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Abstract

We study algorithmic aspects in the management of geometric scenes in interactive
walkthrough animations. We consider arbitrarily large scenes consisting of unit size balls.
For a smooth navigation in the scene we have to fulfill hard real time requirements.
Therefore, we need algorithms whose running time is independent of the total number of
objects in the scene and that use as small space as possible. In this work we focus on
one of the basic operations in our walkthrough system: reporting the objects around the
visitor within a certain distance.

Previously a randomized data structure was presented that supports reporting the balls
around the visitor in an output sensitive time and allows insertion and deletion of objects
nearly as fast as searching. These results were achieved by exploiting the fact that the
visitor moves ”slowly” through the scene. A serious disadvantage of the aforementioned
data structure is a big space overhead and the use of randomization.

Our first result is a construction of weak spanners that leads to an improvement
of the space requirement of the previously known data structures. Then we develop a
deterministic data structure for the searching problem in which insertion of objects are
allowed. Our incremental data structure supports O(1 + k) reporting time, where & is a
certain quantity close to the number of reported objects. The insertion time is similar to
the reporting time and the space is linear to the total number of objects.

1 Introduction

A walkthrough animation is a simulation and visualization of a three-dimensional scene. The
visitor of such a scene can see a part of the scene on the screen or a special output device. By
changing the orientation of the camera she can walk to an arbitrary position of the scene. In
todays computer systems, the scene is modeled by many triangles. The triangles are given by
the three-dimensional position of their points. For every position of the visitor the computer
has to compute a view of the scene. It has to eliminate hidden triangles (hidden surface
removal), to compute the color and brightness of the triangles (the objects resp.), and so on.
This process is called rendering.
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For a smooth animation we have hard real time requirements. The computer has to render
at least 20 pictures (frames) per second. If the animation is computed with less than 20
frames per second, navigation in the scenes is hard or impossible. The time for the rendering
of a picture depends on the complexity of the scene, i.e., the number of triangles and the
number of pixels which are needed for drawing a triangle. Therefore the graphic workstation
cannot guarantee the 20 frames per second for large geometric scenes. In order to control this
situation real time and approximation algorithms are necessary to reduce the complexity of
those parts of the scene, which are far away and thus have a low influence on the quality of
the rendered image.

Our goal is to develop real time algorithms for managing large and dynamic geometric
scenes. Qur scene is dynamic in the sense that a visitor can insert and/or delete objects.
We are interested in theoretical and experimental aspects of the problem. The basis for our
considerations is an abstract modeling of the problem introduced by Fischer et al. [12]. One
of the most important problems to be solved in the walkthrough system is the search problem:
In order to guarantee the real time behavior of our algorithms it is important that the time
for the search, insertion, and deletion of objects is independent of the scene size.

This work is focused on the search problem. It is motivated by the fact that the visitor can
only see a relatively small piece of the scene. Only the objects appearing from the position
of the visitor in an angle of at least a fixed constant « are potentially visible. Our goal is
to develop data structures that support the selection of the objects potentially visible for the
visitor. We give efficient solutions to the following problems.

The static searching problem: We assume that our scene consists of n unit size balls.
In this case the position of the visitor ¢ and the angle a define a circle in the plane or an
d-dimensional sphere in the d-dimensional Euclidean space £?. All objects in this sphere are
potentially visible and all objects outside are not.

Representing the objects by points of E? we have to solve a circular range searching
problem, in which we are given a set S of n points in £ For a query query(q,r) we have
to report the points of S in the interior of the sphere with center ¢ and radius r. We want
to develop data structures with O(n) space requirement which support the reporting of these
points efficiently. Our goal is that, after a certain point location for ¢, the reporting takes
time not much larger than the output size. In addition we want to use as little space as
possible.

The searching problem with moving visitor: We assume that the visitor moves
slowly through the scene. We say that the visitor moves slowly if the quotient % is a constant,
where ¢ is the maximum distance between two consecutive query positions, and z is the
distance between a closest pair of 5. We utilize the slow motion of the visitor in order to
obtain O(1) time for the point location for the query positions.

The dynamic searching problem: In the dynamic case the visitor can insert or delete
an object at her current position. The problem is called fully dynamicif insertion and deletion
are allowed; incremental if only insertion; and decremental if only deletion is allowed. Our
goal is a linear space data structure with the same query time as in the static case and update
time similar to the query time.

