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Abstract. We present an algorithm to answer a set Q of range count-
ing queries over a point set P in d dimensions. The algorithm takes

0 (sort(|P| +1Q) + ('P'+'§g°‘("°'> log‘fw_/lB ‘Plngl)l I/Os and uses lin-
ear space. For an important special case, the a(|P|) term in the I/O-
complexity of the algorithm can be eliminated. We apply this algorithm
to constructing ¢-spanners for point sets in R? and polygonal obstacles
in the plane, and finding the K closest pairs of a point set in R<.

1 Introduction

Motivation. Range searching and range counting problems have applications
to spatial databases, geographic information systems, statistical analysis, and
problems in computational geometry [1]. Conical Voronoi diagrams and 6-graphs
appeared first in the early 80’s as the base structure of the so called region
approach for solving nearest neighbor problems and constructing a minimum
spanning tree for a given set S of N points in d-dimensional Euclidean space
[23]. These structures have numerous further applications and a rich history in
various fields of computer science, e.g., in motion planning [11], construction
of spanner graphs [16,18,19], problems on communication networks [15], for
approximating the Euclidean minimum spanning tree [23] of a given point set,
and for real-time walkthrough in virtual scenes [12]. In most of these domains,
realistic data sets are too large to fit into the internal memory of state-of-the-
art computers. Therefore special techniques are required to reduce the overhead
involved in accessing secondary storage (i.e., disks). Existing internal memory
techniques cannot be adapted, as random access into secondary memory is far
too expensive.

Range counting. Range counting is a special kind of range searching problem.
Given a point set P and a query range ¢ = [z1,2]] X [®2,%5] X -+ X [z4, 2],
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the standard range searching problem is to report all points in P N gq. It is easy
to answer a single query of this type in optimal @(scan(N)) I/Os. Typically,
however, we are either presented with a batch of queries (the batched scenario),
or we want to build a data structure that can answer queries in o(scan(N)) I/Os
per query, depending on the size of the output (the online scenario). I/O-efficient
solutions for the online range searching problem have been presented in [3, 7, 20].
When solving the batched range searching problem, our goal is to minimize the
total number of I/Os spent on answering all queries. An I/O-efficient solution
to this problem has been presented in [2].

While range searching asks to report all points in PNgq, range counting asks to
report a value @), pn, A(p), where ® is a commutative and associative operator
and A\(p) is a label assigned to point p. Important special cases include counting
the elements in P N ¢ (the labels are 1, and ® is standard addition) or finding
the minimum point in P N ¢ w.r.t. some arbitrary weighting scheme.

6-Graphs. Given a set {po, ..., px} of points in R? such that the vectors (p; —po),
0 < i < d are linearly independent, we define the simplicial cone spanned by
points pg, .. ., py as the set {pg + Z?:l Ai(pi — po) : Aj > 0}. We call pg its apez.
A 0-frame is a set C of simplicial cones such that each cone has its apex at the
origin, Ucecc = R?, and each cone ¢; € C contains a ray /; emanating from
the origin such that for any other ray [ in the cone emanating from the origin,
Z1;l < 8/2. Denote [; as the cone azis of ¢;. In [19], it is shown how to construct
a B-frame of size (d/6)°D.

Given a #-frame C and a point p, let co(p), ..., ck—1(p) and lo(p), . .., lk—1(p)
be translated copies of cones c¢g,...,cx—1 € C and rays lg,...,I;_1 such that
the apexes of cones ¢;(p) and the endpoints of rays [;(p) coincide with point p.
For p,q € P and 0 < 7 < k, the distance dist.,(p,q) between p and g w.r.t.
cone ¢; is defined as the FEuclidean distance between p and the projection of ¢
onto the translated ray [;(p) if ¢ is contained in ¢;(p), and infinity otherwise.
The Euclidean distance between two points p and ¢ is denoted by dists(p, q)-
For each point p € P and 0 <i <k, let P, () = PNci(p).

