

New Results on Geometric Spanners
and Their Applications

Dissertation
von

Tamas Lukovszki

Schriftliche Arbeit zur Erlangung des Grades
eines Doktors der Naturwissenschaften

Fachbereich Mathematik / Informatik und Heinz Nixdorf Institut
Universitat-Gesamthochschule Paderborn

Paderborn, 1999

Acknowledgments

I would like to thank my advisor Prof. Dr. Friedhelm Meyer auf der Heide for his
support over the last three years. He gave me the freedom to choose the direction
of my research and to my evolvement. Furthermore, I would like to thank the other
reviewers of my thesis, Prof. Dr. Endre Szemerédi, who has taught me a lot about
how to do research, and Prof. Dr. Susanne Albers. Very special thaks go to my wife
Marlies Tenten for reading this thesis and for her psychological support. I am grateful
to Matthias Fischer for our joint research and for many personal conversations. Also,
I would like to thank Martin Ziegler for our joint research. Furhermore, I thank Silvia
Gotz, Kay Salzwedel, Christian Sohler, and Stefanie Thies for reading parts of this
work and for their helpful comments. Last but not least, I thank all of my colleagues
for the inimitable working atmosphere.

This work was supported by the Graduate College of the Heinz Nixdorf Institute
”Parallele Rechnernetzwerke in der Produktionstechnik”.

Contents

1 Introduction
1.1 Walkthrough systems oL
1.2 Geometric spanners and weak spanners
1.3 Fault tolerant spanners L.
1.4 Computational modelo
1.5 Outline. o

2 The f-graph
2.1 The two-dimensional #-graph o000,
2.1.1 The spanner propertyo
2.1.2 Computation
2.1.3 The weak spanner property for 6 <%
2.1.4 The weak spanner property for 6 =2
2.1.5 Thereversed f-graph
2.1.6 Generalizations of Gr/2(S)
2.1.7 The graph Go/3(S) -
2.2 The higher dimensional #-graph
2.2.1 The spanner property
2.2.2 Construction of a f-frame
2.2.3 Construction of the f-graph

2.3 Conclusions and open problems

3 Fault tolerant spanners
3.1 A k-vertex fault tolerant f-spanner with O(kn) edges
3.1.1 The ¢th order f-graph
3.1.2 The vertex fault tolerant spanner property
3.1.3 Computation
3.2 k-edge fault tolerant f-spanners

N O Ot W N =

=]

3.3 A k-vertex fault tolerant f-spanner with degree O(k?) 58

3.3.1 k-vertex fault tolerant single sink spanners 58
3.3.2 A bounded degree k-vetrex fault tolerant f-spanner 61
3.4 Fault tolerant spanners with Steiner points 62
3.41 Upperboundso 62
342 Lower bounds 63
3.5 Conclusion and open problems, 65
Applications in walkthrough systems 67
4.1 Geometric search problems in walkthrough systems 67
4.1.1 Related problems, state of theart 69
4.1.2 OQurapproach 71
4.1.3 Outline 71
4.2 A randomized solution 72
4.2.1 The static data structureo, 72
4.2.2 The fully dynamic data structure 74
4.3 A deterministic solution L. 74
4.3.1 The static data structureo 75
4.3.2 The incremental data structure, lazy updates 80
4.4 Objects with different sizeso, 81
4.4.1 Using circular range searching in size classes 82
4.4.2 Transformation to halfspace range searching 83
4.5 Conclusion and open problems00 85

Lower bound on the construction time of weak spanners with Steiner
points in the algebraic model 87

Bibliography 93

i

Chapter 1

Introduction

The main goal of this work is to solve a practical problem and develop exact theory
which is related but not restricted to the solution of the practical problem. Reaching
both of these goals is a great challenge. The problems appearing in practice often have
too many parameters to compute with, and some nice theoretical model and its elegant
solution often leads to insufficient results in the practice.

Our practical problem is from the area of virtual reality. The aim is to provide methods
for a walkthrough system that allow to manage arbitrarily large geometric scenes and
that guarantee the navigation and small updates in such scenes in real time. Such
systems are inquired in architecture, advertising, tourism, planning of cities, planning
of traffic, geographic information systems, medicine, education, etc... In order to achieve
our goal we must take a deeper look into the structure of the problems.

It is not surprising that geometry plays an important role in the solution of such prob-
lems. The basis for our approach are geometric spanners that are geometric graphs
with the property that the length of the shortest path between each pair of vertices is
not much larger than the Euclidean distance of the pair. This property can be exploited
making the solution of special problems in walkthrough systems possible. Geometric
spanners have many other applications in various areas of computer science, for exam-
ple, in motion planing, VLSI design, they are used for approximating the minimum
spanning tree, and for a fully polynomial time approximation scheme for the traveling
salesman and related problems. We present older results and we prove new results
about geometric spanners that are not restricted to walkthrough systems.

An important generalization of spanners are fault tolerant spanners. Roughly spo-
ken, they are geometric networks that maintain the spanner property even if a certain
number of vertices or edges are failing. To calculate with such faults has an extreme

importance if one consider, for example, a network of aircraft corridors, where corridors
or airports can fall out because of bad weather or other reasons. In this work we also
investigate fault tolerant geometric spanners and we improve many previous results
significantly.

1.1 Walkthrough systems

The goal of walkthrough systems is a simulation and visualization of a three-dimensional
scene, e.g., a city. A scene consists of objects that are usually modeled by triangle
meshes. In our example the objects are houses, trees, streetlights, and cars. The visitor
of such a scene walks around and her environment is visualized on the screen or on a
special output device. For a smooth animation we have hard real time requirements.
Empirically, the computer has to render at least twenty pictures (frames) per second.
If the animation is computed with less than twenty frames per second, navigation in
the scenes is hard or impossible.

As mentioned above, in todays computer systems the objects of a scene are modeled
by triangle meshes. The triangles of such a mesh contain geometric and object specific
information, e.g., three-dimensional coordinates, color, textures, transparency informa-
tion, etc... For every position of the visitor the computer has to compute a view of
the scene. Hidden triangles have to be eliminated (hidden surface removal) and for
all visible triangles color and brightness has to be computed. This process is called
rendering.

The rendering process is often supported by special hardware, but the time for the
rendering of a picture depends on the complexity of the scene, i.e., the number of
triangles and the number of pixels that are needed for drawing a triangle. Therefore,
if the scene is too large the real time requirement can only be guaranteed if the system
does not spend computation time for objects whose influence is not significant for the
quality of the picture appearing on the screen. To control this situation real time and
approximation algorithms are necessary to reduce the complexity of those parts of the
scene that are far away, and thus, have a low influence to the quality of the rendered
image.

We begin with a simple model. The scenes that we consider are arbitrarily large and
they consist of non overlapping objects placed on the plane. Furthermore, we assume
that the objects have roughly the same size. Thus, in our model we replace each object
by a unit size ball. We fix an angle o and we say that an object is tmportant if it appears
from the visitor’s position in an angle at least . These objects may appear on the

display greater than a pixel. Representing the objects by points in the plane, we obtain
a kind of circular range searching problem, because all important objects are within a
circle around the visitor’s position. The difference between the classical circular range
searching problem and our searching problem is that we can exploit the spatial locality
of the queries, namely, that the visitor moves continuously and so consecutive query
positions are near to one another.

We develop data structures that support the selection of important objects in time
nearly linear in the number of selected objects, in particular, independent of the size
of the scene. The size of our data structure is linear in the number of objects of the
scene. Since we deal with large scenes, for practical purposes the low space complexity
is essential.

We also consider dynamic scenes, where the visitor is allowed to insert or delete an
object at her current position. We present a randomized data structure of Fischer et
al. [39] for the fully dynamic problem, where both, insertion and deletion are allowed.
This data structure supports the updates as fast as the selection of the important
objects. Thereafter, we present our own deterministic contribution for the incremental
problem, where only insertion is allowed. For a discussion about dynamic algorithms
we refer to [65] and [37].

Our deterministic solutions have been published in [40].

After this we consider a more general model, where the objects of the scene have
different sizes. For the selection of important objects we first present an approximate
solution which exploits the fact that the selection problem is a so-called decomposable
searching problem [15, 65, 35]. Then we show another method which uses geometric
transformations to obtain a higher dimensional halfspace range searching problem and
solve this problem with known algorithms.

1.2 (Geometric spanners and weak spanners

Geometric spanners have been studied intensively in the recent years. Let S be a set
of n points (also called sites) in IRY, where d is an integer constant. Let G = (S, E)
be a graph whose edges are straight line segments between the points of S. For two
points p, ¢ € IR?, let disty(p,) be the Euclidean distance between p and . The length
length(e) of an edge e = (u,v) € F is defined as dists(u,v). For a path P in G the
length length(P) is defined as the sum of the length of the edges of P. A path between
two points s, € S is called an st-path. Let f > 1 be a real number. The graph G is
an f-spanner for S if for each pair of points s,¢ € S there is a path from s to ¢t in GG

such that the length of the path is at most f times the Euclidean distance dists(s,t)
between s and t. We call such a path an f-spanner path and f is called the stretch
factor of the spanner!. If G is a directed graph and G contains a directed f-spanner
path between each pair of points then G is called a directed f-spanner. In order to
distinguish the edges of a directed from an undirected graph we use {a, b) to denote an
edge between the vertices a and b in a directed and (a, b) in an undirected graph.

Geometric spanners were introduced in computational geometry by Chew [27]. They
have applications in motion planing [28], they were used for approximating the mini-
mum spanning tree [82], and for a fully polynomial time approximation scheme for the
traveling salesman and related problems [68, 5]. We present a further application of
spanners in walkthrough systems to solve special range searching problems.

The problem of constructing an f-spanner for a real constant f > 1, that has O(n)
edges, has been investigated by many researchers [49, 50, 71, 80, 73, 22, 8, 23, 21, 24, 6,
31]. Keil [49] gave a solution for this problem introducing the §-graph?, which was gen-
eralized by Ruppert and Seidel [71] and Arya et al. [8] to any fixed dimension d. These
authors gave also an O(n log?™* n) time algorithm to construct the #-graph. Chen et al.
[26] proved that the problem of constructing any f-spanner for f > 1 takes Q(nlogn)
time in the algebraic computation tree model [13]. Callahan and Kosaraju [22, 23],
Salowe [73], and Vaidya [80] gave optimal O(nlogn) time algorithm for constructing
f-spanners. Several interesting quantities related to spanners were studied by Arya et
al. [6]. They gave constructions for bounded degree spanners, spanners with low weight,
spanners with low diameter, and for spanners with combinations of these properties.
The weight w(G) of a graph G is the sum of the length of its edges.

In walkthrough systems we need a weaker property of a graph. We introduce the notion
of weak spanner which express exactly the desired property. A graph G = (S, E) is
called a (directed) f-weak spanner for S if for each pair of points s,t € S there is a
(directed) path from s to ¢ in G such that for each vertex v on this path dists(s,v) <
f - disty(s,t) holds.

In this work we focus on an important family of geometric (weak) spanners, on the
f-graphs. Their simple, non hierarchical structure makes them particularly suitable for
our purposes in walkthrough systems. Furthermore, their structure builds a good basis
for generalizations in order to obtain fault tolerant spanners.

In Chapter 2 we show various old results and prove new results on the #-graph about
the (weak) spanner property. We prove that in the two-dimensional case the #-graph
with outdegree four has the weak spanner property. Then we take a look to the reversed

'Tn the literature the stretch factor is often denoted by t.
2Yao [82] and Clarkson [28] used a similar construction to solve other problems.

4

f-graph and we show that its weak stretch factor is less than in the original graph but
we loose the bounded outdegree. After this we generalize the degree four #-graph using
L,-distances to choose the neighbors of the points in the cones. We classify these graphs
according to whether they have the weak spanner property or not. Thereafter, we show
that four is the lower bound for the outdegree of the #-graph when we require the weak
spanner property. This is the case even if we allow arbitrary convex distance functions
to choose the neighbors of a point in the cones.

We also consider higher dimensional #-graphs. We analyse different methods to compute
a f-frame that have not yet been exactly analyzed, to our knowledge, and we also present
an own method for the computation. We show that using our method a #-frame can be
constructed which contains O(d~Y 2(%)"l’l) simplicial cones, where d > 3 denotes the
dimension. This bound is significantly better than the bounds resulting from previous
methods.

1.3 Fault tolerant spanners

Fault tolerant spanners for a set S of n points in IR¢ were introduced by Levcopoulos et
al. [54]. Their motivation was the construction of geometric networks that are resilient
to edge or vertex faults. Fault tolerant spanners have the property that after removing
at most k£ edges or vertices, 1 < k < n — 2, the remaining graph still contains a short
path between each pair of points. More precisely, after the deletions the shortest path
between each pair of points in the remaining graph is at most f times longer than the
shortest path in the graph which is obtained from the complete graph after deletion of
the same edge/vertex set, where f > 1, the stretch factor, is a given real constant. In
the case of vertex fault tolerance this definition is equivalent to the requirement that
after the deletions the graph remains an f-spanner.

In [54] a k-vertex and a k-edge fault tolerant spanner were constructed, both with
O(k?n) edges. Furthermore, the authors presented an algorithm which constructs a
k-edge and k-vertex fault tolerant spanner of degree O(c*) whose weight is bounded by
O(cF) times the weight of the minimum spanning tree of S, where c is a constant.

In Chapter 3 we improve most of these bounds significantly. We introduce the notion
of higher order #-graph and we use such a graph to obtain a k-edge and k-vertex
fault tolerant spanner with only O(kn) edges. This bound on the number of edges
is asymptotically tight, since each k-edge/vertex fault tolerant spanner must be k-
edge/vertex connected, and hence, contain at least (k + 1)n/2 edges. Thereafter, we
construct an O(k?) degree k-edge and k-vertex fault tolerant spanner.

5

We also study fault tolerant spanners, where the original set of points can be extended
by so-called Steiner points, in order to satisfy a stronger but more natural definition of
edge fault tolerance, where it is required that after deletion of at most k£ edges the graph
must contain an f-spanner path between each pair of original points. We prove ©(kn)
bounds on the number of edges and on the number of Steiner points in such Steinerized
fault tolerant spanners. To our knowledge, Steinerized fault tolerant spanners have not
been investigated before.

Our contributions about fault tolerant spanners have been published in [57].

1.4 Computational model

The complexity of the problems we study is strongly dependent on the model of com-
putation.

Most algorithms and data structures in computational geometry are described in the
random access machine (RAM) [4] or the real RAM model [66]. In the traditional
RAM memory cells can contain (logn)-bit integers that may be compared, added,
subtracted, multiplied and divided (with rest). Furthermore, the integers can be also
used as pointers to other memory cells (indirect addressing). All these operations take
constant time. A variant of the RAM model [81, 45, 44, 51] allows also bitwise logical
operations on the integers in constant time.

In the real RAM model memory cells also can store real numbers. Since a real number
can contain an infinite amount of information in its binary expansion, the set of valid
operations for real numbers must be carefully restricted. It is standard to restrict the set
of allowed operations to comparison <, <,=, >, > and arithmetic operations +, —, X, /,
and optional NE Conversion between integer and real numbers is not allowed. For some
algorithms it is advantageous to extend the set of operations by the non algebraic f1loor
operation on real numbers or by certain bit operations in constant time [18]. Many such
operations are implemented quite efficiently on existing architectures.

Nevertheless, before using such an augmented model, one should ask whether it is
absolutely necessary. Algorithms that depend on additional operations are not really
comparable to other algorithms that use only algebraic operations. Furthermore, if
we restrict our algorithms to the algebraic model, we often can prove nontrivial lower
bounds using the algebraic decision tree [13, 77, 34, 69, 67|. Formally, an algebraic
decision tree (see [13]) is a binary tree T with a function that assigns

6

e to any leaf vertex v an output YES or NO;

e to any vertex v with exactly one child an operational instruction of the form
fo = fuo, © fu, O fy := 4/ fu,, Where v; is an ancestor of v in T, or f,. is an input
variable or a real constant, and o € {4, —, X, /};

e to any vertex v with two children a test instruction of the form f, > 0 or f, =0
or f, > 0.