1.1 Related problems, state of the art

The objects potentially visible from the visitor are lying in the interior of a sphere whose
center is the visitor’s position ¢ and radius r is the distance from which an object is in an



angle exactly « visible, i.e., r = m

In the circular range searching problem we are given a set S of n points in E?. A query has
the form query(q,r), and we have to report the points of S which are lying in the sphere with
the center ¢ and radius . Representing the objects of the scene by points in £, we can report
the potentially visible objects by solving a circular range searching problem. Furthermore,
the results about nearest neighbor queries and graph spanners are of particular interest.

Data structures for circular range searching in the plane: For an overview of
different kinds of range searching problems we refer to the survey article of Agarwal and
Erickson [1]. Time optimal solutions of the 2-dimensional circular range searching problem
use higher order Voronoi diagrams. Bentley and Maurer [4] presented a technique which
extracts the points of the Voronoi cell containing ¢ in the kth order Voronoi diagram of
S for k = 292" 2% .. consecutively. It stops, if a point in the kth order Voronoi cell of
¢ is found whose distance from ¢ is greater than r, or all the n points are extracted. An
O(lognloglogn + t) query time is obtained, where ¢ is the number of the points of S lying
in the query disc. The space requirement of the data structures is O(n?). Chazelle et al. [§]
improved the query time to O(logn +¢) and the space requirement to O(n(logn loglog n)?)
by the aid of the algorithmic concept filtering search. Aggarwal et al. [2] reduced the space
requirement with compacting techniques to O(nlogn). This method results an optimal query
time for the circular range searching problem, but it has a superlinear space requirement
already in the two dimensional case.

Nearest neighbor queries: Finding the nearest neighbor of a query point ¢ in a set
S of n points is one of the oldest problems in Computation Geometry. As we will see, the
solution of this and related problems are very important to answer the range queries in our
walkthrough problem. The following results show that it is not possible to get a query time
independent of n without any restrictions on this problem.

Finding the nearest neighbor of a query point ¢ in S has an Q(logn) lower bound in the
so called algebraic computation tree model (c.f. [14]). The planar version of this problem has
been solved optimally with O(log n) query time and O(n) space. But in higher dimensions no
data structure of size O(nlogo(l) n) is known that answers queries in polylogarithmic time.
The approzimate nearest neighbor problem, i.e., finding a point p € S to the query point ¢
such that dist(q,p) < (1 + €)dist(q,q*), where ¢gx € S is the exact nearest neighbor of ¢,
was solved optimally by Arya et al. [3]. They give a data structure in dimension d > 2 of
size O(n) that answers queries in O(logn) time and can be built in O(nlogn) time. (The
constant factor in the query time depends on ¢.) For proximity problems on point sets in R4
a comprehensive overview is given by Smid [17].

Spanners: Spanners were introduced to computational geometry by Chew [10]. Let f > 1
be any real constant. Let the weight of an edge (p,q) be the Euclidean distance between p
and ¢ and let the weight of a path be the sum of the weights of its edges. A graph with vertex
set § C FEis called a spanner for S with stretch factor f, or an f-spanner for §, if for every
pair p,q € S there is a path in the graph between p and ¢ of weight at most f times the
Euclidean distance between p and ¢. We are interested in spanners with O(n) edges. By aid
of an f-spanner of S we can answer a circular range query query(q,r) by finding a "near”
neighbor and performing a breadth first search (BFS) on the edges of the spanner. The BF'S
procedure visits all the edges having at least one endpoint not farer from ¢ than fr. (The
problem how we can find an appropriate near neighbor will be discussed later.)

Chen et al. [9] proved that the problem of constructing any f-spanner for f > 1 has an



Q(nlogn) lower bound in the algebraic computation tree model. The first optimal O(n logn)
time algorithm for constructing an f-spanner on a set of 7 points in ¢ for any constant f > 1,
were done by Vaidya [18] and Salowe [16]. Their algorithms use a hierarchical subdivision of
E?. Callahan and Kosaraju [7] gave a similar algorithm that constructs an f-spanner based
on a special hierarchical subdivision and showed that the edges can be directed such that the
spanner has bounded out-degree.