The K-th order 0-graph Gy i (P) is defined as follows: The points of P are
the vertices of G,k (P). For every point p € P and every cone ¢; € C, we add
directed edges from p to the K* = min(K, |P,,(,)|) vertices in P, that are
closest to p w.r.t. the distance function dist.,.

A t-spanner, t > 1, for a point set P is a straight line graph with vertex set
P such that for each pair p,q € P of vertices, the shortest path from p to g in G
is at most ¢ times longer than the Euclidean distance from p to g; the length of
a path is the sum of the Euclidean lengths of its edges. We call such a shortest
path a t-spanner path from p to g; t is called the stretch factor of G. In [19], it is
shown that in a fixed dimension d > 2 and for 0 < 6 < %, the f-graph Gy (P) is

a (#}1(9/2)) -spanmer for P, and that it can be constructed in O(N log?~* N)

time using O(N log?~2 N) space.
A spanner graph G is K -fault tolerant if after removing at most K vertices
or edges from G, the remaining graph still contains a path between each pair



p, q of vertices which is at most ¢ times longer than the shortest path between p
and q in the complete Euclidean graph after removing the same set of vertices or
edges [17]. In [18], it is shown that the K-th order §-graph is K-fault tolerant.

The 6-graph Gy(O) for a set O of simple polygonal obstacles in the plane
is defined as follows: The vertex set of G(O) is the set of obstacle vertices in
O. Each vertex v is connected to the nearest wisible vertex in each cone c(v)
w.r.t. dist.. This graph has been introduced in [11] to solve the approximate
shortest path problem in two and three dimensions: Given two points s and ¢
and a constant € > 0, find an obstacle avoiding path which is at most (1 + €)
times longer than the shortest obstacle avoiding path between s and ¢.

Conical Voronoi diagrams. The conical Voronoi diagram CVD.(P) of a set P of
points is closely related to the §-graph. For a cone ¢, the conical Voronoi region
Vp of a point p € P is the set of points in the plane having p as the closest point
in P w.r.t. dist.. CVD.(P) is the planar subdivision defined by the Voronoi
regions V), p € P. Similarly, the conical Voronoi diagram CVD.(O) of a set O
of simple polygonal obstacles is the planar subdivision defined by the obstacles
and the Voronoi regions V}, of the obstacle vertices, where V}, contains the points
x € R? having obstacle vertex p as the closest visible vertex w.r.t. dist..

Model of computation and related results. Our algorithms are designed and an-
alyzed in the Parallel Disk Model (PDM) [22]: An external memory consisting
of D disks is attached to a machine with an internal memory of size M. Each of
the D disks is divided into blocks of B consecutive data items. Up to D blocks,
at most one per disk, can be transferred between internal and external mem-
ory in a single I/O-operation. The complexity of an algorithm is the number of
I/0 operations it performs. Many external memory (EM) algorithms and tech-
niques for fundamental problems in computational geometry, graph theory, GIS,
matrix computations, etc. have been developed in this model. Due to the lack
of space we refer the reader to the survey of [21] and mention only the most
relevant work here. It has been shown that sorting an array of size N takes

sort(N) = @ (%logM/B %) I/0s [21,22]; scanning an array of size N takes

scan(N) = O (£%) 1/0s. EM algorithms for computing pairwise intersections
of orthogonal line segments, answering range queries in the plane, finding all
nearest neighbors for a set of NV points in the plane, dominance problems, and
other geometric problems in the plane are discussed in [2,3,7,13,20]. General
line segment intersection problems have been studied in [6]. For lower bounds on
computational geometry problems in EM see [5]. See [4] for buffer trees, priority
queues, and their applications.