For any fixed value n of the input size, one can expand an instance of an algorithm
in the algebraic model into an algebraic decision tree. The computation starts at the
root and proceeds down to a leaf. The running time of the algorithm is the number of
edges on the tree path from the root to a leaf which is in the worst-case the depth of
the tree. A decision tree deals with inputs of a particular size. Therefore, an algorithm
is represented by a family of decision trees, one for each possible input size.

Using the algebraic decision tree, Ben-Or [13] proved an Q(nlogn) lower bound for
the time of each algorithm in the algebraic model that solves the element distinciness
problem in which for given a set of n real numbers it must be decided whether any two
are equal. Because this problem can be reduced to many problems in the computational
geometry in linear time, this result is very useful for proving further superlinear lower
bounds on a variety of geometric problems. For further discussion about this lower
bound technique we refer to [66] and [38].

We also apply the above technique and in Chapter 5 we prove an Q(nlogn) lower bound
on the construction time of weak spanners with Steiner points in the algebraic decision
tree model.

Except for Chapter 4 the results presented in this work are obtained by methods that
use only operations allowed in the algebraic decision tree model.

1.5 Outline

In Chapter 2 we define the #-graph. We present older results about the spanner property
and describe algorithms to compute it. We prove that in the two-dimensional case the
f-graph with outdegree four has the weak spanner property. Then we study the reversed
f-graph. After this we generalize the degree four #-graph using L,-distances to choose
the neighbors of the points in the cones. We classify these graphs according to whether
they have the weak spanner property or not. Thereafter, we show that four is the lower
bound for the outdegree of the two-dimensional #-graph when we require the weak

7

spanner property even if we allow arbitrary convex distance functions to choose the
neighbors of a point in the cones.

In Chapter 3 we investigate fault tolerant geometric spanners. We construct a k-edge
and k-vertex fault tolerant spanner with only O(kn) edges. Then we construct an
O(k?) degree k-edge and k-vertex fault tolerant spanner. Thereafter, we investigate
Steinerized fault tolerant spanners, that satisfy a stronger but more natural definition
of edge fault tolerance. We prove ©(kn) bounds on the number of edges and on the

number of Steiner points in such spanners.

In Chapter 4 we present a new application of the #-graph in walkthrough systems. We
describe a randomized data structure of [39] which supports selecting the important
objects in O(k) time, where k is the number of vertices of a certain graph in a disc whose
radius is f times the radius of the concentric disc containing exactly the important
objects, and f > 1 is a constant which can be made arbitrary close to 1. This data
structure also supports insertion and deletion of an object in the same time as the
selection. Then we describe our own deterministic data structure which also supports
the selection of important objects and insertion of a new objects at the position of the
visitor in O(k) time. Finally, we present two methods for the selection of important
objects in a scene which consists of balls with different sizes.

In Chapter 5 we prove an (nlogn) lower bound on the construction time of weak
spanners with Steiner points in the algebraic decision tree model.

Chapter 2

The 6-graph

In this chapter we define #-graph [82, 28, 49, 50, 71, 8] and we investigate some impor-
tant properties of it. The #-graph has a rich history in the computational geometry.
Yao [82] used this construction to compute the minimum spanning tree connecting n
points in the d-dimensional space under the L;, Ly and L., metric'. Using this graph
Clarkson [28] solved the following motion planing problem in two and three-dimensions.
Given a set of polyhedral obstacles and points s and ¢. Find a short path from s to ¢
that avoids the obstacles. The notion of #-graph were introduced by Keil [49]. Keil [49]
and Keil and Gutwin [50] studied graphs approximating the complete Euclidean graph
in the two dimensional space and they proved a trade off between the number of cones
and the stretch factor of the f-graph. Ruppert and Seidel [71] improved this trade off
using some stronger definition of the #-graph and they generalized it for higher dimen-
sions. Arya et al. [8] studied the problem of maintaining the spanner property of a
graph under a sequence of random insertion and deletions [64] of points of the original
point set. They obtained a polylogarithmic update time using a f#-graph based data
structure.

2.1 The two-dimensional #-graph

In this section we present the definition and the proof of the spanner property of the
@-graph done by Ruppert and Seidel [71]. Then we study the weak spanner property.
We show that the #-graph of degree four has this property and that the f-graph of
degree three has not. Furthermore, we examine #-graphs of degree four, where the
nearest neighbors are chosen using an L, distance.

1For any real 1 < p < oo the L, distance of two points in IR? is defined as dist,(s,t) :=
(> i<i<alsi — t;|P)1/?, where s; and t; denote the ith coordinate of s and t, respectively

9

Let S be a set of n points in IR?, k¥ > 2 an integer and # = 277’ an angle. Rotate the non
negative z-axis around the origin over angles 0 for 0 < 7 < k. This gives k£ halflines
ho, ..., hg_1. Let cg,...,c,_1 be the cones that are bounded by two successive halflines
and let C' := {cy,...,c,_1}. Furthermore, for 0 < i < k, let I; be the halfline obtained
by rotation of the z-axis over the angle %Tﬂﬁ which bisects the cone ¢;. We call the
halfline I; the cone axis of ¢;. The #-graph G4(S) of S is defined in the following way.
The vertices of Gy(S) are the points of S. For each point s € S translate the cones
Co, --.-, ck—1 and the halflines ly, ..., [;_1 such that the apexes of the cones and endpoints of
the halflines become coincident with s. Let ¢y(s), ..., cx1(s) and ly(s), ..., lx_1(s) denote
these translated cones and halflines, respectively. For s,7 € S and 0 < i < k define the
distance dist,,(s,t) as the Euclidean distance between s and the projection of ¢ onto
the translated halfline [;(s) if ¢ is contained in ¢;(s), and infinity otherwise. For each
s € S and 0 < i < k, if the cone ¢;(s) contains a point of S then add a directed edge
from s to one of the points in ¢;(s) which is closest to s w.r.t. the distance function
dist.,. Figure 2.1 shows an example for the definition of the cones and cone axes.

hy(s) hy(s) lo(s)
v cds)
hy(s) s hy(s)
hy(s) he()

Figure 2.1: The halflines h;(s) and [;(s) and the cones ¢;(s), i = 0,...,k — 1, around a
point s € S in the definition of the #-graph for k = 6.

Remark: It may appear circumstantial to define the f-graph by the angle 6 instead
of the number of cones k, but the reason will be clear when we generalize it in higher
dimensions.

2.1.1 The spanner property

Keil [49] proved that the f-graph for a given set of points is a spanner if 0 < # < 7 and
he established an upper bound on the stretch factor of the obtained graph in dependence
on the value of . Ruppert and Seidel [71] proved the spanner property of the #-graph
for 0 < § < % and they improved the bound on the stretch factor. In this subsection
we present this result. We modified the original proof in [71] to obtain a shorter one.

Theorem 2.1 [71] Let S C IR? be a set of n points. Let k > 6 be an integer constant

and @ = 2%, Then the O-graph G¢(S) is a spanner for S with stretch factor

1
k 1—2sin(8/2)

10

The proof of the stretch factor of G¢(S) in Theorem 2.1 is based on the following lemma
for which we present an own proof which is shorter than the original one in [71].

Lemma 2.2 [71] Let k > 2, § = 277’ and C' be the set of the corresponding cones. Let
p € IR? be a point and ¢ € C be a cone. Furthermore, let ¢ and r be two points in c(p)

such that dist.(p, q) < distc(p,r). Thendisty(q,r) < dista(p,r)—(1—2sin 2) dists(p, q).

Case 1

Figure 2.2: The two cases in the proof of Lemma 2.2. Case 1: disty(p, q) < dista(p, 7).
Case 2: disty(p, q) > disty(p,).

Proof: (Lemma 2.2) We distinguish two cases (Figure 2.2)

Case 1: disty(p,q) < disty(p,r). Let ¢’ be the point on the line segment pr such that
disty(p,q) = dista(p,q’). Applying the triangle inequality for the triangle g¢'r we get
that disty(q,7) < dista(q,q") + dista(q', 7). Since dista(q,q') < 2sing - dists(p, q) and
disty(q',) = disty(p, 1) — dista(p, ¢') = dists(p, 1) — dista(p, q), the claim of the lemma
follows.

Case 2: dists(p, q) > dista(p,r). Let ¢ be the mirror image of ¢ across the cone axis
le. Then dists(p,q') + dista(q,) < dista(p,r) + dista(q, q'). This follows by application
of the triangle inequality two times. Since disty(p,q') = dists(p, q) and dista(q,q") <
2sin(6/2) disty(p, q), we obtain the claim of the lemma. O

Proof: (Theorem 2.1) We show that for each two points s,¢ € S there is a (directed)
st-path P in Gy(S) such that the length of P is at most m disty(s,t). Consider
the path constructed in the following way. Let sq := s, 2 := 0 and let P contain the
single point so. If the edge (s;,t) is present in the graph Gy(S) then add the vertex ¢
to P and stop. Otherwise, let ¢(s;) be the cone which contains ¢. Take the point s;,1
with s;41 € ¢(s;) and (s;, S;41) € Gy(S) as the next vertex of the path P and repeat
the procedure with s;.

Consider the ith iteration of the above algorithm. If (s;,t) € Gy(S) then the algorithm
terminates. Otherwise, if (s;,t) & Gy +1(S) then by definition the cone ¢(s;) contains
at least one point which is not further from s; than ¢ w.r.t. the distance dist. and

11

therefore, s; has a neighbor s, in the graph Gy(S) in ¢(s;), which is taken as the next
vertex of the path P. Hence, the algorithm is well defined in each step. Furthermore,
Lemma 2.2 implies that disto(s;11,t) < dista(s;,t) and hence, each point is contained
in P at most once. Therefore, the algorithm terminates and finds a st-path P in Gy(S5).
The bound on the length of P follows by applying Lemma 2.2 iteratively: Let so, ..., sm
be the vertices on P, s = s and s, =t. Then

> disty(sigr,t) < Y (dista(si,t) — (1= 2sin(0/2)) dista(si, si11)).

0<i<m 0<i<m

Rearranging the sum we get

Z diStQ(S‘Z’,SZ’+1) S #11(9/2) Z <di8t2(8i,t)—di8t2(8i+1,t))

0<i<m 0<i<m
— 1 -
= T dist(sg, t).

Hence, the graph Gy(S) is a spanner for S with stretch factor m Clearly, it
contains O(|C|n) edges, where |C| = k = 27 the number of cones in C. O
9 2 2n 2 2r 2n 27
| 8 9 10 15 20

fr|| 7.56 | 4.26 | 3.17 | 2.62 | 1.71 | 1.46

Table 2.1: The stretch factor f for some values of 6.

Remark: Table 2.1 shows the bounds on the stretch factor f for some values of 6.
Ruppert and Seidel [71] pointed out that in the planar case if £ is odd then some
improvement can be made on the stretch factor by growing the paths from both ends
and taking advantage of the asymmetry of the cones at the end points. They claimed
that exploiting this asymmetry a bound near 10 on the stretch factor can be proven
even in the case that £ = 5.

2.1.2 Computation

Now we investigate the problem of computing the #-graph efficiently. In this subsection
we describe two algorithms done by Ruppert and Seidel [71] and by Arya et al. [8].
Later in this work we will have similar constructions for which we use modifications of
these methods.

Theorem 2.3 [71, 8] Let S C IR? be a set of n points. Let k > 6 be an integer constant
and § = 2. Then the 0-graph Go(S) can be constructed in O(nlogn) time using O(n)

space.

12

Proof: We begin with the description of the algorithm of Ruppert and Seidel.

Algorithm 1. [71]: The algorithm consists of £ phases, one for each cone. In the ith
phase, 7 = 0, .., k—1, for each point s € S we compute its neighbor in the ith translated
cone ¢;(s) by performing a plane sweep in the direction %ﬁ This is the direction of
the ith cone axis [,,. We describe the ith phase. Let ¢, denote the cone c; reflected to
the origin. We use the fact that a point ¢ is contained in the cone ¢;(p) if and ouly if p

is contained in the cone c}(q).

sweepline

Figure 2.3: Finding the points of D in ¢(s) when the sweepline reaches the point s.

First we initialize a data structure D = () which allows efficient orthogonal range queries.
We maintain the invariant that D contains each point of S behind the sweepline whose
neighbor has not yet been computed. When the sweepline reaches a point s € S we
perform an orthogonal range query using the data structure D to determine the points
in ¢(s) (Figure 2.3). We join each of these points with s by an edge, then delete them
from D and we insert s into D. In this way we obviously maintain the invariant. To the
orthogonal range queries we must use in a preprocessing an affine transformation on the
coordinates such that the transformed boundaries of ¢; and ¢} become orthogonal. Then
the cone ¢}(s) can be considered as a rectangle with two unbounded sides. Therefore, we
can implement D by a priority search tree, which was developed by McCreight [60]. A
priority search tree needs O(n) space, insertion and deletion of a point can be performed
in O(logn) time, and a query in O(logn + k) time, where £ is the number of reported
points. Since each point is inserted and deleted from D exactly once, the total update
time of D is O(nlogn). Furthermore, for each point we perform an orthogonal range
query. Since each reported point is deleted from D, the total query time is O(nlogn),
as well, which implies the claim of the theorem.

As we will see, the above algorithm is developed in such a way that it can easily be
generalized in higher dimensions substituting the priority search tree by an appropriate
higher dimensional orthogonal range searching data structure. We remark that in the
two-dimensional case instead of a priority search tree we can use a simple balanced
binary search tree for D in which the points are sorted by the signed Euclidean distance

13

dists(s, L;) from a fixed line L; which is parallel to [.,. Furthermore, for each point in
D we maintain a pointer to the next and to the previous point w.r.t. this distance.
Then we can report the points of D that are contained in a cone c(s) such that we
determine the point s’ € D for which |dist(s, L;) — dist3(s', L;)| is minimal, then using
the next-pointers we walk until we find a point which is not contained in ¢(s). Finally,
using the previous-pointers we walk from s’ until we find a point which is not contained
in c}(s). It is easy to verify that in this way we report each point of D contained in c}(s).

Algorithm 2. [8]: Similar to the to Algorithm 1 we perform & plane sweeps, one
for each cone. We describe the ¢th phase. Let H; and H;,; be the two lines through
the origin that are orthogonal to the halflines h; and h;,,, respectively, that are the
bounding halflines of cone ¢;. Furthermore, let 2 and h;_, be the lines that contain the
halflines h; and h; 1, respectively. We assume that the coordinates are transformed so
that [, is coincident with the non negative z-axis and that h; and h;;; are the lower
and upper bounding halflines of ¢;, respectively. We assign to the lines H;, H; ;1 and
the x-axis directions, as shown in Figure 2.4. Now, for each point s € S we have to find
a point with minimum z-coordinate among the points of S \ {s} that are not below
h;(s), not above h;, ,(s) and right to s. For simplicity of the description we assume
that the projections of the points of S to H; as well as to H;,; are pairwise distinct.
Then, for each point s € S we have to find a point with minimum z-coordinate among
the points of S\ {s} that are above hj(s) and below h;,(s).

Figure 2.4: The directions assigned to H;, H;;; and the z-axis.

We begin with a simpler problem: For each s € S find a point with minimum z-
coordinate among the points of S \ {s} that are above hl(s). In order to solve this
problem we maintain for the points of S a data structure 7. T is a binary search tree
storing the points of S in its leaves sorted in the direction of H;. At each node u of T
we maintain also a point with minimum z-coordinate among the points that are stored
in the subtree of u. We denote the set of points that are stored in the subtree of u
by S.

Let s € S be a point for which we want to determine the point with minimum z-
coordinate among the points that are above h/(s). Then we initialize a set M := () and

14

follow the path from the root to the leftmost leaf which stores a point above h(s), i.e.,
the first point that is larger than s w.r.t. the direction H;. For each node u on this
path, if we move to its left child then we insert its right child into M. The final set M
consists of O(logn) nodes such that Uyeps S, contains exactly the points of S that are
above hl(s). Hence, we have to find a point with minimum z-coordinate in UyenSy.
Since at each node u is maintained a point of S, whose z-coordinate is minimal, we
can find a point whose z-coordinate is minimal in Uyeps S, in O(logn) time. Note that
we can insert a new point in the data structure 7" in O(logn) time.