Weak spanners: Fischer et al. [12] presented a fully dynamic data structure for real time
management of large geometric scenes. They use a property of a certain dense graph weaker
than the spanner property to answer circular range queries performing a point location and
a BF'S. We call this property weak spanner property (defined below).

The basic data structure in [12] for the searching problem is the graph G () called the
v-angle graph for S. (The same construction was called ©-graph by Keil and Gutwin [13] and
Ruppert and Seidel [15].) Fischer et al. [12] proved that for v < T the graph G, (S) is a weak
spanner. They applied G (S5) and perfect hashing to provide a randomized solution for the
”moving visitor searching problem” and the dynamic searching problem. A brief description
of the data structures in [12] contained in the Appendix.

1.2 New results

Consider a point set S C E? of n points. A (directed) graph G with vertex set S is a weak
spanner for S with stretch factor f, if, for any two points p, ¢ € S, there is a (directed) path
P from p to ¢ in G such that, for each point « € P, the Euclidean distance dist(p, z) between
p and z is at most f - dist(p, q). (Note that each weak spanner is strongly connected.)

Our first contribution is a new, improved variant of the weak spanner for S C E? con-
structed in [12]. We construct a graph G/ /5(5) for S whose outdegree is bounded by 4. (The
weak spanner used in [12] has outdegree 6.) On the other side, our weak spanner has stretch

factor \/3 4 /5 ~ 2.288, whereas the one from [12] is 2. Nevertheless, we argue that our
weak spanner yields a faster static data structure for our search problem: If the points of §
are distributed uniformly in a square range of E?, the graph GW/Q(S) is not only a more space
efficient data structure for circular range queries than some graph G (S) for v < % but it
yields also a better expected query time: If we have to report the points of S in a disc with
radius r, then we must traverse the directed edges having the origin in a concentric disc with
radius fr, where f is the stretch factor of the graphs. The query time is determined by the
number of traversed edges. The number of traversed edges is the number of points in the
disc multiplied by the outdegree of the points. The expected number of points in the disc is
quadratic in the radius. For example, the graph G'/3(S) has a stretch factor 2 and outdegree

6. GW/Q(S) has a stretch factor 1/3 + /5 and outdegree 4. Therefore, the expected query
time in G/, (S5) is % ~ 0.87 times the expected query time in G /3(S).

Our second contribution is the development of a deterministic dynamic data structure
for the "moving visitor searching problem”, that guarantees running times for query(q,r)
and insert(p) independent of n. The data structure from [12] yields such results only using
randomization (perfect hashing). Our result is based on a careful, deterministic choice of
O(n) Steiner points. They replace the randomized approach from [12], that uses a grid as
Steiner points and applies perfect hashing for compacting it.

The paper is organized as follows. In Section 2 we present a variant of the y-angle graph
[12], for a point set S C E? of n points, which outdegree bounded by four. We prove that



this graph is a weak spanner for S with stretch factor 1/3 + /5, and we give a plane sweep
algorithm computing it in O(nlogn) time.

In Section 3 we place O(n) carefully chosen Steiner points into the scene supporting the
point location for the visitor in O(1) time. Here we assume that the visitor moves slowly, i.e.,
the distance between two consecutive positions of the visitor is at most a constant times the
distance of the closest pair of S.

Finally, in Section 4, we show how we can insert a new object into the scene (a new point
into S resp.) at the visitor’s position ¢ in O(1 + k) time, where £ is the number of points

(original points plus Steiner points) in the disc with center ¢ and radius ry/3 + /5.

2 The two dimensional J-angle graph

In this section we construct a weak spanner G/, (S) for the set S C E? of n points. The graph
Gry2 (S) contains at most 4n directed edges. For the definition and the construction of Gﬂ/z(S)
we use a slightly more complicated distance measure than Fischer et al.[12]. This distance
measure leads to some trickier plane sweep algorithm to obtain an O(nlogn) construction
time.

In the second part of the subsection we show that the graph G,r/z(S) is a weak spanner

with stretch factor 1/3 + /5 &~ 2.288 for the point set S. The proof uses different arguments
than the proofs for the y-angle graph for v < 3.