Overview. In Sect. 2, we discuss our solution to the batched range counting
problem. In Sect. 3, we use the solution for a special case of this problem to
compute K-th order #-graphs for point sets in d dimensions. We also discuss
how to report a spanner path I/O-efficiently. In Sect. 4, we apply O(\/I_( ) -th
order #-graphs to solve the K-closest pairs problem in d dimensions. Finally, in



Sect. 5, we show how to compute the 6-graph and the conical Voronoi diagram
of a given set of disjoint simple polygonal obstacles in the plane I/O-efficiently.

In order to solve the batched range counting problem, one could use the
range searching algorithm of [2] to report the points in each query range, and
then count the points reported for each query. Using this strategy, the complexity
of answering a query depends on the number of points in the query range, which
can be as large as N. Our solution is independent of the number of points in
each query range.

In [14], an asymptotically more efficient construction for spanners of point
sets in d dimensions is presented. However, as this construction is based on a
well-separated pair decomposition [10] of the point set, the constants hidden in
the big-Oh notation are extremely large, the construction works only for point
sets, and the approach cannot be used to construct K-fault tolerant spanners.
For moderate dimensions, we expect our algorithm to compare favorably with
the one of [14]. Similarly, the solution to the K-closest pair problem presented
in [14] is asymptotically more efficent than ours; but for moderate dimensions
we expect our algorithm to be more efficient.

Our construction of #-graphs for sets of polygons is based on the construction
of [11]. However, the algorithm of [11] is not I/O-efficient and cannot easily
be made I/O-efficient. We prove a number of interesting properties of conical
Voronoi diagrams to obtain an I/O-efficient solution to this problem.

2 Batched Higher-Dimensional Range Counting

In this section, we present I/ O-efficient algorithms for the batched d-dimensional
range counting problem. First we consider the important special case where
wlo.g. 2} = oo, for all query ranges [z1,2]] X --- X [24,2}]- Our solution for
this case is used in Sections 3 and 5. For the general case, we present a more
complicated algorithm, which is by a factor of O(«(|P])) slower.

2.1 Colorable Problems

To solve the batched range counting problem, we apply the framework of col-
orable search problems defined in [2], although we extend it slightly. This frame-
work can be used to derive an algorithm solving a search problem in R?, d > 1,
from an algorithm solving the same search problem in R!.

Let P be a batched search problem answering a set @ of queries over a point
set P in R?. Given a set C of colors, we define a coloring C assigning a color
cq € C to every query ¢ € (Q and a set C}, C C of colors to every point p € P.
Every color ¢ € C defines a point set P, = {p € P : ¢ € Cp}. Let Pc be the
problem of answering queries q¢ € () with respect to point sets P, .

We call P (Z,,Z,,S)-mc-colorable in dimension d, for some constant 0 < ¢ <
1, if for every coloring C with |C| = O(v/m®) and such that there are O(m®)
different color sets assigned to the points in P, there exists an algorithm A
that solves problem P¢ and can be divided into phases AS) , AQ), A;Q), Ag), el



A§,’“*1) , Aq(nkfl), Ag,k) so that phases Al(,l), ... ,Aék) take Z,, I/Os in total, the total
I/O-complexity of phases ,49), .. .,.Agk_l) is 7., A uses S space, and phases
21), e Ag,k) are independent of d.

The idea behind this definition is that we can use algorithm A to derive
an algorithm B solving P in R, only by replacing phases AV, ..., A¥~Y
by phases Bﬁl), et ,Bﬁk_l), in order to deal with the extra dimension. That is
algorithm B consists of phases AS),BQ), Al(f), 69), e, AI(,k_l),Bﬁk_l), A,(,k).

We solve the search problem to be addressed by phase Bg) using a buffer
tree [4] of degree v/m° and algorithm A The buffer tree is built over the
coordinates of the points in P in the d-th dimension. Queries are filtered from
the root of the tree to the leaves. At every level, each query g is answered w.r.t.
the maximal multislab spanned by ¢. A point is colored with the colors of the
multislabs that it is contained in. Hence, we have to solve a colored version of
the d-dimensional problem at every level, which we do using Agi). Adapting the
proof of [2] to this more general framework, we obtain the following result.