Now we turn to the original problem: For each s € S find a point with minimum x-
coordinate among the points of S\ {s} that are above h;(s) and below h;, (s). In order
to solve this problem we initialize an empty data structure 7', as described above, and
we perform a plane sweep in the opposite direction of line H; ;. When we encounter a
point s € S we insert it into the data structure 7. At this moment 7T stores exactly the
points of S that are below hj,,(s) and the point s. Therefore, by querying 7" we find
a point with minimum z-coordinate among the points that are above hl(s) and below
hi,1(s). Since each point of S is inserted into 7" once and for each point we performed

one query, the total time of the algorithm is bounded by O(nlogn).

If we renounce the assumption that the projections of the points of S to H; as well as
to H;y, are pairwise distinct and we have to find a point with minimum z-coordinate
among the points that are not below Ai(s), not above h;_,(s) and right to s then the
only modification to the above description is the following. The data structure 7" stores
the points of S such that the points that have the same projection to H; are sorted
increasing according to the xz-coordinate. Then for each point s € S we can determine
in O(logn) time a point with minimum z-coordinate among the points of S\ {s} that
are on h}(s) and right to s, or above hl(s). The second slight modification is that during
the plane sweep in the direction of H;,; we process the points with same projection
to H;yq right to left. In that way we guarantee that at the moment before a point s
is processed the data structure 7' contains exactly the points that are on hj_,(s) and

!
i

right to s or below A ,(s). Hence, querying T" reports the desired point. Clearly, the

running time of the whole algorithm remains O(nlogn). O

Algorithm 2 may appear more complicated than Algorithm 1. We will see the advantage

of this approach later when we want to compute the k£ nearest neighbors in the cones.
™

2.1.3 The weak spanner property for § < %

In some applications of the #-graph we need a weaker requirement than the spanner
property. In this subsection we investigate the question for which values of § we can

15

guarantee that the #-graph has the weak spanner property, i.e., the property that for
each pair s,t € S of points the graph contains a path between s and t¢ such that for
each point v on this path holds that dists(s,v) < f - disto(s,t), for a real constant
f > 1. This property was first applied by Fischer et al. [39] in order to develop a linear
size searching data structure for walkthrough systems. They used a slightly modified
definition of the f-graph. The only difference to the original definition is that they
assign the halfline h; uniquely to the cone ¢;, 0 < i < k. They claimed the following:

Theorem 2.4 [39] Let S C IR? be a set of n points. Let k > 6 be an integer constant

and 0 = 27” Then the 0-graph Gg¢(S) is a weak spanner for S with stretch factor

f= max(\/l +48sin*(0/2),v/5 — 4cos0). Gy(S) can be computed in O(nlogn) time

using O(n) space.

For a sketch of the proof we refer to [39].

f: || 22| 2¢ 2n 2r 2n 2
"l 6 7 8 9 10 15

fr] 2164|147 11.39|1.33 | 1.16

Table 2.2: The bounds on the stretch factor f implied by Theorem 2.4 for some values
of 6.

T
2.1.4 The weak spanner property for 6 = J
Now we examine the f-graph for S with four cones G,/(S). We fist give a some
stronger definition of G,/2(S) than the definition in [39], we prove the weak spanner
property of this graph and we show how it can be computed efficiently. The results of

this subsection have been published in [40].

Our definition of the #-graph only differs from the definition in [39] by choosing the
nearest neighbor of the points in the cones. We also assume that the boundary halfline
h; is assigned uniquely to the cone ¢;. For each point s € S and each cone ¢;, let
Sei(s) = ci(s) NS\ {s}, i.e., S¢;(s) is the set of points of S\ {s} that are contained in the
cone ¢;(s). In [39] the neighbor s’ of a point s € S in Gy(S) in the cone ¢;(s) is chosen
arbitrarily among the points of S, sy with minimum distance from s w.r.t. dist.,. If more
than one point has minimum distance w.r.t. dist., then we choose as neighbor among
them the one whose Euclidean distance from the cone axis I, (s) is smallest. With other
words we use a combined distance function to determine the neighbor of a point s € S
in the cone ¢;(s) in Gy(S). The first component is dist,, (s, s'), s’ € ¢;(s) and the second
component — which we denote by distcf,(s, s') — is the Euclidean distance of s' from

16

le;(s). The neighbor of s in ¢; is a point s' € S,(5) for which (dist,, (s, s'), dist,.(s, s"))
is lexicographically minimal (Figure 2.5). Note that also the neighbor, chosen in this
way, is not necessarily unique. For the simple and robust computability of G /2(S) we
assume that h;, 0 < 4 < 4, is the non negative z-axis rotated around the origin over the
angle @ and [, is the non negative z-axis rotated around the origin over the angle
%r. Note that dist., is identical to the L., distance and disté with the L, distance,
0<i<4.

disté (s)
I (9

Figure 2.5: The distances dist., and dist,;

Theorem 2.5 G,/2(S) is a weak spanner with stretch factor \/3 + V5. It can be com-
puted in O(nlogn) time using O(n) space.

Proof:

The weak spanner property: For the weak spanner property we have to prove the
existence of a path P in the graph between each pair s, € S of points which contains
only points v € S with the property that disty(s,v) < f - disty(s,t). In order to find
such a path we proceed as Ruppert and Seidel [71].

e Let s := s, j := 0 and let P contain the single point so. While s; # ¢ do the
following.

e Let ¢;(s;) be the cone of s; which contains ¢. Let s;;; be the neighbor of s; in
Gr/2(S) in the cone c;(s;) and set j := j + 1.

This algorithm constructs a path P with the desired property. Unfortunately,
Lemma 2.2 does not help us to bound the distance of the furthest point of P from s. In
order to proof the weak spanner property we define a potential ® for each point s’ € S
and show that ® decreases in ”almost” every step of the above algorithm. For each
point " € S, let ¢1(s") be the L, distance dist,(t, s") from ¢ to s’ and let ¢o(s") be the Ly,
distance disty(t, s') from t to s'. We define ®(s’) to be the pair (¢;(s'), #a(s’)). We say
that ®(s') is greater than (resp., greater than or equal to) ®(s”) when (¢:(s'), do(s"))
is lexicographically greater than (resp., greater than or equal to) (¢1(s"), p2(s")). We
denote this by ®(s') > ®(s") (resp., ®(s') > &(s")).

17

Figure 2.6: The potential ® during the construction of P.

Consider the jth iteration, 0 < j <! — 1. Since the cone ¢;(s;) contains at least one
point (namely ¢), the algorithm is well defined in each step. Let P = sy, s1, ..., 8;, S0 = S,
s; = t, be the path constructed by the algorithm. We show that

1. either ®(s;) > ®(sj41), 0<j <1 -1,
2. or q)(Sj) > @(8]‘4_2), 0<5< [—2.

This property implies that the algorithm terminates and finds ¢. Note, if s;41 = ¢
then ®(s;) > ®(¢t) = (0,0). To show the above property, consider the jth iteration.
By the definition of G/5(S) either there is a directed edge (s;,t) in G/2(S), then the
algorithm finds ¢ and terminates; or there exists another point s;.1 € ¢;(s;) such that
(s, 8j+1) € Gr2(S) and dist,(s;, 5j41) < diste;(s;,t). Let B; = {x € R? : dist; (t,z) <
dist1(t,s;)} be the L; unit disc. The point s;;; is clearly contained in B; (Figure 2.6)
and so ¢1(sj) > ¢;41. We distinguish three cases.

Case 1: disti(sj,t) > dist1(sj41,t). Then ¢1(s;) > ¢1(sj4+1) (Figure 2.6.a). Therefore,
property 1 holds.

Case 2: distl(sj,t) = di8t1(8j+1,t) and t € Ci(Sj—i—l)- Then ¢1(8j) = ¢1(8j+1) and
®2(sj) > ¢a(sjy1) (Figure 2.6.b). Therefore, property 1 holds.

Case 3: disti(s;,t) = dist1(sj41,t) and t € Cit1mod4(Sj+1). Then it can happen that
1(s5) = ¢1(sj41) and Pa(s;) < ¢o(s;+1). But in this case the next point s;,o can not
be on the boundary of B; (Figure 2.6.c). Therefore, property 2 holds.

Now we prove that for each v € P the Euclidean distance dist,(s, v) is at most /3 + /5-
disty(s,t). We have seen that B = B, contains each point s; of the path P. Consider
Figure 2.7. Let a = dists(s,t) and b = dists(s,v). We have to maximize the quotient 2
such that ¢ is the center of B, s is on the boundary of B and v is contained in B. For a
fixed point s € B one of the corners u of B satisfy dists(s, u) = max(disty(s,z) : ¢ € B).
Hence, we can fix v at a corner of B. Using the theorem of Pythagoras and derivation

18

sv

Figure 2.7: Illustration of the definitions for the computation of the stretch factor.

V5-1
2

we obtain that (= ZJ(%) is maximal when z =

of the side of B, and this maximum is \/3 + /5.

[, where [is the Euclidean length

Computation: Now we show that G, /2(S) can be computed in O(nlogn) time using
O(n) space. Our algorithm is a modified version of the algorithm of Ruppert and Seidel
[71] which is described in the proof of Theorem 2.3. It consists of four phases. In the
ith phase we compute for each point s € S its neighbor in the cone ¢;(s). We describe
the Oth phase.

At first we sort the points of S non decreasing w.r.t. the xz-coordinate. The sweepline
moves from left to right. We maintain the invariant that for each point s € S left to
the sweepline, its neighbor t € S in ¢y(s) has been computed if ¢ is also left to the
sweep line. We initialize a data structure D := (). D will contain the points left to
the sweepline whose neighbor has not yet been computed. The points in D are sorted
increasing w.r.t. the y-coordinate. To handle the distance function dist., correctly,
when the sweepline reaches a point ¢ we put all points with the same z-coordinate as ¢
into a data structure A and we work up these points in the same main step:

1. Let A be the set of points with the same z-coordinate as t ordered increasing
w.r.t. the y-coordinate and let A’ := A.

2. While A # () we do the following:

(a) Let ¢t be the point of A with minimum y-coordinate. Determine the set of
points B(t) = {s € D : t € ¢y(s)}. Let the points in B(t) are also ordered
increasing w.r.t. the y-coordinate. Set ¢’ := ¢t. (The variable ¢ contains at
each time the point of A with highest y-coordinate such that the points of
A with lower y-coordinate than ¢’ can not be a neighbor of any point of D.)

(b) For each s € B(t) (in increasing order w.r.t. the y-coordinate) determine the
point t* € A whose y-coordinate is nearest to the y-coordinate of s and join
s with t* by a directed edge. Then delete s from D and set t' = ¢*.

19

(c) Delete t from A. Then delete all points from A having a lower y-coordinate
than t'.

3. Insert the points of A’ into D.

Figure 2.8: Illustration of the main step of the plane sweep.

Correctness: We show by induction that the invariant is satisfied after each main step
of the plane sweep. In the data structure D we maintain the points left to the sweepline
[whose neighbor is not left to [. At the beginning of the algorithm no point of S is left
to [, so by D = () the invariant holds. In the main step we must determine the points of
D whose neighbor is on the sweepline [, compute their neighbors, and update D, i.e.,
delete the points from D whose neighbor has been found and insert the points into D
that lie on /. In A we maintain the points on [, for which, it is not yet decided if it is
a neighbor of a point of D. Therefore, at the beginning A must contain all points of S
on [. This is satisfied after Step 1. We show that in Step 2, for each point s € D with
co(s) N A # (), the neighbor is computed correctly. We know that for the points s € D,
there is no point s* € c¢y(s) which is left to I. On the other hand, if a point s € D
has a point s* € A in ¢y(s) then s is contained in B(t) for some ¢ € A in Step 2.a, its
neighbor is computed correctly in Step 2.b, and then it is deleted from D. In Step 2.c
the points are deleted from A that are surely not a neighbor of a point of D. Therefore,
after Step 2, D contains the points left to [whose neighbor is not left to [and not
on [. If we want to move the sweepline right to the next point, D must not contain any
point whose neighbor is already computed (these points are deleted in Step 2.b), but
D must contain the points on [, because their neighbor is not yet computed. Since the
points on [are inserted into D in Step 3, we can move the sweepline, and the invariant
is satisfied.

Analysis: To implement D, A and B(t) we need data structures that support (i)
checking emptiness, (i) insertion, deletion of a point, (iii) finding the next and the
previous element w.r.t. the y-coordinate for a given element of the data structure, and
(iv) finding the point with nearest y-coordinate in the data structure for a real number

20

(query). Using balanced search trees we obtain an O(logn) time for insertion, dele-
tion, query and for finding the next and previous element, and O(1) time for checking
emptiness. If we link the nodes of the search tree in a doubly linked sorted list then
we can also find the next and the previous element in O(1) time. For a point s € D,
let next(s) and prev(s) denote the next and the previous element of s in D w.r.t. the
y-coordinate. In Step 2.a we can determine B(t) in the following way. Find the point
s € D whose y-coordinate is nearest to the y-coordinate of ¢. If s belongs to ¢ () (the
reflected cone co(t)) then we insert s into B(t). Let s’ := s. While nezt(s) belongs to
cy(t), insert next(s) into B(t) and set s := next(s). Than Let s := s’. While prev(s)
belongs to ¢;(t), insert prev(s) into B(t) and set s := prev(s).

Since each point s € S is inserted into and deleted from D, A, and B(t) exactly once and
since for each point s, the nearest point ¢t € A is computed once, the whole algorithm
takes O(nlogn) time. The size of the data structure is clearly O(n). O

Remark: Note that without the second component dz’stcf_ (= dist;) of the combined
distance function, 0 < 7 < 4, the obtained graph would not necessarily be strongly
connected and consequently, it would not necessarily be a weak spanner. To see this
consider the following example. Let S = {sy, s9, $3, 54, S5} and let (1,0), (0,1), (—1,0),
(0,—1) and (0,0) be coordinates of these points, respectively. Then the point s5 in
the center is not necessarily reachable from the other points by a directed path, since
following holds. For 1 < 7 < 4, the point S(; moq 4)+1 1S contained in the same cone
around s; as s5 and diste (54, S(i mod 4)+1) = d15too(Si, 55). Therefore, for 1 <4 < 4, the
neighbor of s; could be s(; moq 4)+1 in the cone which contains s5, causing that the first
four points form a directed cycle around s5. The second component of the combined
distance function prohibits this possibility.

2.1.5 The reversed 6-graph

The bounded outdegree of the §-graph is very useful for some applications, for example,
for range searching. In this subsection we show that the stretch factor can be improved
enormously by reversing the edges in the #-graph, if we do not require bounded out-
degree.

Let Gj(S) denote the directed graph obtained from Gy(S) such that we reverse the
orientation of each edge, i.e., for s,t € S (s,t) is an edge in G(S) if and only if (¢, s)
is an edge in Gy(S).

21

Theorem 2.6 Let S C IR? be a set of n points.

(i) For 6 < 2%, the graph Gy(S) is a weak spanner for S with stretch factor 1.
(¢4) The graph G7 5(S) is a weak spanner for S with stretch factor V2.

Proof:

(1): Consider two arbitrary points s,t € S and the st-path P = sg, $1, ..., 8, So = S,
s; = t, in G(S) which is constructed such that s;;; is the neighbor of s; in G4(S) in
the cone which contains ¢. Using Lemma 2.2 — and in the case that § = % the fact
that the boundary halfline h; is contained in the cone ¢; but h;;q is not — we obtain
that diste(s;,t) > dista(si41,t) for 0 < 4 < [. This implies that the reversed version
P =g, ..., 50 of P is a ts-path in G(S) with the property that disty(t,s;) < dista(t, s)
for 1 <14 <. Hence, the claimed stretch factor follows.

(7): In the proof of Theorem 2.5 we have seen that for each pair s,¢ € S of points there
is a directed st-path P in G,/2(S) which is contained in B(s) := {z € IR* : dist; (¢, z) <
disti(t,s)}. This implies that the reversed path P’ is a ¢s-path in G7 ,(S) such that
dist,(t,s;) < dist,(t,s) and hence, disty(t,s;) < /2 disty(t, s) for each vertex s; € P".