2.1 Construction

We define the graph G /,(S5) as follows: Rotate the positive z-axis over angles i — 7 for
0 <1 < 4. This gives 4 rays hg, ..., h3. Let cg, ..., c3 be the cones that are bounded by two
successive rays. The ith ray belongs to cone ¢; and the (i+1)st ray does not. For 0 < i < 4, let
l; be the ray that emanates from the origin and halves the angle in the cone ¢;, i.e. [; is coincides
with the positive/negative z-/y-axis respectively. For each point p € S translate the cones
g, ---, €3 and the corresponding rays [, ..., [3 such that its apexes and starting points are at
p. Denote by ¢, ..., c5 and 5, ..., I5 these translated cones and rays, respectively (Figure 1.a).
Now we build G/ /5(S) such that for each p € S and 0 < i < 4, if the cone ¢} contains a
point of S then add a directed edge pg from p to some closest point ¢ in ¢! w.r.t. the distance
measure dist; : R? X IR? — R x IR defined as follows: dist;(p, ) = (|z(p) —2(q)|, |y(p) —y(q)|)
if i =0,2,1e. g€ ciuUd and dist;(p,q) = (ly(p) — y(qg)|, |z(p) — z(q)|) if i = 1,3. The total
order under the pairs is defined by the lexicographical order.

Figure 1: The definition of Y, I¥ and ¢F.



Now we describe how the graph GW/Q(S) can be efficiently built. Our construction consists
™
2
in order to compute the neighbor in the ith translated cone ¢ for each p € S. Our plane
sweep is a modified version of the plane sweep of Ruppert and Seidel [15]. We describe the

0th phase, the other phases perform analogously.

of four phases. In the i¢th phase, ¢ = 0,..,3, we perform a plane sweep in the direction 3

The Algorithm: First we sort the points of S non decreasing w.r.t. the z-coordinate.
The sweepline moves from left to right. We maintain the invariant that for each point ¢ left
to the sweepline, its neighbor p in ¢} has been computed if p is also left to the sweep line.

We initialize a data structure D = (). D will contain the points left to the sweepline
whose neighbor has not yet been computed. The points in D are sorted increasing w.r.t. the
y-coordinate. To handle the distance function dist; correctly, when the sweepline reaches a
point p we put all points with the same z-coordinate as p in a data structure A and we work
up these points in the same main step:

1. Let A be the set of points with the same z-coordinate as p ordered increasing w.r.t. the
y-coordinate and let A’ = A.

2. While A # (0 we do the following:

(a) Let p be the point of A with minimum y-coordinate. Determine the set of points
B(p) = {q € D : pe€ cl}. Let B(p) be ordered also increasing w.r.t. the y-
coordinate. Set p’ = p. (The variable p’ contain at each time the point of A with
highest y-coordinate, such that the points of A with lower y-coordinate than p’
cannot be a neighbor of any point of D.)

(b) For each ¢ € B(p) (in increasing order w.r.t. the y-coordinate) determine the point
p* € A with |y(¢) — y(p*)| minimal and join ¢ with p* by a directed edge. Then
delete ¢ from D and set p’ = p*.

(c) Delete p from A. Then delete all points from A having a lower y-coordinate than

/

p.
3. Insert the points of A’ into D.

Figure 2: Illustration of the main step of the plane sweep.

Correctness: Now we prove by induction that the invariant is satisfied after the main
step of the plane sweep. In the data structure D we maintain the points left to the sweepline
[ whose neighbor is not left to /. At the beginning of the algorithm no point of S is left
tol, so D = (. In the main step we must determine the points of D whose neighbor is on



the sweepline [, compute the neighbor for these points, and update D, i.e. delete from D
the points whose neighbor has been found and insert the points lying on [ into D. In A we
maintain the points on [, for which it is not yet decided if it is a neighbor of a point of D.
Therefore, at the beginning A must contain all points of S on [. This is satisfied after step 1.
We show that in step 2, for each point ¢ € D with ¢} N A # () the neighbor is computed
correctly. For the points ¢ € D doesn’t exist any point ¢* € ¢ left to [. On the other side, if
a point ¢ € D has a point ¢* € A in ¢} then ¢ is contained in B(p) in step 2.a for a p € A, its
neighbor computed correctly in step 2.b and then deleted from D. In step 2.c the points are
deleted from A which are surely not a neighbor of a point of D. Therefore, after step 2 D
contains the points left to [ whose neighbor is not left to [ and not on [. If we want to move
the sweepline right to the next point, D mustn’t contain any point whose neighbor is already
computed (these points are deleted in step 2.b), but DD must contain the points on /, because
their neighbor is not yet computed. The points on [ are inserted into D in step 3. So we can
move the sweepline, the invariant is satisfied.