Theorem 1. If a batched search problem P is (Z,,Z,,S)-m°-colorable in R¢,
then its (d + 1)-dimensional version is (ZP,L -log /B %, S) -v/me-colorable.

Corollary 1. If a batched search problem P is (Z,,Z,,S)-m°-colorable in R',

then its d-dimensional version can be solved in O (Ip + I, -logi/;/lB %) I/0s

using O(S) blocks of external memory.

We now apply this framework to solve the batched range counting problem.

2.2 Partially Unbounded Queries

The following algorithm shows that if w.l.o.g. 2} = +o00, for all queries g € @, the
batched range counting problem is (sort(|P| +1Q|), scan(|P| +|Q|), %)—m—
colorable for d = 1: Sort all queries by left endpoints and all points by their
z1-coordinates (Phase Aél)). Scan P and @ in lock-step fashion, simulating a
line sweep from +00 to —oo. During the sweep, maintain a value IT = Q{A(p) :
p € Pand z1(p) > z1(£)}, where z1(¢) is the current position of the sweep
line. When the sweep line passes a point p, update IThew < A(p) ® II51g- When
the sweep line passes the left endpoint of a query ¢, report IT as the answer to
query ¢ (Phase Agl)). In order to make this solution m-colorable, maintain m
separate products II¢,, one per color class C; in the coloring. In order to report
the answer to query ¢, compute IT = @{Il¢; : ¢; € C;} when the sweep passes
the left endpoint of ¢. Using Cor. 1, we obtain the following result.

Theorem 2. It takes O (sort(|P| +1Q|) + % logﬁl_/lB %) I/0s and linear

space to answer a set Q of range counting queries over a point set P in R?,
provided that w.l.o.g. ) = 400, for all queries [x1,x]] X -+ X [zq4,2}] € Q.



2.3 Bounded Queries

We turn to the general case now, where every query q € ) is a d-dimensional
box. Again, we present a solution for the case d = 1 and generalize it to higher
dimensions by applying Cor. 1. We define a sequence of functions ¢;(z) as follows:
¢o(z) = [2] and ¢i(z) = min{j > 0 : ¢, (z) < B}, for i > 0, where f()(z)
is defined as fO(z) = z and f¥(z) = f(f0V(z)), for i > 0. Thus, ¢ (z) =
logy z, ¢a2(x) = log® z, and so on. It is an exercise to show that ¢on)(N) =
O(a(N)), where a(N) is the inverse of Ackermann’s function. We develop a
series of algorithms proving the following lemma.

Lemma 1. For every k > 0, the one-dimensional batched range counting prob-
lem is (Zp,Z,,S)-m°-colorable, where I, < tk(sort(|Q|)+scan(|P|))+t-sort(|P|),
Z, < tk(scan(|Q]) + scan(|P|)¢r(|P|)), for some constant t > 0, and S =

0 (Fel).

Proof sketch. Consider the case k = 1. The first phase A,(,I) preprocesses P and
Q@ as follows: Sort the points in P by their x;-coordinates. Let T be a balanced
binary tree over the points in P. (We do not construct 7', but use it only as a
conceptual tool.) With every node v € T, associate a value z, separating the
points in the left subtree from the points in the right subtree. Associate every
query ¢ € @ with the highest node v, € T such that ¢ spans z,,. Split query
q into two parts ¢; and ¢, to the left and right of x,,. This produces two sets
@ and @, of left and right subqueries. Sort the queries in @; according to their
corresponding nodes v, sorted top-down in T' and left to right at every level;
queries associated with the same node v are sorted by their left endpoints. The
queries in @, are sorted analogously; but sort the queries associated with the
same node by their right endpoints. This phase takes O(sort(|Q|) + scan(|P|))
I/Os and linear space.