O

2.1.6 Generalizations of G (S5)

Now we investigate the question whether the f-graph G/>(S) becomes a weak spanner,
if we choose the nearest neighbors in the cones w.r.t. to an L, distance and if we
rotate the cones around the apex over a fixed angle ¢ (Figure 2.9). More precisely, let
1 <p<ooand0< ¢ <7 bereal numbers. Let h; be the non negative z-axis rotated
around the origin over the angle %T —¢,1=0,...,3, and let ¢; be the cone between h;
and h;y 1 mods- The halfline h; is assigned to the cone ¢;. Let h;(g) and c¢;(¢) denote
the translated halflines and cones having the end points and apexes, respectively, at
the point ¢ € IR%. For a set S of n points let Gﬁ’/”Q(S) be the graph obtained in the
way that for each point s € S we join s in each translated cone ¢;(s) with (one of) its
nearest neighbor(s) w.r.t. the L, distance dist,. In the case that p =1 or p = co we
use the combined distance measures (disty, disty,) or (dists, dist;), respectively. Note

that the graph G/2(S), as we defined it in Subsection 2.1.4, corresponds to GZ;;’OO(S).

Unfortunately, the graph Gﬁ’/”Q(S) does not become a weak spanner in general. We first

study the graph Gﬁ;’;(S) and G’f’/;(S), 0 < ¢ < %, where in each cone the nearest
neighbor is chosen w.r.t. the (disty,dist;) and (disty, disty), respectively. Then we

apply similar techniques to Gﬁ’/’;(S), l<p<ooand 0< ¢ < 7.

22

Figure 2.9: The rotated cones and the unit circle w.r.t. the L, L, and the L., distance.

Theorem 2.7
(i) Let S C R? be a set of n points and let ¢ € {0,%}. Then the graphs Gﬁ’/C;O(S) and

G?(S) are weak spanners for S with stretch factor \/3 + /5.
w/2

(i) For each 0 < ¢ < %, ¢ # 5 and n > 9, there exist sets S,S' C IR? of n points
such that G;’:C/’g(S) and Gf’/IQ(S’) are not weak spanners for S and S', respectively.

Proof:

(¢): In Theorem 2.5 we proved that G;;;’OO(S) is a weak spanner for S with the claimed
stretch factor. Clearly, we can compute G?r’/lQ(S) in the way that we rotate the point
set S around the origin by angle —7%, then we compute the graph GZ?;’OO(S’) for the
rotated point set S’ and finally, we rotate the obtained graph back. Therefore, G?r’/IQ(S)
is also a weak spanner with the same stretch factor.

0,00

Now we prove the weak spanner property for the graph G,/ (S). Then by the above
arguments we obtain this property also for the graph GZ;’I(S). The proof is analogous
to the proof of Theorem 2.5. We must show that between each two points s, € S there

is a path P = sy, ..., 51, So = s, §; = t, with the following properties.

1. Each point s; € P is contained in the square region B(s) = {r € R’ :
disto(t, z) < disto(t,s)}.

2. Foreach i =0,...,0 —1, either (a): ®(s;) > ®(s;41) or (b): ®(s;) > P(si12), where
®(s;) is the ordered pair (distoo(t, si), disty(t, SZ)) and the comparison between
these pairs has to be made in lexicographical sense.

The first property implies the stretch factor 1/3 4+ v/5 and the second property implies
that the path P reaches ¢t in O(n) steps. The construction rules of P are the same as
in Theorem 2.5: Assume that P is constructed up to the vertex s; (# t). Then we take
the neighbor of s; in G?r’/o;(S) in the cone which contains ¢ as the next vertex s;;; of P.

Assume that we have an adversary, who tries to place the points of S so that we do not
get to t. Assume that ¢ € cy(s). Then the adversary must place a point s; in ¢g(s) so

23

b
J B(s)) B(s) ° B(s)
t ‘ t t
e * IR o T e,
KX %0 o(5)
I S e ‘ .51 _ S1
s’ s/ v s

Figure 2.10: The path between s and t is contained in B(s) and it gets strictly nearer
to t w.r.t ® at least in each second step.

that (disto (s, s1),dist1(s, 1)) < (diste(s,t),disti(s,t)) in order to prohibit the edge
(s,t). If he place s; so that diste(s1,t) < disto(s,t) then ®(s1) < ®(s) (Figure 2.10.a).
If s; is placed on the boundary of B(s) then either dist;(s1,t) < disti(s,t) and so
®(s1) < D(s) (Figure 2.10.b), or else s; must be in ¢y(s) N c3(t) and so ¢t € ci(s1)-
Observe that s; can never be placed in the right bottom corner of B(s), since this
corner is further from s than ¢ w.r.t. to dist,, in any case. Therefore, sy can not be
placed on the right boundary of B(s). Furthermore, hy(s;) is not contained in c¢;(s;)
and hence, sy can not be placed on the bottom boundary of B(s) (Figure 2.10.c). This
implies that the adversary must place s, in such a way that disty(t, s2) < distoo(t,).
Consequently, ®(sy) < ®(s).

(#7): We construct a set S for which the graph Gf/OQO(S) is not a weak spanner. A set S’,
for which Gf’/IQ(S’) is not a weak spanner, can be obtained from S by rotation around
the origin by —7. We distinguish two cases.

Case 1: 0 < ¢ < 7. In order to show that Gi/o;(S) is not necessarily a weak spanner, we
construct a point set S as follows. First we fix the position of ¢ and place a second point
s(= sp) on one of the halflines h;(t), say on hy(t). Then ¢ € ho(s) and hence, t € cy(s).
Let B(s) be the square region with center ¢ whose boundaries are parallel to the cone
boundaries (i.e., to hy and hy) and s is on the boundary of B(s). (Figure 2.11) Let
mg, M1, Mo, m3 be the middle points of the sides of B(s) such that m; is the intersection
of h;(t) with the boundary of B(s). Note that s is coincident with mgy. Let D(s) :=
{z € R? : disto(s,2) < dists(s,t)}. Clearly, the region A(s) := D(s) Nco(s) \ B(s) is
not empty, if ¢ # 7 (i € IN). Placing a point 5; € S in the interior of A(s), the point
s1 will be the neighbor of s in the cone ¢y(s), because it is strictly closer to s than ¢.
Note that s; has an edge to s, as well.

Now we must place a point in c3(s;) which is closer to s; than ¢ and further from s
than s;, in order to prohibit the edge (s1,t). We place the next point s, € S on m;.

24

DN (9 \BE)

Figure 2.11: Place s; in D(s) N¢y(s) \ B(s).

Then s; has an edge to s, in ¢3(s1). The point s, has an edge in ¢;(s2) to s; and in
c2(s2) to s.

We have the same situation as at the point s, just rotated by —7. Hence, we place the
next point s3 in the interior of D(s3) N c3(s2) \ B(s). So, we prohibit the edge from sy
to t. Playing this game further, we place the points s, and sg on mg and mg, and s;
and s7 in the interior of D(s4) Nca(s4) \ B(s) and in the interior of D(sg)Ney(se) \ B(s),
respectively. In this way we obtain a graph of nine points such that from none of the
points sg, ..., 7 exists a directed path to ¢, because for each point s;, the point ;11 moqs
is in the same cone c;(s;) as ¢t and it is slightly closer to s; than ¢ w.r.t. the distance
dist. The remaining n — 9 points can easily be placed so that we do not destroy our
counterexample (for example, each on the horizontal line incident to t, further from ¢
than p/sin ¢, where p is the Euclidean distance between ¢ and a side of B(s)).

Case 2: 7 < ¢ < 7. In this case we must take some care when placing the points. We
use the definitions of Case 1. If we put the point sy on my we would have to place a
point in the interior of the region D(sg) N co(Sp), in order to prohibit the edge (s, t).
But this region is contained entirely in B(s), and so, we could not use the arguments
of Case 1.

We move s from my on the boundary of B(s) in clockwise direction by a Euclidean
distance € (Figure 2.12). The value of ¢ will be bounded later. Then ¢ € c3(sy). To
prohibit the edge (sg,t) and to be able to use the strategy of Case 1, we must place
a point s; in the interior of A(sg) := D(sp) N c3(so) \ B(s). If € small enough A(sp)
is not empty. Then we place s, on the boundary of B(s) with Euclidean distance € in
clockwise direction from ms etc...

Placing the points sy, ..., s7 in this way, we obtain that for each point s;, the point
Si+1mod s 1S in the same cone ¢;(s;) as ¢t and it is strictly closer to s; than ¢ w.r.t. the

25

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.12: Placing the points, when 7 < ¢ < 7.

distance dist,. Therefore, from none of the points sq, ..., s7 exists a path to ¢ in the
graph Gﬁ /2({t, S0y -, S7}). The remaining n — 9 points can easily be placed so that we
do not destroy our counterexample.

D (S) m., S

Figure 2.13: Computing the bound on e.

Now we compute the bound on e. Consider Figure 2.13. Let u be the bottom left
corner of D(s) and let v be the intersection of the boundary of B(s) with the horizontal
halfline which originates at ¢ and incident to u. The region A(sy) is not empty if
and only if diste(t,v) < disteo(t,u). Let 7 := distoo(mo,t) and 7' := disty(s,t). Then
r" = r4ecos ¢. We obtain the following two equalities. disto,(t,u) = r'—esin ¢p+r cot ¢
and disty(t,v) = r/sin? ¢. Hence, r(1+ cot ¢) — €(sin ¢ — cos ¢) > r/sin® . This gives
the bound € < r%. O
Remarks: The graphs Gf/o;(S) and Gﬁ/g(S) obviously can be computed in O(nlogn)
time and O(n) space using a slight modification of the algorithm described in the proof

of Theorem 2.5.

In the proof of Theorem 2.7 (7), similar to the proof of Theorem 2.5, the second compo-
nent of the combined distance function is necessary. Otherwise, if we had only the first

26

component, a counterexample could be constructed such that the graph G?r’/"QO(S) does
not necessarily become a weak spanner for S. For example, let S := {s1, s9, 53, 4, 55}
and let (—1,0), (0,1), (1,0), (0,—1) and (0,0) be the coordinates of these points, re-
spectively. Then by similar arguments as in the remark after Theorem 2.5 we obtain
that from non of the points sq, so, s3, 54 must exist a directed path to ss.

Theorem 2.8

(i) Let S C IR? be a set of n points, p =2 and ¢ an arbitrary real number. Then the
graph Gﬁ’/”Q(S) is a weak spanner for S with stretch factor \/3 + /5.

(i1) Let S C R* be a set of n points and let 1 < p < oo and ¢ € {0,%} real numbers.
Then G;’:’/”Q (S) is a weak spanner for S with stretch factor \/3 + /5.

(iii) Forp # 2 and ¢ € {0,7}, 0 < ¢ < T, there exists S such that the graph Gi”/’;(S)
s not a weak spanner for S.

Proof:

(7): It suffices to consider the case that ¢ = 0, since the Euclidean distance dists is
invariant for rotation. With other words, the graph Gf’/ZQ(S) has the same edges as the
graph G?r’/QQ(S’), where S’ is the rotated point set S around the origin by the angle —d.
To prove the weak spanner property and the stretch factor of the graph G?T’/QQ(S¢) we
can repeat the arguments of the proof of Theorem 2.7 (3).

(i7): Here we can also repeat the the arguments of the proof of Theorem 2.7 (i) and
Theorem 2.5, respectively.

(#43): We construct the point set S in a similar way as in Theorem 2.7. We adopt the
definitions of B(s), m;, i = 0, ..., 3, from the proof of Theorem 2.7 (i) and for a point
q € R? we define D(q) := {z € R? : dist,(q,7) < dist,(g,t)}. In order to be able to
use the arguments of Theorem 2.7 (i7) we only have to show the following.

Lemma 2.9 Letp,¢ €IR,p>1and0 < ¢ < 5. The region A(s) := D(s)Ncy(s)\ B(s)
is non empty if and only if eitherp > 2 and 0 < ¢ < F orelsel <p<2and i < ¢ < 7.

Proof: Assume w.l.o.g. that the point s is coincident with the origin and D(s) is
the L, unit disc. The boundary 0D(S) of D(s) is described by the implicit function
ly|P+|z|P = 1. Consider the part of 9D(s) above the x-axis and not left to the y-axis. In
interval € [0,1) the function g(x) = (1 4 2?)'/? is coincident with this part of dD(s).
Let v be the intersection point of the halfline h(s) and the curve g(x) (Figure 2.14).
Note that v is a corner of the square region B(s). Let [(x) be the function describing
the line which contains the halfline hy(v) and so a side of B(s). Let xz(v) and y(v) be

27

1—
the z- and the y-coordinate of v. We examine the derivatives ¢'(z) = —(1 — 2?) 7 a?
and '(z) = — tan ¢ at the point z(v). From the equations

y(v) _ m
m = tan (5 — qb) and
y()? = 1—a()

we obtain that

sin® ¢ 1
2(v) = (sinp ¢ + cosP ¢) and so

g(x(v)) = —tan""'¢.

The value of (g — 1)/ (z(v)) = —(tan?! ¢ — tan @) is positive in the cases that p > 2 and
O<p<Forelsel <p<2and § < ¢ < 7;zeroif p=2or ¢ e {0,7}; and negative
ifp>2and § <gd < Jorelsel <p<2and0 < ¢ < 7. Consider the cases that
(g — 1)!(z(v)) is positive. From the definition of the derivative function follows that

there exists an ¢y > 0 such that for each ¢, 0 < € < ¢ holds that

(- D) +9 - g-DEE) _

€

Since g(xz(v)) = l(z(v)), follows that (¢ — I)(z(v) + €) > 0. It means that in the
non empty interval (z(v),z(v) + €y) the function g has strictly greater values than the
function [. This proves the claim of the Lemma. O

b DN \BE

\

Figure 2.14: The region D(s) Ncy(s) \ B(s) is non empty if a) p>2and 0 < ¢ < §, or
elseb) 1 <p<2and § <o < 7.

Now we return to the proof of Theorem 2.8 (ii7). We distinguish two cases.

Case 1: p>2and 0 < ¢ < Forelsel <p<2and 7 <¢ < 7. We fix the point ¢
and place s on the halfline hy(¢). In the same way as in the proof of Theorem 2.7 (ii),

28

we place the points sg; on Mg ;meq4 and the points s9; 41 in the regions A(sy;) :=
D(s2;) N Cc—imoda(se) \ B(s), 0 < i < 4. See Figure 2.14. Lemma 2.9 implies that the
regions A(sg;) are not empty. Since for s; the point $;11 moqs lies in the same cone as
the point ¢ and it is strictly closer to s; than ¢, from none of the points s, ..., s7 exists
an edge to t in the graph Gﬁ’/pQ({t, 80, ---,87}). The remaining n — 9 points can easily be

placed so that we do not destroy our counterexample.

Case 2: p>2and 7T <d < Jorelsel <p<2and0 < ¢ < 7. Asin Case 2 of
the proof of Theorem 2.7 (i7) we place the points ss; on the boundary of B(s) with
Euclidean distance € in clockwise direction from ;19 mod 4, and the points so;11 in the
regions A(Sy;) := D(S2;) N ¢ 1mod a(s2:) \ B(s), 0 < ¢ < 4. If € is small enough the

regions A(so;) are not empty. The bound for ¢ depends on p and ¢. O

Table 2.3 summarizes the results of Subsection 2.1.6.

Remark: D’Amore et al. [30] showed that the graph Gf’fz(S) can be computed in

O(nlogn) time and in O(n) space using plane sweeps. For the computation of Gﬁ’/pZ(S)
p & {1,2,00}, there is no subquadratic algorithm known.

Gf;’/pQ p=1|1<p<2|p=2|2<p<0|p=occ
¢ €{0,5} yes? yes yes yes yes®
0<¢p<5,0#% | mno no yes no no

Table 2.3: Weak spanner property of the graphs G;’:’/”Q(S).