Analysis: For D, A and B(p) we need data structures which support checking emptiness;
insertion, deletion of a point; finding the next and the previous element w.r.t. y-coordinate
for a given element of the data structure; and finding for a real number the point with nearest
y-coordinate in the data structure (query). Using balanced search trees we obtain an O(log n)
time for insertion, deletion, query and for finding the next and previous element, and O(1)
time for checking emptiness. If we link the nodes of the search tree in a doubly linked sorted
list then we can find the next and the previous element in O(1) time, too. For a point
q € D, let next(q) and prev(q) denote the next and the previous element of ¢ in D w.r.t.
the y-coordinate. In step 2.a we can determine B(p) in the following way: Determine the
nearest point ¢ € D to p w.r.t. the y-coordinate. If ¢ belongs to ¢} (the reflected cone) then
insert ¢ into B(p). Let ¢’ = ¢. While newt(q) belongs to ¢}, insert next(q) into B(p) and set
q = next(q). Than Let ¢ = ¢’. While prev(q) belongs to ¢ insert prev(q) into B(p) and set
q = prev(q).

Note that each point p € S is inserted and deleted from D, A and B(p) exactly once. For
each point ¢ the nearest point p € A is computed once, too. Therefore, we can summarize
the above analysis in the following theorem:

Theorem 2.1 The graph G/5(S) can be computed in O(nlogn) time and O(n) space. O

2.2 The weak spanner property

Theorem 2.2 G /5(5) is a weak spanner with stretch factor \/3 V5.

Proof: We prove that for each s,f € S there is a directed path P from s tot in GW/Q(S), such

that for each point v € P the Euclidean distance dist(s,v) is at most \/3 + /5 - dist(s,t).
Consider the following simple algorithm.

o Let sg = s and j = 0. While s; # ¢ do the following:

e Let ¢’ be the cone of s; containing . Set s;11 to the neighbor of s; in G r2(S) in this
cone and set j = 5+ 1.

The above algorithm finds a path with the properties we wish. To prove this we first define
a potential function ® on the points of S and show that ® decreases in ’almost’ every step



of the above algorithm. Let ¢;(s) be the Manhattan distance distas(t, s) from ¢ to s and let
¢2(s) be |z(t) —z(s)| if t € c§Uch and |y(t) —y(s)| if t € ¢fUcs. We define ®(s) to be the pair
(¢1(8), P2(s)). The total order on the values of ® is the lexicographical order of the pairs.

Figure 3: The potential ® during the construction of P.

We show that the points of the path created by the above algorithm have the following
property:

1. either ®(s;) > ®(s;41),

2. or ¢1(s;) = d1(sj41), da(s) < P2(sj41) and ¢1(sj) > P1(sj42)-

This property implies that the algorithm terminates and finds . Note, if s;4; = ¢ then
®(s;) > ®(t) = (0,0). Let ¢’ be the cone at s; that contains ¢. By the definition of Gr/a(s)
either there is a directed edge < s;,¢ > in Gr/5(S) or an other point s;11 € ¢’ and a directed
edge < sj,sj41 > with dist;(sj,s;41) < dist;(s;,t). Let B; = {z € R* : disty(t,z) <
distpr(t,s;)}. The point s;41 is clearly contained in B; (Figure 3) and so ¢1(s;) > ¢j41. We
distinguish three cases.

Case 1: distpr(s;,t) > distar(sj+1,t). Then ¢1(s;) > ¢1(sj41) (Figure 3.a). Therefore,
property 1 holds.

Case 2: distpr(sj,t) = distar(sjz1,t) and £ € ¢’T'. Then ¢1(s;) = ¢1(s;+1) and ¢(s;) >
¢2(s;41) (Figure 3.b). Therefore, property 1 holds.

Case 3: distar(sj,t) = distar(sjzr,t) and ¢ € ¢4' 4. Then it can be happen, that
$1(5;5) = ¢1(5j4+1) and ¢2(s;) < P2(Sj4+1). But in this case the next point s;12 cannot be on
the boundary of B; (Figure 3.c). Therefore, property 2 holds.