Phase .Agl) answers left subqueries at each level h of T' using a modification of
the approach of Sect. 2.2. In particular, the running product I7 is reset whenever
the sweep passes a value z, associated with a node v at level h. This takes
O(scan(|Qr| + |P])) I/Os, where @, is the set of queries associated with nodes
at level h. Right subqueries are answered using a similar procedure. As there are
logy |P| = ¢1(|P|) levels in T, and 31282 P11Q,] = |Q|, it takes O(scan(|Q|) +
scan(|P|)¢1(|P])) I/Os to answer all left and right subqueries. Once this is done,
Phase A§,2) combines the answers to the left and right subqueries of each query
in O(sort(]@Q])) I/O0s. Choosing t appropriately, we obtain the claim for k£ = 1.

For k > 1, we define the tree T as follows: First associate the whole set P
with the root r of T'. Then split P into |P|/¢r_1(|P|) subsets of size ¢r_1(|P|),
and create one child of r for each subset. Apply this strategy recursively to
the children of r. Consider a node v with children wy, ..., ws. Let z1,...,zs be
values such that z; separates the points associated with w;_; from the points
associated with w;. Again, associate a query g € @) with the highest node v, € T
such that ¢ spans some value z;. Let x; and z, be the leftmost and rightmost



such values spanned by ¢, respectively. Split ¢ into three subqueries q;, ¢, and
qr to the left of z;, between z; and x,., and to the right of x,, respectively. Note
that g, does not exist if z; = z,. Now sort left and right subqueries by level
and within each level as for the case £ = 1. This modified Phase .A,(,I) still takes
at most (t/2)(sort(|Q|) + scan(|P|)) I/Os.

Phase Agl) now answers left and right subqueries as for £ = 1. As the height
of T is now ¢(|P]), this takes at most t(scan(|@Q|) + scan(|P|)¢x(|P|)) I/Os.
Phase Agf) combines the query results of ¢; and ¢,, and stores the result with
Gm, in order to combine it with the answer to query ¢, later. This takes at
most (t/2)sort(]@|) I/0s. The remainder of the algorithm answers the middle
subqueries of all queries in ). Note that at every level of T', middle subqueries
now stretch between values z;. Call the interval bounded by two consecutive
such values at the same level a slab. In order to answer middle subqueries at
a particular level h, we compute a new point set P, containing one point p,
per slab o. The label associated with p, is the product of the labels of all
points in P N o. We can now answer middle subqueries with respect to P
without altering the solution. Due to the reduced size of P, this takes 7, <
t(k — 1)(sort(|Qn|) + scan(|Py|)) and Z. < t(k — 1)(scan(|P| + |Qn|)) I/0s, by
the induction hypothesis. Summing over all ¢ (|P|) levels, and adding the costs
for answering left and right subqueries, we obtain the claim for & > 1. O

Choosing k =1 for d = 1, and k = «(|P|) for d > 1, we obtain an O(sort(|P| +
|Q|)) I/O algorithm for d = 1, and an O (lp‘az(lp‘l))nga(‘Pl) logjivI_/IB Lidhel®
I/0 algorithm for d > 1. Now partition P into contiguous subsets of size a(|P|)
using | P|/a(|P]) splitters. Partition every query into left, middle, and right sub-
queries so that the left and right subqueries are maximized without spanning
any splitter. For every query, answer the left and right subqueries by scanning

the respective portion of P. This takes O (%aﬂﬂ)) I/Os. Every middle
subquery stretches between two splitters. Hence, we can represent every slab by

a single point, thereby reducing the size of P to |P|/a(|P|), and we obtain the
following theorem, applying Lem. 1 and Cor. 1.

N—

Theorem 3. It takes O (sort(|P| +1Q)) + w logﬁ/f/lB %) I/0s
and linear space to answer a set Q of range counting queries over a set P of
points in RE.