2.1.7 The graph Gs./3(S)

In the previous subsections we showed that we can obtain a weak spanner for each set
S of n points in the plane by constructing a #-graph whose outdegree is bounded by
four. In this subsection we prove that to obtain a weak spanner for an arbitrary set S
of n points, four is a lower bound for the outdegree of the #-graph when we use convex
distance functions to choose the nearest neighbor for the points in the cones around
them. The lower bound holds even if we allow to use different convex distance functions
in different cones. The result of this subsection is also described in [42].

Convex distance functions are defined as follows. Let D be a convex, compact set
in the plane such that the origin is contained in the interior of D, i.e., in D \ 9D,

2With the combined distance function (dist;,dist,) we obtain a weak spanner. The second com-
ponent of the combined distance is necessary.

3With the combined distance function (dist..,dist;) we obtain a weak spanner. The second com-
ponent of the combined distance is necessary.

29

where 0D denotes the boundary of D. The origin is called the center of D. In order
to define the distance distp(p,q) from a point p to another point ¢ w.r.t. D, we first
translate D such that the center becomes coincident with p. The halfline with endpoint
p through ¢ intersects D at a unique point ¢’. Then we define distp(p, q) := %ﬁ%.
Furthermore, we set distp(p,p) := 0. It can be shown that the triangle inequality

distp(p,r) < distp(p,q) + distp(q,r), p,q,7 € IR? holds (see, for example, in [12]).

Let Dy, D; and D, be convex shapes such that each contains the origin in its interior
and let D := Ug<;<3(D; N ¢;) the compound shape which is not necessarily convex. We
assume that the cone boundary hy is coincident with the non negative z-axis and that
h; C c¢; and h; ¢ Cit1mods, 0 < @ < 3. The shape D; defines the convex distance
function distp, and D defines a distance function distp. Figure 2.15 shows an example
for the convex shapes Dy, D; and Dy and for the compound shape D. For a set S of
n points in the plane, let G2 /3(S) be the directed graph obtained such that for each
point s € S and each cone ¢;, 0 < i < 3, we join s with (one of) its nearest neighbor(s)

in ¢; w.r.t. distp.

N (D
L e

Figure 2.15: Example for the convex shapes Dy, Dy, Dy, that contain the origin in their

interior, and for the compound shape D.

Theorem 2.10 Let distp be a distance function as defined above. Then there exist a
set S of points in the plane such that Ggr/?, (S) is not a weak spanner for S.

Proof: First we consider the case that S only contains three points. Let S := {s, s',t}
such that the points have the coordinates s = (—z,1), s = (—z,—1) and ¢t = (0,0),
where z is determined as follows. Let a, b be positive real numbers such that for each
point p € IR? and integer 0 < i < 3 holds that

a - disteo(t,p) < distp,(t,p) < b- dist(t,p).

Such a and b obviously exist, because the shape D contains the origin in its interior.
We set © > 2. Then s’ and ¢ are both contained in the same cone c(s) around s and

distp(s,s') < b-disto(s,s) = 2b < a-disty(s,t) < distp(s,t).

30

Therefore, (s,s') € GJ, 3(S) and (s,t) & GZ, 3(S). Similarly, s and ¢ are both contained
in ¢o(s') and distp(s',s) < distp(s',t). Therefore, (s',s) € GST/3(S) and (s',t) ¢
05/3(5). Consequently, there is no directed path from s or s’ to t in Ggr/?)(S).

In the case that S contains more than three points then we place the first three points
s, s’ t as described above and the remaining points on the positive z-axis. Then using
the above arguments we obtain that there is no directed path from s or s’ to any point
of S\ {s, '} Gf, /3(S). This proves the theorem. O

Remark: It can be shown that for each f € IR, a set S can be constructed with the
following property. Let s,t € S. Let P be the path constructed such that sy = s
and s;41 is the neighbor of s; in G, 5(S) in the same cone around s; which contains
t. Then limsup,_, dista(t,s;) > f - dists(t,s). Figure 2.16 shows an example for the
first steps of the construction of S in the case that the distance dist.,(p, q), ¢ € ¢;(p), is
the Euclidean distance of p and the projection of ¢ to the bisector I, (p) of ¢;(p). The
boundary of the area at s; which must contain s;,1, in order to prohibit the existence
of the edge (s;,t) in Gar/3(S) and to get further from ¢, is drawn dashed. The general
case, if dist., is a convex distance function, is described in [42].

Figure 2.16: Example for the construction of a set S such that limsup,_, . dists(t, s;) >
f - disty(t, s).

2.2 The higher dimensional #-graph

Now we examine the d-dimensional #-graph, where d > 3 is an integer constant. For the
formal description we need the notion of simplicial cones. We assume that the points of
IR¢ are represented by coordinate vectors and we do not distinguish between a point and
its coordinate vector. Let pg, p1, ..., pa be points in IR? such that the vectors (pi — o),
1 < i < d, are linearly independent. Then the set {po+>%_, X\j(pi—po) : \i > 0 for all i}
is called a simplicial cone and pg is called the apex of the cone (see, e.g., in [48]).
Sometimes, it is more convenient to use an equivalent definition, where a simplicial

cone is defined as the intersection of d halfspaces in IR¢ with the property that the

31

hyperplanes bounding the halfspaces are in general position in the sense that their
intersection is a unique point, the apex of the cone. Let # be a fixed angle 0 < 8 <7
and C be a collection of simplicial cones such that

(7) each cone ¢ € C has its apex at the origin,

(“’) UCEC’ c=]]-:{dv

11) for each cone ¢ € C' there is a fixed halfline [, having the endpoint at the origin
g g

such that for each halfline /, which has the endpoint at the origin and is contained
in ¢, the angle between [, and [is at most g.

We call such a collection C' of simplicial cones a 0-frame. Yao [82] showed a method how

a f-frame C of (4)9(1°8:9) cones* can be constructed, where b = Z%-. Later Ruppert

d—1°
0(d)

and Seidel [71] suggested another method which results in a f-frame C' of (%) cones.

In the following the number of cones in C' is denoted by |C|.

Remark: We use the §-frame definition suggested by Ruppert and Seidel [71]. Yao [82]
and Arya et al. [8] defined a f-frame in a slightly different way. They replaced item (3%)
with item (#74") which says that each cone ¢ € C has an angular diameter at most 6 and
the cone axis [, is an arbitrary halfline which is contained in ¢ and has the endpoint at
the origin. The angular diameter is defined as the maximum angle between two halflines
that are contained in ¢ and have their endpoint at the origin. Note that the condition
of item (74i') is implied by item (4i7). Therefore, the techniques that we present in this
section can be also applied without change when we use the modified definition of the
f-frame. But we achieve a better bound for the stretch factor of the spanners with the
definition in [71].

For a cone ¢ € C and for a point a € R%, we define c(a) := {a+ 1 : z € ¢}, i.e., c(a)
is the cone obtained by translating the cone ¢ such that the apex becomes coincident
with a. Similarly, we define [.(a) to be the halfline /. translated such that the endpoint
becomes coincident with a. For ¢ € C and p,q € IR? such that q € c(p), let dist.(p, q)
denote the Euclidean distance between p and the orthogonal projection of g to I.(p).

Now let S be a set of n points in IR and let 6 be an angle such that 0 < § < 7. For
each point s € S and each cone ¢ € C, let Sy :=c(s) NS\ {s}, i.e., Se(s) is the set of
points of S\ {s} that are contained in the cone c¢(s). The @-graph Gy(S) with vertex
set S is defined such that for each point s € S and each cone ¢ € C, Gy(S) contains a
directed edge from s to (one of) its nearest neighbor(s) in ¢(s) w.r.t. the distance dist,

if Se(s) # 0.

4In order to enable a better comparison between different methods, we consider d as a variable in
the bound on the number of cones of a §-frame. If d is a constant then (4)C(dlogrd) = (1)0(d),

32

This section is organized as follows. In Subsection 2.2.1 we take a closer look at the
proof of the spanner property of the d-dimensional f-graph, done by Ruppert and
Seidel [71], and we show why it actually works also in d-dimensions. After this, in
Subsection 2.2.2 we present some methods to compute a f-frame. First we describe

the method of Yao [82] and we give a (%)°(?°6: %) bound on the number of simplicial

cones in the resulting #-frame, where b = d%“l. Then we present the method of Ruppert

and Seidel [71] which constructs a f-frame of (4)°(® cones. After this we describe our

a*2
0

Subsection 2.2.3 we present two algorithms, done by Ruppert and Seidel [71] and Arya

et al. [8], that construct the graph Gy(S) for the set S C IR? of n points in O(n log* * n)
time and in O(nlog??n) space.

own method which results in a f-frame consisting of O((%-)4"!) cones. Finally, in

2.2.1 The spanner property

Now we examine the spanner property of the d-dimensional #-graph. Ruppert and
Seidel [71] showed that their proof, which we have presented in the proof of Theorem 2.1,
also works in the d-dimensional case. We give our own proof for the d-dimensional
version of Lemma 2.2 which is the base of the proof of the spanner property.

Lemma 2.11 [71] Let 0 < 0 < 7 and C be a 0-frame. Let p € R? be a point and
c € C be a cone. Furthermore, let ¢ and r be two points in c(p) such that dist.(p,q) <
dist.(p,r). Then disty(q,r) < dista(p,r) — (1 — 2sin) dista(p, q).

q’

Figure 2.17: The two cases in the proof of Lemma 2.11. Case 1: dists(p, q) < dista(p,).
Case 2: dista(p,q) > dista(p, 7).

Proof:

Case 1: dista(p,q) < dista(p,r). For this case we can simply repeat the proof of
Case 1 of Lemma 2.2, i.e., we immediately obtain the claim by applying the triangle
inequality to the triangle ¢¢'r, where ¢' is the point on the line segment pr such that

disty(p, q) = disty(p, q').

33

Case 2: disto(p, q) > dista(p,r). Let ¢” be the perpendicular projection of ¢ to the cone
axis [, and let ¢’ be the point on the two-dimensional plane containing the triangle prq”
such that dista(p, q') = dists(p, q) and dists(q",q") = dista(¢",q). Then we obtain the
inequalities

disty(q,r) < dista(q,q") + dista (4", 1), (2.1)
disto(q", 1) + dista(p,q') < dista(q",q') + dista(p,). (2.2)

Inequalities (2.1) and (2.2) together with dists(q, ¢") = dista(q", ¢') < 2sin & -dists(p,)
imply that

disto(q,r) < dista(q,q") + dista(q”, ') + dista(p,) — dista(p, ')
< disty(p,r) — (1 — 2sin g) dists(p, q).

|

Theorem 2.12 [71] Let S be a set of n points in R and let 0 < 0 < . Then the

0-graph G¢(S) is a spanner for S with stretch factor #11(0/2)'

Proof: The proof is exactly the same as in the two-dimensional case. For a pair of
points s,t € S let P be the st-path which is constructed so that the start point sy of P
is s and s;,1 is the neighbor of s; in Gy(S) in the cone c(s;) which contains ¢. Then the

length of P can be bounded by Tﬁ() applying Lemma 2.11 in the same manner as

9/2
in the proof of Theorem 2.1. O

Remark: If one uses the modified definition of the -frame, as in [82, 50, 8], i.e., using
item (i71") instead of item (i), then Theorem 2.12 can only be proven for an angle 6
in the range 0 < § < T and the stretch factor which we achieve is —z1—— (see [50] for
d =2 and [8] for d > 2).

2.2.2 Construction of a f-frame

In this subsection we examine the problem how to construct a f-frame in d > 3 di-
mensions. In order to be able to compare different methods with one another, we
exceptionally consider the dimension d as a variable and not as a constant. Yao [82]
was the first who showed how a #-frame can be constructed in d > 3 dimensions. First
we present Yao’s method and we give a (4)°(?°&% ypper bound on the number of
produced cones, where the basis b of the logarithm is d%dl. Then we briefly describe an-
other construction method done by Ruppert and Seidel [71] which results in a #-frame
of (%)O(d) cones. Finally, we present an own construction which produces a #-frame of

O((%{Z)d_l) cones.

34

2.2.2.1 Yao’s method

In order to describe the Yao’s method we need some definitions. We begin with the
definition of a j-simplez in IR%. Let py, ..,pj, 0 < 7 < d be points in IR such that
the vectors (p; —po), 1 <4 < j, are linearly independent. Then the set A(py, ..., p;) :=
{7 Nipi 2 A > 0forall 4, and 7, \; = 1} is called a j-simplex. The diameter of
a simplex A is diam(A) := sup{dista(p,q) : p,q € A} which is equal to the length of
the longest edge (1-face) of A (see Theorem 5-18 in [48]). The centroid of a simplex
A = A(po, ..., p;) is the point centr(A) =]ﬁ S7_,p;. Finally, we define the radius of
a simplex A = A(py,...,p;) as the radius of the smallest j-dimensional ball centered
at centr(A) which contains A, i.e., rad(A) := sup{dista(centr(A),p) : p € A}. For
the radius and diameter of any j-simplex A holds that rad(a) < J”? diam(A) (see
Theorem 5-19 in [48]).

Informally, Yao’s method is based on a certain recursive subdivision of the (d — 1)-
simplices on the boundary of the L; unit sphere until the diameter (and so the radii)
of the resulting simplices become appropriately small. Each such simplex defines a
simplicial cone of the #-frame and the centroid of the simplex defines the cone axis, as
illustrated in Figure 2.18.

R, R,
‘ lc
tr(4)
’
) 0 [

Figure 2.18: Example for a 2-simplex A and for the simplicial cone ¢ defined by them.

Now we describe the method more precisely. The first barycentric subdivision of a j-
simplex A(po, ..., p;) is a family F of j-simplices such that the simplices of F are defined
as follows. For any t distinct integers 0 < iy, ..., 4, < j, let py, . 4, = centr(A(piyy .-y Di,))-
Let IT be the set of all permutations of (0, ..., 7). The first barycentric subdivision of
A(po, ..., p;) is defined as

F = {A(pioapio,ila "':pio,il,...,ij) : (iOaila azj) € H)} -

The first barycentric subdivision F of a j-simplex A consists of (j + 1)! simplices such
that

(1) A=Uarer A" and
(77) Foreach A" € F, diam(A") < rad(A) < JJ? diam(A) (see Theorem 5-19 in [48]).

35

Py P P
! o) Py
P P P
P 0)
o 12 U
01 b, B, A p,
Po1 p01
P P!

Py

4

Figure 2.19: Example for a one-, two- and three-dimensional barycentric subdivision.
For simplicity, in the three-dimensional case only one of the 4! simplices of the subdi-

vision is shown.

Figure 2.19 shows examples for first barycentric subdivisions.

Let € = (€1, ..., €4) be a d-tuple such that ¢; € {1,—1}. We denote by H(e) the hyper-
plane {z € R?: Y, ¢;z; = 1} in IR%. For two points u,v € H(e) let ¢(u,v) be the angle
between the two halflines {Au : A > 0} and {A\v: A > 0}.

Lemma 2.13 [82] Let A = A(po, ..., pa—1) be a (d — 1)-simplex such that p; € H(e),
0 <4 < d. Furthermore, let u and v be two points contained in A. Then cos(p(u,v)) >
1 — &(dists(u,v))>

Proof: For a point z € R? let ||z|| := (272)Y? = (¥;22)*/? be the Euclidean norm
of z. Using elementary results of the linear algebra we obtain that

(dista(u,v))* = (v—w)" (v —u) = [lull”+ [v]]* — 2[lull[[v]| cos(d(u, v))
> 2ffulllvll(1 = cos(¢(u, v))). (2.3)

Furthermore, u,v € A C H(e) implies that

ol = ¥ 0 > (3 auw) =

1<i<d 1<i<d

Ul

Therefore, ||ul| > (3)'/2, and similarly ||v]| > (4)*/2. This together with (2.3) implies
that cos(¢(u,v)) > 1 — &(disty(u,v))> O

Corollary 2.14 Let A be a (d—1)-simplex contained in the hyperplane H (¢). Further-
more, let 0 < 0 < be a fized angle. If rad(A) < (3(1 — cos £))'/2 then for each point
v € A, ¢(centr(A),v) < 4.

