structure

paper5 11954 0.175 0.351 2.632

paper4 13286 0.158 0.316 2.683

obj1 21504 0.195 0.341 2.536

paper6 38105 0.196 0.358 2.642

progc 39611 0.185 0.371 2.594

paper3 46526 0.180 0.361 2.682

progp 49379 0.191 0.361 2.718

paper1 53161 0.178 0.355 2.702

progl 71646 0.205 0.381 2.795

paper2 82199 0.255 0.344 2.768

trans 93695 0.201 0.392 2.652

geo 102400 0.287 0.410 2.601

bib 111261 0.283 0.415 2.790

obj2 246814 0.259 0.442 2.885

news 377109 0.350 0.551 3.128

pic 513216 0.259 0.323 3.735

book2 610856 0.388 0.580 3.459

book1 768771 0.430 0.649 3.796

Table 2. Runtime of the reverse BWT algorithms in [sec/Mbyte] with the files of the
Calgary Corpus

Table 2 shows that the normalized running times increase with increasing
file sizes. This effect can be explained as the result of caching. Since the order of
indices in consecutive rank-queries can be an arbitrary permutation of [0, ..., n−
1], the number of page faults in the L1- and L2-caches becomes higher for bigger
inputs.

5 Conclusions

We showed in this paper how the memory requirement of the reverse Burrows-
Wheeler transformation can be reduced without decreasing the speed too much.
This transformation is used e.g. in the well known program bzip2. Decreasing



the memory requirement for decompression may be essential in some embedded
devices (e.g., mobile phones), where RAM is a scarce resource.

We showed that the reverse BWT can be done with 1.625 n bytes of auxiliary
memory and O(n) runtime. Alternatively, we can use n/t bytes and 256 t n
operations. We also presented several time-space tradeoffs for the variants of
our solution. These results are based on our new data structures for answering
rank-queries and rank-position-queries. The theoretical results are backed up by
experimental data showing that our algorithms work quite well in practice.

The question, if the space requirement of the data structures for rank-queries
and rank-position-queries can be further reduced in our computational model, is
still open. Improvements on the presented upper bounds have a practical impact.
The problems of establishing lower bounds and improved time-space tradeoffs
are open, as well.
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