The K-range minima problem is to report the K points with minimum weight
in each query range. Modifying the scan in Sect. 2.2 to maintain the K minima
seen so far, it is easy to generalize the algorithm of this section to solve the K-

range minima problem in O <sort(|P| +1Q|) + W log‘]ivf_/lB ‘Pllﬁ)

I/0s, using O (%) blocks of external memory.



3 Spanners for Point Sets

Computing K-th order 8-graphs. Our algorithm for constructing the K-th order
f-graph iterates over all cones ¢ € C' and computes the K closest points w.r.t.
dist. in ¢(p) for every point p € P. Using an affine transformation, cone ¢ can
be transformed into the range [0, +00) X [0, +00) X - - - % [0, +00), and reporting
the K points closest to p in ¢(p) translates into a K-range minima query for the
modified cone ¢'(p). Using Thm. 2, we obtain the following result.

Theorem 4. Let P be a set of N points in R?, and § < 7 be a constant angle.
Then it takes O (sort(N ) + & log‘}w_/lB %) I/0Os and linear space to construct
the K-th order 6-graph Gg .k (P) of P.

For fixed 6, the #-graph has bounded out-degree, but not necessarily bounded
in-degree. Using a two-phase approach, applying in both phases similar ideas
to those presented in [8], we can compute in O(sort(N)) I/Os a spanner G of
bounded in- and out-degree from a given #-graph G'.2

Reporting paths in 0-graphs. A spanner path between two points s and ¢ in a
f-graph can be computed as follows: For every point p € P, determine the cone
¢(p) containing t. Add the outgoing edge of p in cone ¢(p) to a graph T'. T is a tree
with root ¢ whose edges are directed towards the root. It follows directly from
the arguments applied in the analysis of the spanning ratio of 8-graphs that the
path from s to ¢ in T is a spanner path. Hence, it is sufficient to report the path
from s to t in T, which takes O(sort(N)) I/Os using time-forward processing [9].

4 K-Closest Pairs

The following theorem, which we prove in the full paper, can be used to find the
K-closest pairs of a point set P in O(scan(NvK)) I/Os, once an O(VK)-th
order f-graph has been constructed for P.

Theorem 5. Let P be a set of points in RY, 0 < 6 < 2arccos/4/5,1 < K <
n—1, K* = max(K, K?/4), and {p, q} be any of the K* closest pairs in P. Then
the K -th order 8-graph contains an edge between p and q.

5 Spanners Among Polygonal Obstacles in the Plane

In this section, we prove the following theorem.

Theorem 6. Given a set O of polygonal obstacles in the plane, with a total of N
vertices, a linear size t-spanner for O can be computed in O (% logrr/(pB) %)

I/0s using linear space.

2 The spanning ratio of Gist =1t -t - 5, where t' is the spanning ratio of

1
1—2sin(Br/M
G’ and t” is the spanning ratio of the single-sink spanners used in constructing G.



In [11], it is shown that the §-graph G (O) is such a t-spanner. Our algorithm to
construct Gy (O) follows the framework of [11]. However, we need to change the
plane-sweep substantially, in order to perform it I/O-efficiently. For this purpose,
we have to prove some new properties of conical Voronoi diagrams. The I/0-
complexity of our algorithm becomes O(sort(N)) if the endpoint dominance
problem [6] can be solved in O(sort(N)) I/Os.

The algorithm iterates over all cones ¢ € C' and computes the conical Voronoi
diagram CVD.(O) (Fig. la) consisting of Voronoi regions V,, x € P. For each
such region V, and each point p € V,, x is the closest visible obstacle vertex in
¢(p). Thus, for all obstacle vertices y € V,, the edge (y, ) is an edge of G4(0).
Once CVD.(O) is computed, we add all such edges to the edge set of Gy(O).
In the full paper we show how to do this I/O-efficiently, so that Thm. 6 follows
from the following result, which we prove in the rest of this section.