36

Now we are ready to describe the whole algorithm which constructs a f-frame for a
given angle 0 < § < 7. Let e; denote the unit vector in IR? whose ith component is one
and all others are zero.

Initialize C' := (). For each of the 2¢ d-tuples € = (e1,...,€4), & € {—1,1}, do the
following.

1. Let A(e) = A(ereq, ..., €4eq)-

2. Compute a family F' of simplices such that A(e) = Uaep A’ and rad(A’) <
(2(1—cos £))!/2, for each A’ € F, by constructing the first barycentric subdivisions

recursively.

3. For each A’ € F, construct the simplicial cone ¢ := {Ap : p € A’, X > 0} with
cone axis . := {\- centr(A") : A > 0} and add ¢ to C.

The collection C' of simplicial cones constructed in this way is clearly a #-frame, since
Ueet=1,13¢ A(€) = Ueeqo1,13¢ Uarer A' covers the L; unit (d — 1)-sphere and therefore,
Ueeo ¢ covers IRY. Furthermore, using Lemma 2.14 we obtain that each halfline I,
which is contained in a cone ¢ € C' and has the endpoint at the origin, has an angular
distance at most g from the cone axis /..

It remains to examine how many cones are created. The diameter of a simplex A(e) =
A(ereq, ..., €4eq) is clearly /2 and therefore, the radius is —\/_ After the ith recursive
barycentric subdivision we obtain simplices whose radius is at most (4% d1)1+1f . Since
the recursion stops when the radius of each simplex becomes less than or equal to
(3(1 cos 9))1/2, we obtain that the depth d of the recursion is at most — (5 log,(5(1 —
cos 9)) + 1), where b = 4. Furthermore, a first barycentric subdivision of a simplex
contains d! simplices, therefore, a simplex A(e) is subdivided in at most (d!)° simplices.

Using Stirling’s formula (see, e.g., in [63]) we obtain that (d!)’ = O((W)‘s) =

e

(#(9/2))0(‘“0& 9 where b = %= Since the algorithm starts with the 2¢ simplices
. . 2 2 2
A(e), € € {=1,1}% and since llmzﬁo(lfcégz) = 1 and lfcégm < G, for 0 <z < 7,

we obtain that the final number of simplices created by the algorithm is (
Consequently, also |C| = (4)9(4!%8:9) and C' can be obviously constructed in (4)©(¢1og:)
time. We summarize this in the following.

Theorem 2.15 Let 0 < 0 < 7. Then a 0-frame C' can be constructed such that the

O(dlogy, d)

construction time and number of cones in C are both bounded by () where

b= L.

d—1

37

2.2.2.2 The Method of Ruppert and Seidel

Ruppert and Seidel [71] suggested the following method. First cover the Euclidean
(d — 1)-sphere by appropriate spherical caps and then compute the Delaunay triangu-
lation of the centers of the caps. The (d — 1)-simplices of the Delaunay triangulation
together with the center of the sphere define the simplicial cones of the f-frame. The
axis of such a cone is a halfline from the center of the sphere through the Delaunay
circumcenter of the simplex. In order to describe this method more precisely, we need
some definitions.

Let S4 ' :={z € R®: ||z|| = 1} denote the (d — 1)-dimensional Euclidean unit sphere,
short the unit (d—1)-sphere. Let 0 < ¢ < 7 be an angle and a be a point of S4~1. Then
the set {x € S ! : ¢(a,x) < 1} is called a spherical cap with center a and angular
radius ¥. Remember, ¢(a,z) denotes the angle between the halflines {\a : A > 0} and
{Az : A > 0}. In [70] Rogers proved the following.

Lemma 2.16 [70] Let 0 <t < Z. Then S% ! can be covered by

O(d3/? log(ﬁ) sin~ 4=) spherical caps with angular radius .

Now we define the Delaunay triangulation and the Voronoi diagram for a set P of m
points in IR’. Then we transfer the definition to a set of points on the unit j-sphere
S7. For an extensive overview of the numerous variants and numerous applications
of the Delaunay triangulation and the Voronoi diagram we refer to the surveys of
Aurenhammer [10] and Aurenhammer and Klein [11].

For two distinct points p, ¢ € P the dominance of p over ¢ is defined as the set of points
of IR being at least as close to p as to ¢. Formally,

dom(p,q) :={z € R/ : dists(p,) < dists(q,x)}.

Clearly, dom(p, q) is a closed halfspace bounded by the (j — 1)-dimensional hyperplane
which is perpendicular to the line segment between p and ¢ and contains the center of
this line segment. This hyperplane is called the separator of p and gq. The region of
a point p € P is the portion of the space lying in all of the dominances of p over the
remaining points in P, i.e.,

reg(p):= [dom(p,q).
¢eP\{p}

Since the regions are the intersections of halfspaces, they are convex polyhedrons and
they form a polyhedral partition of IR?. This partition is called the Voronoi diagram
VD(P) of P. Note that V D(P) contains exactly m regions. We say that two regions are

38

neighbors of one another if their boundaries share a (j — 1)-face. The corners (0-faces)
of the regions are called Voronoi vertices.

Consider a Voronoi vertex u which is on the boundary of the region reg(p) for some
p € P. We grow a j-ball B(u) centered at u until the boundary of B(u) hits the
point p. At this moment there are (at least) j + 1 points on the boundary of B(u),
because u is the intersection of (at least) j separator hyperplanes between p and (at
least) j other points of P, and the separated points have the same distance from the
separator. Clearly, B(u) does not contain any point ¢ € P in its interior, because in
that case the separator between p and ¢ would cut u from reg(p), which contradicts
the initial assumption that v is a corner of reg(p). If we assume that no j + 2 points
of P are cospherical, i.e., there exists no (j — 1)-sphere which contains j 4+ 2 points of
P, then B(u) contains exactly j+ 1 points of P on its boundary. These points define a
j-simplex in IR, called a Delaunay simplez. The Delaunay simplices form a simplicial
partition of IR?, called the Delaunay triangulation DT (P) of P. The property that the
circumball of a Delaunay simplex does not contain any point in its interior is one of
the most important properties of the Delaunay triangulation. It is called the empty
circle (sphere) property. If P is allowed to contain at least j+ 2 cospherical points then
the ball B(u), for some Voronoi vertex u, may contain more than j + 1 points of P
on its boundary. In this case we partition the convex hull of this points into simplices
arbitrarily.

Klee [52] proved that for j > 2, the maximum number of vertices that a Voronoi
diagram of m points can have — and therefore, also the maximum number of Delaunay
simplices — is ©([£]!m[7/21). Edelsbrunner [35] showed how it can be computed in
O([L£]!mli/?T) worst-case optimal time. The algorithm in [35] maps the m points of
IR’ to points in IR?*! and computes the convex hull of the mapped points. Then the
simplices of the Delaunay triangulation can be obtained by projecting the faces of the
convex hull to IR.

The definition of the Voronoi diagram and the Delaunay triangulation of a set P of
m points in IR/ can be transfered easily to the case that P is a set of points in the
unit j-sphere S7. Then the dominance of p over q is defined as dom(p,q) := {z € S’ :
disty(p, x) < dista(g,z)}. The Voronoi region reg(p) := MNyepyipy dom(p, q) of a point
p € P becomes a polyhedron on the surface of S7, and the j-simplices of the Delaunay
triangulation are defined using growing spherical caps centered at Voronoi vertices. The
empty circle property is modified to ”empty spherical cap property”. Then too compute
the Delaunay triangulation of P on the surface of S7 is equivalent to the computation
of the convex hull CH(P) of P. The Delaunay simplices can be obtained immediately
from the boundary faces of CH(P). This follows from the next lemma.

39

Lemma 2.17 Let P be a set of m points on the unit j-sphere S7. Assume that there
is no (j — 1)-sphere which contains more than j + 1 points of P on its boundary. Let
D1y Pj+1 € P. Then the simplex A(py, ...,pj1+1) is a Delaunay simplex if and only if
A(p1, ..., Pj+1) 1S a simplex on the boundary of CH(P).

Proof: Let H be the j-dimensional hyperplane which contains A(py, ..., p;+1) and let
H* and H~ be the two open halfspaces in IR?*! separated by H. Note that S7 N H is
a (j — 1)-sphere and S/ N H* and S/ N H~ are open spherical caps (see Figure 2.20).
The simplex A(p1, ..., pj+1) is a Delaunay simplex if and only if one of the caps SN H*
or SN H,say SN HT, does not contain any point of P. This is equivalent to the
condition that PNH™' = () and so, CH(P)NH™ = (). But this means that A(pi, ..., pj+1)
is a boundary simplex of CH(P). O

Figure 2.20: Example for a simplex A(p1,ps, p3), P1, P2, P3 € S

If P is allowed to contain more than j+ 1 points incident to a (j — 1)-sphere then, after
the computation of CH(P), we additionally have to triangulate the faces of CH(P)
that contain more than j + 1 vertices.

The simplicial cones of the f-frame are computed such that we first construct a covering
of the sphere S%~! by spherical caps that have an angular radius g, and then we compute
the Delaunay triangulation of the centers of the caps. In this way we obtain a family
F of O([52]!ml@ /21 simplices, where m = O(d*/? log(ﬁ) sin " £). Hence,
the number of simplices is |F| = (m)o(d) = ()9 For each A € F let ¢(A) be the
cone {Ap : p € A, XA > 0}. Clearly, the cones cover IR¢. The axis of a simplicial cone
c(A) is defined as the halfline {Amid(A) : A > 0}, where mid(A) denotes the center of
the circumcircle of A, more precisely, mid(A) is the center of the spherical cap sc(A)
which contains the vertices of A on its boundary. Since sc(A) contains no vertices in
the interior, it must not be greater than the covering caps that are centered at the
vertices of A, otherwise, mid(A) would not be covered by any cap. But the fact, that
sc(A) is not greater than the covering caps, implies that mid(A) is contained in each

covering cap centered at a vertex of A. Consequently, the angular distance between the

40

halfline from the origin through mid(A) and a halfline through any vertex of A is not
greater than 2. Therefore, the simplices {c(A) : A € F'} form a ¢-frame. The following
theorem summarize the above description.

Theorem 2.18 [71] Let 0 < § < 7. Then a 0-frame C can be constructed such that

the construction time and number of cones in C are both bounded by (%)O(d).

2.2.2.3 Our method

We subdivide the space IR? into simplicial cones in two phases. In the first phase
we subdivide IR? into cones with rectangular bases. Then, in the second phase, we
subdivide these cones into simplicial cones.

The first phase is based on a subdivision of the surface of the L., unit ball into (d —1)-
dimensional cubes until the diameter of the cubes become appropriately small. The
Lo norm ||ulle of a point u € R? is the maximum of its coordinates. Consider the
d-dimensional L., unit ball B4 = {z € R* : ||7|l < 1}. BZ is a cube. The
diameter, the centroid and the radius of a cube B C IR? is defined similarly as for
a simplex: diam(B) := sup{dists(p,q) : p,q € B}; centr(B) := Q%Zfilpi, where
D1, ..., Doa are the corners (0-faces) of B; and rad(B) := sup{dists(centr(B),p) : p € B}.
For each cube B it holds that rad(B) = idiam(B). Clearly, rad(B%) = V/d. Let
H;:={z € R%: z; = 0} be the (d — 1)-dimensional hyperplane which is perpendicular
to the ith coordinate axis and contains the origin. Then each (d — 1)-face of BY is
contained in exactly one of the 2d hyperplanes H; +¢;, 1 < i < d, where ¢; is the
ith unit vector. Therefore, the number of (d — 1)-faces of B4 is 2d. Considering the
hyperplanes H; + ¢;, 1 < 4 < d, as subspaces of IR%, the contained (d — 1)-face of B
is a Lo, unit ball in the corresponding subspace. Hence, the radius of the (d — 1)-faces
of B is v/d — 1. In the next lemma we give a bound for ¢(u,v) if the points u and v

are contained in the same (d — 1)-face of B<,.

Lemma 2.19 Let B be a (d — 1)-face of the Ly, unit ball in R* and let u and v be two
points contained in B. Then cos(¢(u,v)) > 1 — L(dists(u,v))?.

Proof: Using inequality (2.3) of Lemma 2.13 and the fact that ||z|| > ||z]|c = 1, for
each point x € B, we obtain that

(disty(u,v))* > 2fulll|v]|(1 — cos(d(u, v)))
> 2(1 — cos(¢(u, v)).

\%

This proves the claim. O

41

Corollary 2.20 Let B, be a (d — 1)-dimensional cube contained in a face of B, and
let 0 < 0 <7 be a fized angle. If rad(B,) < (2(1—cos £))'/2 then for each point v € B,
¢(centr(B,),v) < L.

Figure 2.21: Subdivision of a 2-face of B3 . The coordinate axes are drawn dashed.

Now we describe an algorithm which constructs a #-frame of cones with rectangular
bases, for a given angle 0 < # < 7w. Corollary 2.20 implies that it is sufficient to
subdivide the (d — 1)-faces of the L., unit ball B4 C IR? into cubes with radius
(2(1 — cos £))1/2. Each such cube B, defines a cone c:= {\p € R*:p € B,,\A > 0} of
the 0-frame and the centroid centr(B,) defines the cone axis . := {\ - centr(B,) € R :
A > 0} of c. Such a subdivision can be easily computed. Since the radius of the (d —1)-
faces of B is v/d — 1, we have only to subdivide each (d — 1)-face in each dimension
equidistant, into intervals of length 2(2—<2¢/2))1/2) " Then the subdivision of the face
is obtained as the Cartesian product of the d — 1 one-dimensional subdivisions. In this

way, each face is subdivided into (M%)(d_l)/ 2 cubes. Since limw_,o(lfi{) 2) =1

and sz% < %2, for 0 < # < 7, this is O((%}ﬂ)d_l), where £ = 7. Figure 2.21
shows an example for the subdivision of a 2-face. Using that the number of (d — 1)-
faces of BY is 2d, we obtain that the total number of cubes in the subdivision is
O(d(%fﬂ)d“). Note that a cube is fully defined by its centroid, because the radius of
each cube is the same. Therefore, the computation time and the space requirement are

also O(d(%}/z)d_l). The following theorem summarize the above description.

Lemma 2.21 Let 0 < 0 < m. Then a 0-frame C of cones with rectangular bases can be
constructed such that the construction time and number of cones in C are both bounded

A2\ g ™
by O(d(=%=)4""), where k = -
Now we turn to the description of the second phase in which we have to subdivide the
cones with rectangular bases into simplicial cones, i.e., the (d — 1)-dimensional cubes
into (d — 1)-simplices. The question of triangulating the j-cube B’ has been intensively
studied [78, 19, 47]. A simple way of the triangulation is the following. Fix an arbitrary

42

corner pg of B’. For each permutation o of (1, ...,), let A(c) be the simplex whose Oth
vertex is p,o = py and the ith vertex p,;, 0 < 4 < 7, is the corner of B’ for which the
line segment p,;_1p,; is parallel to the o(7)th coordinate axis®. The number of such
simplices is clearly j! and it holds that U, A(o) = B?. Figure 2.22 shows an example for
a simplex in the three-dimensional case. This triangulation is often referred as Kuhn’s
triangulation. A nice property of this triangulation is that each of the j! simplices
contains the centroid of the j-cube. Consequently, the corresponding simplicial cones
contain the halfline from the origin through the centroid, which we take as the axis of
the cones.

Figure 2.22: Example for the triangulation in the three-dimensional case. The cube B?
and a simplex A(0).

Applying Kuhn’s triangulation for each (d — 1)-cube of the subdivision of the faces
of B¢ we obtain totally O((d — 1)! d(#)d_l) = O(d3/2(¥)d_1) simplices, which is
already significantly less than the number of cones in a #-frame constructed with the
method of Yao [82] or of Ruppert and Seidel [71].

Note that an explicit representation of the simplices — i.e., storing d vertices for each
simplex — in the subdivision would need O(d®/ 2(#)d*l) space. But since the simplices
of a cube can be represented by permutations of 1,...,d — 1, it is sufficient to store only
(1) a method which generates all permutations of 1,...,d — 1 and (i7) the cubes (i.e.,

the centroids).