-

Figure 4: Definitions for the computing the weak spanner factor.



Now we prove that for each v € P the Euclidean distance dist(s,v) is at most /3 + /5 -
dist(s,t). We have seen, that B = By contains each point s; of the path P. Let a = dist(s,t)
and b = dist(s,v). We have to maximize % such that ¢ is the center of B, sis on the boundary
of B and z is contained in B. For a fixed point p € B one of the corners u of B satisfy
dist(p,u) = mazx(dist(p,z) : x € B). So we can fix v at a corner of B and. Consider Figure 4.
By aid of the theorem of Pythagoras and differentiation we obtain, that % is maximal, when

z = (v/5 — 1)l, where [ is the side length of B, and this maximum is 1/3 + v/5. O

Remark: Note that without the second component of dist;, 0 < i < 4 the obtained
graph would be not necessary strongly connected. Consider the following example: let
S = {p1,p2,P3,pa,ps} and let (1,0), (0,1), (—1,0), (0,—1) and (0,0) be the coordinates
of the points. Then the point in the center is not necessary reachable from the other points
by a directed path. If we only have three cones (i.e. v = %’T) the construction of a non strongly
connected example is quite easy.

3 Steiner points for navigation in the scene

In this subsection we present a deterministic method to find the nearest neighbor of the
query point ¢ in ¢! w.r.t. dist;, i = 0,..,3. The BFS procedure in a range query query(q,r)
starts with these points. In order to find a nearest neighbor we exploit that the visitor moves
through the scene slowly. Furthermore, we extend the original point set S with O(n) carefully
placed Steiner points. In the extended point set S’ we can take advantage of the fact that
the nearest neighbors of the query position ¢ is close to the nearest neighbors of the previous

query position gpr., and we can find it in constant time.

3.1 The "moving visitor” structure

First we describe how we place the Steiner points. We proceed similarly to the mesh generation
technique of Bern et al. [5][6]: First we produce a linear size, balanced quadtree and we take
the corners of the boxes of this quadtree as Steiner points. We describe this technique briefly
below.

Definitions [5]: A quadtree is a recursive subdivision of the plane into square boxes. The
nodes of the quadtree are the boxes. Each box is either a leaf of the tree or is split into
four equal-area children. A box has four possible neighbors in the four cardinal directions; a
neighbor is a box of the same size sharing a side. A corner of a box is one of the four vertices
of its square. The corners of the quadtree are the points that are corners of its boxes. A
side of a box is split if either of the neighboring boxes sharing it is split. A quadtree is called
balanced if each side of an unsplit box has at most one corner in its interior. An extended
neighbor of a box is another box of the same size sharing a side or a corner with it.

Building balanced quadtree for S [5]: We start with a root box b concentric with
and twice as large as the smallest bounding square of S. We recursively split b as long as b
has a point of S in its interior and one of the following conditions holds: (7) b has at least
two points or (i7) b has side length / and contains a single point p € S with nearest neighbor
in S closer than 2v/2/ or (iii) one of the extended neighbors of b is split. Then we balance
the quadtree. We remark that the balancing increases the space requirement of the quadtree
only by a constant factor. After all splitting is done, every leaf box containing a point of S is



surrounded by eight empty leaf boxes of the same size.

Building linear size balanced quadtree [5]: The only nonlinear behavior of the above
algorithm occurs, when a nonempty box is split without separating points of S. If this
happens, we need to ”shortcut” the quadtree construction to produce small boxes around a
”dense” cluster without passing through many intermediate size of boxes. We construct the
quadtree for the cluster recursively and we treat the cluster as an individual point. In this
way we obtain a linear size quadtree for S, i.e. the number of the boxes is linear to n. The
linear size quadtree for S can be constructed in O(nlogn) time and O(n) space. For some
algorithmic details we refer to [6].

Here ends the part borrowed from Bern et al. [5].

We call a dense cluster with the containing box and the eight extended neighbor boxes an
extended cluster. We remark that in the extended clusters the balance property is maintained
by the above description. It will be crucial for the fast navigation that an extended cluster
has only constant number of corners on the boundary.