Theorem 7. A representation of CVD.(O) as vertex and edge sets can be com-
puted in O (% logrr/(pB) %) I/0s using O(N/B) blocks of external memory.

Assume that the coordinates have been transformed so that the cone axis of cone
¢ points in positive y-direction. The construction of CVD.(O) uses a plane-sweep
in this direction. Let ¢’ be the reverse cone of ¢, i.e., the set of points p such that
the apex of ¢’ is contained in the cone ¢(p). Then V, C ¢/(z). Denote the left and
right boundaries of ¢’ by h; and h,., respectively (Fig. 1b). Let H; and H, be two
lines perpendicular to h; and h,., respectively, and directed upward. We denote
the projections of a point p onto H; and H, by H;(p) and H,.(p), respectively.

For the sake of simplicity, assume that the scene contains a dummy obstacle
bounded from above by a horizontal line l},o; with y-coordinate —oo. Now every
cone ¢'(x) becomes a triangle bounded by h;(z), h.(z), and a part of le. As
Ve C ¢/ (x), V; is bounded from the left and right by h;(z) and h.(z) and from
below by a polygonal chain consisting of parts of obstacle edges and/or parts of
cone boundaries h;(y) and h.(y), for vertices y € P below x.

During the sweep, we maintain the invariant that the Voronoi regions V,,
for all vertices y € P below the sweep line ¢, have been computed. Let P,
be the set of vertices below ¢ and O, be the set of obstacles in O below or
intersecting . Define the region Ry = J,cp, Vy UUyeo, 0- As Ry contains the
dummy obstacle, it extends to infinity in both z-directions and in negative y-
direction. The following lemma is proved in the full paper.

Lemma 2. Region R, is connected.

Lem. 2 implies that Ry is bounded from above by a polygonal chain, even though
it may contain holes. We call the upper boundary of R, the horizon of sweep
line £ and denote it by U, (Fig. 1a).

Let x be the current vertex on the sweep line £, whose Voronoi region we
want to compute. Let p; be the first intersection point of h;(z) with Uy if hy(x)
does not intersect the interior of an obstacle before intersecting Uy. Otherwise,
let p; = z. We define a point p, analogously with respect to h.(z). Then the
edges h/°"(z) = (z,p1), hY°"(z) = (x,p,), and the part Ue(pi, p,) of Uy between



Fig. 1. (a) A conical Voronoi diagram with the horizon U, for sweep line ¢ shown in
bold. Obstacles are shaded dark grey. Regions V;, for points y below the sweep line are
shaded light grey. White regions below the horizon are holes in Ry. (b) Illustrations of
various definitions.

pr and p, bound a polygonal region R,. Edge h/°"(x) (h}°"(z)) is not defined if
p =z (pr = x), and R, = 0 if p, = p, = x. The following lemma is shown in
the full paper.

Lemma 3. The region R, defined as above is the Voronoi region of x. That is,
R, =V,.

Consider the region V,. Lem. 3 implies that when the sweep line ¢ reaches ver-
tex x, the whole boundary of V,, except h/°"(z) and hy°"(x), has already been
computed. To make the description of V, complete, we need to compute h)°"(z)
and hy°"(z). This can be done by performing two ray-shooting queries onto U,
in the directions of h;(x) and h,(z).

We answer ray-shooting queries in two stages. The first stage determines
the points on obstacle boundaries hit by h;(x) and h,.(z). The second stage
determines whether h;(z) and h,(z) hit Voronoi edges h)°"(y) and h)°" (y') before
hitting the respective obstacles.

The first stage is equivalent to solving the endpoint dominance problem for

the set of obstacle vertices, which takes O (% 1081r/(DB) %) I/Os [6]. Con-

sider rays h;(x) and h,(x), for a vertex z on the boundary of an obstacle o € O.
Let h{**(z) = (z,y), where y is the first intersection of h;(z) with an obstacle.
If hy(z) \ {z} intersects the interior of o before intersecting the boundary of
o0, h{**(z) is not defined. We define h&**(z) analogously. We say that segment
e = (z,y) hits segment e’ C Uy if e and €' intersect in a point p and segment
(z,p) does not intersect any other segment e” C U.

