Smart Content Delivery and Storage

Deterministic Source Coding for Efficient Content Distribution

Tamás Lukovszki lukovszki@inf.elte.hu

Eötvös Loránd University

Traffic in the Internet

BitTorrent

- File-sharing potocol
- File is divided into pieces
- During downloading the pieces the peers also upload them to each other
- Tracker Peer A IP address Peer B IP address Peer C IP address Peer A Torrent Peer B Peer C Torrent Torrent 1 2 3 4

- Tit-for-tat
- A problem: rear blocks

Network Coding

Nodes are able to combine packets

- For all graphs, there is a network code, s.t. from a source node to a set of destination nodes the rate of the multicast can achieve the "cut bound". [Ahlswede et al. 2000]
- Computable in polynomial time [Jaggi et al. 2005]
- Random Linear Coding is popular

Transmitting blocks with network coding in BitTorrent* [2011]

• Rear pieces problem in wireless/mobile environment

- BitTorrent divides the blocks into subblocks
- Encode the subblocks of a block
 - 0-1 coefficients

len=0009+X id=7 index begin blockscombination block

Backward compatibility with the original BitTorrent protocol

Extending BitTorrent with Network Coding

"Rescueing tit-for-tat with network coding" [Locher et al. 2007]

- Transmit random combination of blocks
- Decode the file after collecting enough linearly independent blocks
- Increases the diversity of blocks
- Avoids the problem of rear pieces
- Robust
- 0-1 coefficients: coding vectors ~ bit vectors

Determistic Source Coding* [2012]

- Random coding
 - does not guarantees decodability after downloading d blocks
 - relatively high communication overhead (coding vectors)
- Deterministic coding
 - decodability is guaranteed
 - easy to check the independence of the vectors
 - significantly lower communication overhead

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_d \end{pmatrix} = \begin{pmatrix} 1 & a_{i_1} & a_{i_1}^2 & \dots & a_{i_1}^{d-1} \\ 1 & a_{i_2} & a_{i_2}^2 & \dots & a_{i_3}^{d-1} \\ 1 & a_{i_3} & a_{i_3}^2 & \dots & a_{i_3}^{d-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{i_d} & a_{i_d}^2 & \dots & a_{i_d}^{d-1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_d \end{pmatrix}$$

Simulation Results

BitTorrent using proxies* [2012]

BitTorrent on mobiles Goal: Saving energy

Limits of a Router

- Limited storage
 - E.g.: 8 MB flash and 32 MB RAM
 - Most BitTorrent contents are larger
 - Delete the blocks after transmitting them to the mobile
 - Problem:
 - BitTorrent protocol advertises the downloaded blocks
 - Withdrawal is not possible
 - If we do not advertise out blocks, other peers are not able to download from us
 - Bad for us: due to the tit-for-tat rule, slower dowload

Upload/Download Puffer

• How to divide the buffer?

Download time

- Mathematical model for the analysis of the download and upload rate of the peers
- Simulation results (SIM) vs. analytical results (MOD):

Open Source Library for Deterministic Source Coding

- Developing an open source library for deterministic network coding methods
 - Deterministic source coding has been developed and analyzed in our carrier project
- Main focus: supporting peer-to-peer streaming
 - particularly in mobile environments