Building G/, from the quadtree: We extend S with the O(n) corners of the linear
size quadtree and construct the graph G /,(S’) for the extended point set S'. If we have the
quadtree, we can determine for each point of S’ its four neighbors in constant time. It follows
from the fact that the neighbors of a point p € S” in G/3(5) are in the interior of the leaf
box b(p) containing p or in the interior of a neighboring box of b(p). Figure 5 illustrates the
possible cases.

) ‘ c) Q

A
|

b)

Figure 5: The scheme to construct Gr/o(S’) from the quadtree: a) An original point of 5,
the box containing it and the eight extended neighbor boxes. b) A split side. ¢) A shortcut.

Point location in constant time beyond slow motion of the visitor: If we have
G r/2(8'), we can determine for each point p’ of S’ the leaf box b(p') of the quadtree containing
p’ in constant time. Furthermore, if z is the distance between the closest pair of S then the
side length of the smallest box of the quadtree is a constant fraction of z. These observations
imply that for the query position ¢ the box b(¢) of the quadtree containing ¢ can be computed
in constant time via G /,(S'), if we know the box b(gyrey) containing the previous query
position gurey, since the line segment (g,ey, ¢) intersects only constant many leaf boxes of the
quadtree. The intersections and so the box b(¢) can be computed in constant time. Then the
nearest neighbor of ¢ in S’ in each cone ¢}, i = 0,...,3 can be determined in constant time,
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too. Knowing these nearest neighbors we can start the BF'S in order to answer the range
query query(q,r). We conclude:

Theorem 3.1 Let S be a scene of n equal size objects. Assume that the visitor moves slowly.
There is a data structure which provides to report the potentially visible objects in time O(1+k)
time, where k is the number of the edges of Gr/5(S') having the origin in the interior of a

circle which is concentric with the query circle and has a radius \/3 4+ /5 times of the query
circle. The space requirement of the data structure is O(n) and can be built in O(nlogn)
time. a

4 The incremental data structure, lazy updates

In this subsection we study the incremental version of the search problem. Here insertion of
a new object at the current position of the visitor is allowed. We show how we can insert a
point into the graph G/5(S’) in a time which match to the query time.

If we insert a new point into GW/Q(S’) we first must maintain the balance property in
the quadtree. Then we must update the adjacencies at the affected vertices of GW/Q(S’)
corresponding to corners of the changed boxes or they neighboring boxes. Updating GW/Q(S')
at the affected vertices costs only a constant time per box even in the case of a changed short
cut. Therefore the update time is determined by the number of affected boxes. The main
problem is to maintain the balance property. Let [(b) be denote the level of box b, it is the
length of the tree path from the root box of the quadtree to the box b. If a leaf box b is
splitted then the balance condition can be violated in each level higher than /(b) (Figure 6).
Therefore, the worst case update time for the rebalancing of the quadtree depends on the
depth of the quadtree and so on the total scene.

Figure 6: Rebalancing of the quadtree

Let C) be query disc having a radius r and C'; the disc concentric with (', and having

a radius rf = r\/3 + /5. In order to made the rebalancing independent from the total size
of the scene we make lazy updates, i.e. we split only the boxes intersecting C'.;. After the
splittings we update only the vertices of Gr/3(S") in Cry. The remainder splittings will be
performed later, when the current C) ¢ intersects the according boxes. So, at the beginning of
each query we must check, whether the disc (' ; affects new leaf boxes violating the balance
property. In this case we perform the necessary splittings. In this way the update time is at
most linear to the number of vertices of the updated graph G /5(S’) in the disc Cys. This
time matches to the time of the searching. We summarize:
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Theorem 4.1 Let S be a scene of n equal size objects. Assume that the visitor moves slowly.
There is a incremental data structure which provides inserting a new object at the position of
the visitor in time O(1 4+ k), where k is the number of the edges of Gr/5(S’) having the origin

in the interior of a circle which is concentric with the query circle and has a radius \/3 + /5
O

times of the query circle.

5 Conclusions

We considered special range searching problems motivated by a walkthrough simulation of a
large geometric scene.

We constructed a directed graph G /5(5) for a set S C E? of n points whose outdegree
is bounded by 4. We gave a plane sweep algorithm to compute G /5(5) in O(nlogn) time.

Then we proved that G /,(S5) is a weak spanner with stretch factor /3 + V5 &~ 2.288. Our
weak spanner decreases the space requirement of the data structures of Fischer et al. [12]
drastically and yields a faster static data structure for the search problem in expected sense.