Instead of Kuhn’s triangulation we can also use a more sophisticated method, for ex-
ample, the middle cut triangulation of Sallee [72]. This method allows us to subdivide
a j-cube B7 into O(]J—;) simplices. Applying this triangulation we obtain the following.

Theorem 2.22 Let 0 < 6§ < w. Then a 6-frame C' of simplicial cones can be con-
structed such that the number of cones in C' is O(d‘”%%)d_l).

5Bern et al. [16] used the notion of path simplez for such simplices

43

2.2.3 Construction of the f-graph

In Subsection 2.1.2 we have already shown how the f#-graph for a set S of n points
in the plane can be computed efficiently. Now we present the generalizations of that
algorithm for the case that S is a set of points in the d-dimensional Euclidean space
]Rd, d > 3. We assume again that d is an integer constant.

2.2.3.1 The method of Ruppert and Seidel

The method of Ruppert and Seidel [71] can be generalized easily to work in d > 3
dimensions. The algorithm proceeds in |C| phases. In each phase we choose a cone
¢ € C and for each point s € S we compute its nearest neighbor in ¢(s) w.r.t. the
distance function dist,, i.e., a point s’ € ¢(s) whose projection to the cone axis [.(s) is
nearest to s in Euclidean sense.

In order to compute the nearest neighbors we preprocess the point set S into a data
structure, which allows orthogonal range queries, and perform a hyperplane sweep
in the direction of /.. Before the plane sweep we must apply an appropriate affine
transformation z — Az, A € R™? to the points z € IR such that the transformed
hyperplanes bounding the cone ¢ become orthogonal. Furthermore, the cone axis of
the transformed cone, which determines the direction of the plane sweep, must be
transformed as follows. Let h be a (d—1)-dimensional hyperplane which is perpendicular
to the original cone axis [, and let A’ be the hyperplane h' := {Az : © € h}. Then the
cone axis of the transformed cone must be perpendicular to A'.

During the plane sweep we perform orthogonal range queries using a dynamic (d — 1)-
level data structure which consists of (d — 2)-levels of range trees [56] plus one level of a
priority search tree [60] to handle the last two dimensions. More precisely, the first level
of this data structure is a balanced binary search tree storing the transformed points
s € S in its leaves, sorted by their first coordinates. For each node v of this tree, let
S, be the subset of S stored in the subtree of v. Each node v of this tree contains a
pointer to the root of a balanced binary search tree — a second level tree — storing the
tranformed points s € S, in its leaves, sorted by their second coordinates. Each node
w of this second level tree contains a pointer to the root of a balanced binary search
tree — a third level tree — storing the transformed points s € S, in its leaves, sorted by
their third coordinates, etc... At the (d— 1)th level there is a priority search tree which
stores a subset of the transformed S. Figure 2.23 illustrates the data structure.

The space requirement of this (d — 1)-level data structure is O(nlog2n). We can
maintain it in O(log"li1 n) amortized® time per insertion and deletion and it supports

6The notation of amortized complexity appears often in the analysis of dynamic algorithms. Tt

44

(d-1)th level

S

Figure 2.23: The (d — 1)-level data structure which supports orthogonal range queries.

answering orthogonal range queries (where one side of the dth dimension of the range is
unbounded, i.e., in the form of [a, o)) in O(log®™ ' n + k) time, where k is the number
of reported points. For an exact analysis of this data structure we refer to Luecker [56]
and McCraight [60] or to Mehlhorn [61].

Using the above (d — 1)-level data structure during a plane sweep, we can compute for
each point its neighbor in the cone ¢ in O(nlog? ' n) time. Therefore, the total time
required to compute the #-graph is O(|C|nlog? ' n). We conclude.

Theorem 2.23 [71] Let S C IR? be a set of n points and let 0 < 6 < 7 be a real
number. Then the 6-graph Gg(S) can be constructed in O((%)d_lnlogdﬂn) time
using O(nlog??n) space.

2.2.3.2 The method of Arya et al.

In order to describe the d-dimensional version of the algorithm of Arya et al. [8] for
d > 3, we need some definitions. Let ¢ be a simplicial cone of C. Let hq, ..., hg be the
hyperplanes that bound the halfspaces defining ¢, and let Hj, ..., H; be the lines such
that H; is orthogonal to h; and contains the origin, 1 <17 < d. We assign a direction to
each line H; such that H; increases in the halfspace bounded by A; which contains the
cone ¢, i.e., c lies in the positive side of h; w.r.t. to H;. Furthermore, let L be the line
which contains the cone axis /.. We assign to L the same direction as to .. The edges
of the #-graph will be computed by performing plane sweeps with the hyperplanes h;
in the directions of H;.

Let ¢ be any point of IRY. We denote by ¢; the ith coordinate of ¢, 1 < ¢ < d. For
1 < < d, let ¢} be the signed Euclidean distance between the origin and the orthogonal
projection of ¢ onto H;, where the sign corresponds to the direction of H;. Finally, we

means that we do not necessarily guarantee that a single update is fast, but that we can bound the
average time per operation over the entire sequence of updates and queries.

45

define ¢, , as the signed Euclidean distance between the origin and the orthogonal
projection of ¢ onto L.

Using the above terminology, we can write the cone c as
c={recR*:2,>0, 1<i<d}
and for a point ¢ € IR%, the translated cone c(q) as
clg)={zeR¥:z}>q}, 1<i<d}.

Let S be a set of n points in IR? and 0 < # < 7. Computing the outgoing edge for a
point s € S in the #-graph G4(S) in the cone ¢(s) is equivalent to finding a point ¢ with
minimum ¢}, ,-coordinate among the points {t € S\ {s} : t; > s}, 1 <i < d}. In order
to solve this problem for each point s € S, we define a d-level data structure which has
the form of a range tree [56]. For simplicity of the description we assume that for each
two points s,t € S, s # t holds that s} # ¢} for 1 <i < d. The modification of the data
structure for the case without this assumption is straightforward.

The first level of this data structure is a balanced binary search tree which stores the
points s € S in its leaves, sorted by their s}-coordinates. For each node v of this tree,
let S, be the subset of S stored in the subtree of v. Each node v of this tree contains
a pointer to the root of a balanced binary search tree which stores the points s € S,
in its leaves, sorted by their s)-coordinates, etc... At the dth level there is a balanced
binary search tree which stores a subset of S, sorted by their s/-coordinates. At the
dth level tree of this data structure for each node v, we store additionally the point of

Sy whose s, -coordinate is minimal.

Using this data structure we can compute the edges (s, t) € G4(S) such that ¢t € ¢(s) in
the following way. We initialize an empty set M; and follow the path in the first level
search tree from the root to the leftmost leaf which stores a point ¢ € S with ¢] > s}.
For each node v on this path, if we move to the left child, then we insert the right child
of v into M;. The final set M; contains O(logn) nodes such that

(1) Uperr, Sv ={q € S : ¢} > s} and
(i1) Sy NSy, =0, for each v, w € My, v # w.

Then we initialize a new empty set My and for each node v € M;, we follow the path in
the second level search tree, which stores the points of S,, from the root to the leftmost
leaf which stores a point ¢ € S with ¢} > s},. For each node w on this path, if we move
to the left child, then we insert the right child of w into Ms, etc... At the dth level we
initialize an empty set M, and for each node v € M, 1, we follow the path in the dth

46

level search tree, which stores the points of S, from the root to the leftmost leaf which
stores a point ¢ € S with ¢ > . For each node w on this path, if we move to the
left child, then we insert the right child of w into M,;. Then the final set M, contain
O(log®n) nodes such that

(%) Uvem, So =10 €S : ¢ > s;, 1 <i<d} (=c(s)NS\ {s}) and
i1) S, NS, =0, for each v, w € My, v # w.
(49)

The nodes contained in M, are called the canonical nodes of s. With each node v,
in particular with each canonical node of s, we stored a point ¢, such that (t,)},; is
minimal in the subtree of v. Let ¢ be a point such that (i) ¢ = ¢,, for some canonical
node v € My and (77) t;,; = min{(t,)},, : v € Mg}. Then (s,t) is an edge in G4(S5).

The space requirement of this d-level data structure is O(nlog? ' n). It can be main-
tained in O(log? n) amortized time per insertion and deletion and it supports answering
orthogonal range queries in O(log? n+k) time, where k is the number of reported points.
For an exact analysis of this data structure we refer to Luecker [56] or to Mehlhorn [61].
The additional information — i.e., for each node v of each dth level tree, the point of
S, whose s}, -coordinate is minimal — can be computed in O(n log ' n) time by a
bottom-up procedure and it also can be maintained in O(log?n) amortized time per
insertion and deletion [8].

Lemma 2.24 [8] Let S be a set of n points in R* and let ¢ € C. Using the above data
structure, for a point p € R®, we can compute in O(log® n) time a point ¢ € c(p)NS\{p}
for which q},, is minimal, or decide that such a point does not exist. The size of the data
structure is O(nlog? ' n) and it can be constructed in O(nlog® ' n) time. Furthermore,
it can be maintained in O(log® n) amortized time per insertion and deletion.

Hence, the graph Gy(S) can be constructed in O(|C|nlog®n) time using O(nlog* " n)
space by building the above data structure for each cone ¢ € C separately and by
querying them with each point s € S. We can save a factor of logn by taking advantage
of the fact that all query points are known in advance. We again consider each cone
¢ € C separately and for each ¢ we perform a plane sweep. We sort the points of S
by their s}-coordinates. Then we process them in decreasing order. All visited points
are maintained in the (d — 1)-dimensional version of the data structure of Lemma 2.24,
using only the final (d — 1) coordinates s, ..., s4 and the value of s4y; for each point
s € S. If the sweep plane encounters a new point s then we query the data structure
and find a point ¢ such that ¢; > s for all 2 < ¢ < d, and for which ¢, is minimal.
Since at this moment the data structure contains exactly the points ¢ of S\ {s} with
qy > s, we know that t is in fact a point of S\ {s} such that t; > s} for all 1 < i < d,

47

and for which ¢, is minimal. Therefore, (s,t) is an edge in G4(S). After the query
we insert s into the data structure and the sweep plane moves to the next point.

Clearly, the above algorithm needs O(nlog? ' n) time in each cone ¢ € C and it con-
structs the graph Gy(S) correctly. Using the construction of Theorem 2.22 for C, we
obtain the following.

Theorem 2.25 [8] Let S C R® be a set of n points and let 0 < 6 < 7 be a real
number. Then the graph Gg(S) can be constructed in O((%ﬁ)d’lnlogd_l n) time using
O(nlog??n) space.

2.3 Conclusions and open problems

We have studied the two- and higher dimensional #-graph for a given point set. We
have introduced the notion of weak spanner and examined the spanner and the weak
spanner property of the f-graphs. We have proven that in the two-dimensional case the
f-graph with outdegree four has the weak spanner property. Then we have generalized
the degree four f-graph using L,-distances to choose the neighbors of the points in the
cones and we have classified these graphs according to whether they have the weak
spanner property. Then we have shown that four is the lower bound for the outdegree
even if we allow arbitrary convex distance functions to choose the neighbors of a point

in the cones.

Then we have considered higher dimensional #-graphs. We have analysed different
methods to compute a f-frame that have not yet been exactly analyzed to our knowledge
and we have also presented an own method for the computation. We have shown that in
the d-dimensional case, using our method, a #-frame can be constructed which contains
O(d‘”%%)d_l) simplicial cones. This bound is significantly better than the bounds
resulting from other methods.

Some exciting questions remain open. We are interested on that whether the graph
Gr/2(S) can be generalized in higher dimensions such that the number of cones of the
according f-frame is 2¢ and we obtain a weak spanner. The following generalization
promises a result. For each ¢ = (e1,...,¢q) € {1,—1}¢, let ¢, be the simplicial cone
{S% Nei = A > 0}, Let C := {c. : e € {1,—1}%} be the f-frame consisting of these
2¢ cones. For each point s € S and each cone ¢, € C, the neighbor of s in the cone
ce(s) is chosen as a nearest point w.r.t. the L.-distance. For a pair s,t € S of points,
consider the path P in this graph which is started at s and follows the edge in the
cone containing the point ¢. Then we can guarantee that P is contained in the d-cube

48

B := {z € RY : disty(t,2) < dists(t,s)}. The question is, whether the common
j-faces, 1 < 7 < d, of the cones of C' can be assigned to the cones uniquely and a kind
of priority over the dimensions can be defined such that we also can guarantee that the
path P achieves the point t.

We are also interested on algorithms, that compute the d-dimensional #-graph, with
lower space and time complexity than the presented algorithms. In particular, since the
f-graph contains only O(n) edges but the computation needs O(nlog? 2 n) space, the
reduction of the space complexity would be desired. Can be applied for this problem
a similar technique which was used by Callahan and Kosaraju [23] to compute the k
nearest neighbors for each point s € S in R in O(nlogn) time and O(n) space?

49

a0

Chapter 3

Fault tolerant spanners

The results of this chapter have been published in [57]. Fault tolerant spanners were
introduced by Levcopoulos et al. [54]. Such spanners have the property that after
deletion of at most k edges or vertices, each pair of points in the remaining graph is
still connected by a short path. For a precise definition we need the following notation.
For aset S C IR% of n points let Kg denote the complete Euclidean graph with vertex set
S. If G =(S,E) is a graph and E' C E then G\ E’ denotes the graph G' = (S, E\ E').
Similarly, if S’ C S then the graph G \ S’ is the graph with vertex set S\ S’ and edge
set {(s1,82) € E: 51,80 € S\ 5'}.

Let f > 1 be a real number and k£ be an integer, 1 < k <n — 2.

e A graph G = (S, E) is called a k-edge fault tolerant f-spanner for S, or (k, f)-
EFTS, if for each E' C E, |E'| < k, and for each pair s,t of points of S, the
graph G\ E' contains an st-path whose length is at most f times the length of a
shortest st-path in the graph Kg\ E'.

e Similarly, G = (S, E) is called a k-vertex fault tolerant f-spanner for S, or (k, f)-
VFTS, if for each subset S" C S, |S'| < k, the graph G'\ S’ is an f-spanner for

S\ S
Levcopoulos et al. [54] presented an algorithm with running time O(n logn+k?n) which
constructs a (k, f)-EFTS/VFTS with O(k?n) edges for any real constant f > 1. The
constants hidden in the O-notation are (%)O(d) if £\,1. They also showed that Q(kn)
is a lower bound on the number of edges in such spanners. This follows from the obvious
fact that each k-edge/vertex fault tolerant spanner must be k-edge/vertex connected.
Furthermore, they gave another algorithm with running time O(nlogn + ¢**'n), for
some constant ¢, which constructs a (k, f)-VFTS whose degree is bounded by O(cf*1)
and whose weight is bounded by O(cf™w(MST)), where w(MST) is the weight of the

minimum spanning tree of the given point set.

o1

New results

We consider directed and undirected fault tolerant spanners. Our first contribution
is a construction of a (k, f)-VFTS with O(kn) edges in O(nlog*' n + knloglogn)
time. Then we show that the same k-vertex fault tolerant spanner is also a k-edge
fault tolerant spanner. Our bounds on the number of edges in fault tolerant spanners
are optimal up to a constant factor and they improve the previous O(k?n) bounds
significantly. Furthermore, we construct a k-vertex fault tolerant spanner with O(k?n)
edges whose degree is bounded by O(k?) which also improves the previous O(cF*1)
bound.

Then we study Steinerized fault tolerant spanners that are motivated by the following.
In the definition of (k, f)-EFTS we only require that after deletion of k arbitrary edges
E' in the remaining graph each pair of points s, ¢ is still connected by a path whose
length is at most f times the length of the shortest st-path in Kg\ E’. Such a path
can be arbitrarily long, much longer than disty(s,t). To see this consider the following
example. Let r > 1 be an arbitrarily large real number. Let s, € S be two points such
that dista(s,t) = 1 and let the remaining n — 2 points of S be placed on the ellipsoid
{x € R? : disty(p, x) + disty(q, x) = r- f}. Clearly, each f-spanner G for S contains the
edge between s and t, because each path which contains any third point v € S\ {s,t}
has a length at least r - f. Therefore, if the edge (s,t) € E’ then the graph G \ E’
can not be an f-spanner for S. However, G \ E' can contain a path satisfying the
definition of the k-edge fault tolerance. In some applications one would need a stronger
property. After deletion of k£ edges an st-path would be desirable whose length is at
most f times disty(s,t). In order to solve this problem we extend the original point set
S by Steiner points. Then we investigate the question how many Steiner points and
how many edges do we need to satisfy the following natural but stronger condition of
edge fault tolerance.