Observation 1. The ray hy(z) (h.(z)) hits a segment hY°"(y) (hy° (y)) if and
only if segment h{**(z) (h**(x)) hits segment hY°" (y) (h)°" (y)).

If hy(z) does not hit an obstacle edge in Uy, it hits a segment hY°*(y) because
segments h)°" (y) and h;(y) are parallel. Analogously, h,(x) hits a segment h)°" (y)
if it does not hit an obstacle edge in U;. We show how to find the segment h¥°" (y)
hit by h{**(z), and the segment h}°"(y) hit by h¢**(z), if any.



We do this in two separate plane sweeps. The first sweep finds segments
hy°*(y) hit by segments h®**(z), for all vertices z € P. The second sweep finds
all segments hy°"(y) hit by segments h{**(z). As these two sweeps are similar, we
only describe the first one. The difficulty is that segments h°"(y) are not known
before the first sweep. They are only computed by the second sweep. However,
the goal of the first sweep is not to compute segments ~)°"(y), but to determine
whether a given segment hS**(z) hits such a segment h}°"(y). The following
lemma provides the tool to make this decision without knowing segments h)°" (y)
explicitly. For a given vertex z on sweep line £, let the hiding set of h{**(z) be the
set of endpoints 2’ of segments h$**(z') with H;(z') > H;(z)® and y(z') < y(z).
The following lemma is proved in the full paper.

Lemma 4. Gwen a vertex x on sweep line £, let h{**(z) = (x,y). Let z be the
segment endpoint in the hiding set of h{**(z) such that H,(z) is mazimized. If
the hiding set of h{**(x) is empty, let H,(z) = —oco. Then there can be no vertex
u above £ with H,(u) < max{H,(y), H,(2)} such that h$**(u) hits h)°*(z).

Based on Lem. 4 we shorten segments h{*!(z) to segments h)'®(z) defined as
follows: If point z in Lem. 4 exists and H,(z) > H,(y), then h)**(z) = (z,y'),
where y' is the point on A{*‘(z) with H,(y') = H,(z). Otherwise, h}'s(z) =
h$**(z). Observe that h)®(z) C h}°"(z).

Corollary 2. For a vertez z € P, segment he**(z) hits segment h}°"(y) if and
only if it hits h)*(y).

Next we describe how to compute segments h)™®(y) from the given set of segments
hext(y). Given segments h)**(y), we show how to compute the segment h}s(z)
(and thus segment h°"(z)) hit by h®**(u) (if any), for all u € P. Once we know
the intersection point of h®**(u) with this segment h)**(z), we can shorten h¢*(u)
to hY°"(u).

Lem. 4 says that in order to compute h}™(z), we need to find the segment
endpoint z below £ with H;(z) > H;(x) and such that H,.(z) is maximized over
all such points. This is a partially unbounded range-maxima problem, which can
be solved in O(sort(N)) I/Os, by Thm. 2.

Given segments h}'s(z), ray-shooting queries for rays h2**(u) can be answered
in O(sort(IN)) I/Os using the distribution sweeping paradigm [13]: The slabs used
in the recursive partition of the plane are parallel to h,. The sweep, however,
still proceeds in positive y-direction. For every slab ¢, maintain the segment (o)
among all segments h)(z) seen so far which maximizes H;(z) and completely
spans 0. When the sweep reaches a new point u, determine the slab ¢ containing
u, decide whether h®**(v) hits u(o) and update p(c') for all slabs o' completely
spanned by h}Ys(u).

Given segments h)°"(z), h)°"(x), and the obstacle edges, it now takes sorting
and scanning to extract the vertex and edge sets of CVD.(O).

3 Remember that H; is directed to the left.
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