To solve the incremental ”moving visitor searching problem” we presented a deterministic
linear space data structure. Our data structure guarantees running times for query(q,r) and
insert(p) independent of n. It is based on careful choice of O(n) Steiner points.

The main directions of the future research are the following. We want to generalize the
graph GW/Q(S) in d > 3-dimensions, such that we obtain a weak spanner in E?.

Further, we are interested in other linear size data structures to solve our searching prob-
lems. In particular, does a data structure exist solving the ”moving visitor search problem”
without Steiner points?

Acknowledgment: We would like to thank Artur Czumaj and Friedhelm Meyer auf der
Heide for the helpfull comments and suggestions.
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Appendix

A The ~-angle graph

Fischer et al. [12] presented a fully dynamic data structure for real time management of large
geometric scenes. They use the weak spanner property of a dense graph to answer circular
range queries performing a certain point location and a BFS.

The basic data structure in [12] is called v-angle graph. The same construction was called
©-graph by Keil and Gutwin [13] and Ruppert and Seidel [15].

We restrict the description to the two dimensional case. Let k > 6 be an integer constant
and let v = 27” Rotate the positive z-axis over angles 7y for 0 < ¢ < k. This gives k rays
hg, ..oy hp_1. Let cg, ..., cp_1 be the cones that are bounded by two successive rays. The ¢th ray
h; belongs to cone ¢; and h;41 does not. Also, for 0 < ¢ < k, let [; be the ray that emanates
from the origin and halves the angle in the cone ¢;. Define a graph in the following way. For
each point p € S translate the cones cq,...,cx_1 and the corresponding rays lg, ..., [z_1 such
that its apexes and starting points are at p. Denote ¢, ..., ¢, _, and [, ..., [} _, this translated
cones and rays respectively. For p,q € S and 0 < i < k define the distance dist;(p,q) as
the BEuclidean distance between p and the projection of ¢ onto the translated ray (¥ if ¢ is
contained in the translated cone ¢/, and co otherwise. For 0 < i < k, if the cone ¢
a point of S then add a directed edge from p to one of the closest points in ¢! defined by the
distance function dist;.

The graph obtained in this way is called the y-angle graph of S, denoted by G (5). It
contains at most kn = O(n) edges and can be build in O(nlogn) time by performing k sorting

and k plane sweeps. In [12] it is shown that G (S) is a weak spanner for S with stretch factor

contains

13



f=max(/1+48sin* 2, /5 —4cosy). If we take vy = Z then we get f = 2. We remark that

for k > 7 the y-angle graph is a (I_ZSiL(W/Z))—spanner (v. Ruppert and Seidel [15]).

If the center of the query circle ¢ is a point of S the weak spanner property implies that
we can perform a BEFS beginning at ¢ extracting only the points, whose distance from ¢ is
at most fr. If ¢ € S the BE'S can be started at a point p € S not farer from ¢ than fr,
where f is the stretch factor. As mentioned, to find such a point in a time independent of n
is impossible in the general case.

If the radius r of the query circles is known before the preprocessing of S, the root of
the BF'S can be found by adding the nodes of a grid as Steiner points to .S. The size of the
data structure remains linear if we store only those Steiner points (called the essential Steiner
points) explicitly which have a neighbor in the original point set S. Using dynamic perfect
hashing [11] to store the coordinates of the essential Steiner points we can find a Steiner point
close to the current query position in constant time. This approach was used by Fischer et
al. [12]. We remark that this method is randomized because of the hashing from [11] used.
Furthermore, it uses the floor function and indirect addressing. Thus it is not captured by
the algebraic computation tree model where an (logn) lower bound holds.

Using the hashing structure it is possible to insert and delete a point of S from the data
structure of [12] in O(r'?) and O(r"?logr’) time respectively, where r’ is the step size of the
grid, multiplied by a constant only dependent on +.

The y-angle graph can be generalized to K%, as described in [12], in natural way. In this
case, we have to divide the space at each point p € S into cones with a maximum angle
v < 3. This cones must cover R? but can overlap. The d-dimensional y-angle graph for §
can be computed in O(nlog?" n) time and O(nlog?=? n) space by aid of plane sweeps. The
generalization of the extension of S with Steiner points and the hashing structure to store
only the essential Steiner points is straight forward.
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