Let f > 1 be a real number and k£ € IN.

e A graph G = (V, F) with S C V is called a k-edge fault tolerant Steiner f-spanner
for S, or (k, f)-EFTSS, if for each E' C E, |E'| < k and for each pair s,t € S of
points, there is an st-path P in G \ E’ such that length(P) < f - dista(s, t).

e Similarly, G = (V, E) with S C V is a k-vertez fault tolerant Steiner f-spanner
for S, or (k, f)-VFTSS, if for each V' C V, |[V'| < k and for each pair s,t € S\ V'
of points, there is an st-path P in G \ V' such that length(P) < f - dists(s,1).

To our knowledge, fault tolerant Steiner spanners have not been investigated before.
First we show that for each set S of n points, f > 1 real constant, and £ € IN, a
(k, f)-EFTSS/VFTSS for S can be constructed which contains O(kn) edges and O(kn)

92

Steiner points. Then we show that there is a set S of n points in IR%, d > 1, such that
for each f > 1 and k£ € IN, each (k, f)-EFTSS for S contains Q(kn) edges and Q(kn)
Steiner points.

3.1 A k-vertex fault tolerant f-spanner with O(kn)
edges

The construction of a k-vertex fault tolerant f-spanner for a set S of n points in IR¢
with O(kn) edges is based on a generalization of the -graph [82, 28, 49, 50, 71, 8, 54].
First we introduce the notion of ith order 0-graph of the point set S, for 1 <i<n—1.
Then we prove that for appropriate 6, the (k + 1)th order f-graph is a k-vertex fault
tolerant spanner for the given set of points. Finally, we show how this graph can be
computed efficiently.

3.1.1 The th order #-graph

Let 0 < # < 7 be an angle and C' be a corresponding f-frame. We use the notations of
the previous chapter. For a simplicial cone ¢ € C and for a point p € R?, I, denotes
the cone axis of ¢, and ¢(p) and I.(p) denote the translated cone {x+p : z € ¢} and the
translated cone axis {x + p : x € [}, respectively. For p,q € IR¢ and ¢ € C such that
q € c(p), dist.(p,q) is the Euclidean distance between p and the orthogonal projection
of ¢ to l.(p).

()

(s)

Figure 3.1: The neighbors of a point s € S in the two-dimensional second order §-graph,
in a cone c. The boundary of ¢ is drawn dashed and the projection of the points onto
l is illustrated by dotted lines.

Now we define the ith order 6-graph Gy ;(S) for a set S of n points in IR? and for an
integer 1 < ¢ < n — 1 as follows. For each point s € S and each cone ¢ € C' let
Ses) = c(s) NS\ {s}, i.e., Sc(s) is the set of points of S\ {s} that are contained in the
cone c(s). Let N;(s) C Ses) be the set of the min(é, |S(s)|)-nearest neighbors of s in

93

the cone c(s) w.r.t. the distance dist,, i.e., for each s’ € Nj.(s) and 5" € S¢(5) \ Nic(s)
holds that dist.(s,s") < dist.(s,s"). Let Gg;(S) be the directed graph with vertex set
S such that for each point s € S and each cone ¢ € C there is a directed edge (s, s') to
each point s’ € N; .(s). Figure 3.1 shows an example for the neighbors of a point s € S
in Gyo(S) in a cone c. Note that the first order #-graph corresponds to the #-graph as
defined in the previous chapter.

3.1.2 The vertex fault tolerant spanner property

Theorem 3.1 Let S C IR? be a set of n points. Let 0 < 6 < /3 be a real and
1 < k < n—2 an integer number. Then the graph G y+1(S) is a directed (k
VFTS for S and it contains O(|C|kn) edges.

1
? 1-25in(4/2)) -

Proof: Let S’ C S be a set of at most k£ points. We show that for each pair s, € S\ 5’
of points there is a (directed) st-path P in Gy 41(S)\ S’ such that the length of P is at

most disty(s,t). The proof is similar to the proof of Ruppert and Seidel [71].

Consider the path constructed in the following way. Let sy := s, ¢ := 0 and let P
contain the single point so. If the edge (s;,t) is present in the graph Ggxi1(S) \ S’
then add the vertex ¢ to P and stop. Otherwise, let ¢(s;) be the cone which contains
t. Choose an arbitrary point s;;1 € Niy1.(s;) as the next vertex of the path P and

repeat the procedure with s;;.

Consider the ith iteration of the above algorithm. If (s;,t) € Ggy41(S) then the al-
gorithm terminates. Otherwise, if (s;,t) & Ggr+1(S) then by definition the cone c(s;)
contains at least £ + 1 points that are not further from s; than ¢ w.r.t. the distance
dist.. Hence, in the graph Gyy.1(S) the point s; has k& + 1 neighbors in ¢(s;) and,
therefore, in the graph Gyy41(S) \ S’ it has at least one neighbor in ¢(s;). Conse-
quently, the algorithm is well defined in each step. Furthermore, Lemma 2.11 implies
that disty(siy1,t) < dists(s;,t) and hence, each point is contained in P at most once.
Therefore, the algorithm terminates and finds an st-path P in Ggg41(S) \ S’. The
bound on the length of P follows by applying Lemma 2.11 iteratively, in the same way
as in [71]: Let sq, ..., S; be the vertices on P, sg = s and s,, = t. Then

> dista(sier,t) < Y (dista(si,t) — (1 — 2sin(0/2)) dista(si, si11)).

0<i<m 0<i<m

Rearranging the sum we get

D dista(si, si41) < #11(6’/2) > (diStQ(Si,t)—diStQ(SH_l,t))
0

0<i<m <i<m

#11(9/2) diStQ (80, t) .

o4

Hence, the graph Ggx:1(S) is a (k, 172511W)-VFTS for S. Clearly, it contains

O(|C|kn) edges, where, by Theorem 2.22, |C| = O((d”:#)d’l). O

3.1.3 Computation

The graph Gy .1(S) can be constructed in O(|C|(nlog? ' n + knloglogn)) time using
the algorithm of Levcopoulos et al. [54] which we describe in this subsection. The algo-
rithm in [54] was developed to compute the so-called strong approxzimate neighbors and
it is a modification of that of Arya et al. [8] which we have explained in Subsection 2.2.3.

Theorem 3.2 Let S C R* be a set of n points. Let 0 < 6 < ©/3 be a real and
1 < k < n—2 an integer number. Then the graph Ggr1(S) can be computed in
O(|C|(nlog™" n 4+ knloglogn)) time.

Proof: We use the notation of Subsection 2.2.3. Let ¢ € C be a cone. Then hq, ..., hy
denote the hyperplanes that bound the halfspaces defining ¢, and Hy, ..., Hg be the lines
such that H; is orthogonal to h; and contains the origin, 1 < 7 < d. The line H; is
directed such that it increases in the halfspace bounded by A; which contains the cone
c. For ¢ € R, q; is defined as the signed Euclidean distance between the origin and the
orthogonal projection of ¢ onto H;, where the sign is according to the direction of H;,
1 < ¢ < d. Furthermore, let g;,, be the signed Euclidean distance between the origin
and the orthogonal projection of ¢ onto the line which contains /.. The sign is positive
if the projection is contained in /..

Computing the outgoing edges for a point s € S in the graph Gy 41(S) in the cone
¢(s) is equivalent to finding the k* := min(k + 1,|S)|) points ¢',...,t*" with smallest
ty,,-coordinate among the points {t € S\ {s} : t; > sj, 1 <4 < d}. In order to solve
this problem we process in the same manner as in Subsection 2.2.3. We first present
the modification of the d-level data structure of Lemma 2.24 to obtain a data structure
which allows us for a point p € IR%, to compute in O(logdn + kloglogn) time the k*
points ¢!, ..., ¢*" € Se(p) for them ¢}, are the smallest.

The only modification of the d-level data structure of Lemma 2.24 is that in the dth
level trees, for each node v, we store additionally the min(k + 1,|S,|) points ¢ € S,
in a sorted list with smallest ¢} ,-coordinates. Then for a query point p € R¢, we
first determine the set of O(log? n) canonical nodes M, in the same way as in the data
structure of Lemma 2.24. Then we initialize an empty heap H and for each v € Mj,
we put the first element of the sorted list stored at v into H. Let ¢' be the point on
the top of the heap H. It has a minimal ¢}, ,-coordinate among the points of S,,). We

95

remove ¢' from H and insert the next point — if any — of the list, which contains ¢!,
into the heap. Let ¢ be the point on the top of H after this update. Clearly, ¢ has
a minimal ¢}, ,-coordinate among the points of S, \ {¢'}. We remove ¢* from H and
insert the next point — if any — of the list, which contains ¢?, into the heap. We repeat
this until £ + 1 points are removed or the heap H becomes empty. Implementing H by
a Fibonacci heap [43], we can build it in O(|My|) time, we can insert a new element
in O(1) and we can delete the top element in O(log|My|) amortized time. Since the
set My has a size O(log? n), we can find the k* points with smallest ¢} ,-coordinates
among the points S, in O(logd n + kloglogn) time.

The above data structure can be maintained in O(logn) time per insertion. This result
can be obtained by exploiting its similarity to a (d + 1)-dimensional range tree and
applying the insertion-only algorithm of Mehlhorn and Né&her [62] that uses dynamic
fractional cascading.

Lemma 3.3 [54] Let S be a set of n points in R and let ¢ € C. Using the above
data structure, for a point p € R?, we can compute in O(log® n + kloglogn) time the
k* = min(k+ 1, |Sp)|) points ¢', ..., ¢ € S,y with smallest gl ,-coordinates. The size
of the data structure is O(knlog®'n) and it can be maintained in O(log®n) time per
imsertion.

Hence, the graph Gy 1(S) can be constructed in O(|C|(nlog?n + knloglogn)) time
using O(knlog? ' n) space by building the above data structure for each cone ¢ € C
separately and by querying them with each point s € S. We again can save a factor
of logn by performing a plane sweep for each ¢ € C. We sort the points of S by their
si-coordinates and process them in decreasing order. All visited points are maintained
in the (d — 1)-dimensional version of the data structure of Lemma 3.3, using only the
final (d — 1) coordinates sg, ..., Sq and the value of s44; for each point s € S.

If the sweep plane encounters a new point s then we query the data structure and find
k* points t', ..., t*" such that ¢} > s} for all 2 < 4 < d, and for them #,, , are the smallest.
Since at this moment the data structure contains exactly the points ¢ of S\ {s} with
q, > s}, we know that ¢, ...,t*" are in fact points of S\ {s} such that t; > s! for all
1 < i < d, and for them ¢}, are the smallest. Therefore, (s,t'), ..., (s,t*"), are edges
in Gy +1(S). After the query we insert s into the data structure and the sweep plane
moves to the next point. Clearly, the above algorithm needs O(n log® ! n+knloglog n)
time in each cone ¢ € C and it constructs the graph Gy ;41(S) correctly. a

Corollary 3.4 Let S be a set of n points in R®, f > 1 a real constant, and k an
integer, 1 < k <n —2. Then there is a (k, f)-VFTS for S with O(kn) edges. Such a
spanner can be constructed in O(n log ' n + knloglog n) time.

26

Proof: We set 6 such that f > #11(0/2) and 0 < # < 7/3 and construct Gy x41(S5).
d3/2

If f\1 then the constant factors hidden in the O-calculus are (ﬁ)dfl.

3.2 k-edge fault tolerant f-spanners

Levcopoulos et al. [54] claimed that any (k, f)-VFTS is also a (k, f)-EFTS. We give
our own proof of this fact. The proof is simple and holds also for directed spanners.

Theorem 3.5 Let S be a set of n points in R, f > 1 a real constant, and k an
integer, 1 < k < n —2. Then every (directed) (k, f)-VFTS for S is also a (directed)
(k, f)-EFTS for S.

Proof: Let G = (S, E) be a (directed) (k, f)-VFTS for S. Let E' C E be a set of at
most k edges. Consider two arbitrary points s,¢ € S. Let P* be the shortest (directed)
st-path in Kg\ E'. Such a path exists, since the set of st-paths in Kg\ E’ is not empty.
It contains, for example, at least one of the n — 2 paths in Kg of two edges P, = s,v,1,
for v € S\ {s,t}, or the immediate path Py = s,t, because at least one of them is
distinct from E'.

We have to show that there is a (directed) st-path P in G \ E’ such that the length
of P is at most f times the length of P*. The edges e in P* that are contained in
G will also be contained in P. Consider an edge (u,v) ((u,v) in the directed case)
in P* which is not contained in G. We show that this edge can be substituted by a
uv-path P,, in G\ E' such that length(P,,) < f - dista(u,v): For each edge ¢’ € E'
(for each ¢’ € E'\ {{v,u)} in the directed case) we fix one of its endpoints s, such that
se € S\{u,v}. Let S, :={se : ¢ € E'} (S., := {se : € € E"\ {(v,u)} in the directed
case). Note that S, < |E'| < k. Since G is a (directed) (k, f)-VFTS for S, there is a
(directed) uwv-path P, in G\ S., such that P,, does not contain any edge of E' and
length(Py,) < f-disty(u,v). The desired st-path P is composed of the edges of P*NG
and the uv-paths for the edges (u,v) € P*\ G ((u,v) € P*\ G in the directed case).
Clearly, length(P) < f - length(P*). a

This, together with Corollary 3.4, leads to

Corollary 3.6 Let S be a set of n points in R®, f > 1 a real constant, and k an
integer, 1 < k <n—2. Then there is a (directed) (k, f)-EFTS for S with O(kn) edges.
Such a spanner can be constructed in O(nlog®* n + knloglogn) time.

The proof of Theorem 3.5 implies also the following for directed graphs:

o7

Theorem 3.7 Let S be a set of n points in IR¢, f > 1 a real constant, and k an integer,
1<k<n-—2. Let G=(V,FE) be a directed (k, f)-VFTS for S. Let E' C E be a set
of at most k edges and let E" := {{v,u) : {u,v) € E'}. Then for each pair s,t € S of
points the graph G \ (E' U E") contains an st-path P such that the length of P is at
most f times the length of the shortest st-path in Kg\ (E' U E").

3.3 A k-vertex fault tolerant f-spanner with degree

O(k?)

We now turn to the problem of constructing fault tolerant spanners with bounded
degree. We proceed similar to the method in [6] which constructs a spanner with
constant degree. However, we must take much more care, because of the fault tolerant
property and the goal of keeping the number of edges small. We have shown that for
any real constant f > 1 we can construct a directed (k, f)-VFTS/EFTS for S whose
outdegree is O(k). In this section we give a method to construct a (k, f)-VFTS whose
degree is O(k?) from a directed (k, f1/3)-VFTS whose outdegree is O(k).

3.3.1 k-vertex fault tolerant single sink spanners

In order to show this construction of a (k, f)-VFTS with O(k?) edges, we need the
notion of k-vertex fault tolerant single sink spanner. This is a generalization of single
sink spanners introduced in [6]. Let V be a set of m points in R, v € V, f > 1 a real
constant, and k an integer, 1 < k < m — 2. A directed graph G = (V, E) is a k-vertex
fault tolerant v-single sink f-spanner, or (k, f,v)-VFTssS for V if for each v € V' \ {v}
and each V' C V' \ {v,u}, |V'| < k, there is an f-spanner path in G \ V' from u to v.

Now let V be a set of m points in IR¢, v € V a fixed point, 1 < i < m — 1 an integer,
an angle, 0 < f < 7/3, and C a f-frame. We define a directed graph Gv,g,i(V) = (V,E)
whose edges are directed straight line segments between points of V' as follows. First
we partition the set V' in clusters such that each cluster contains at most 7 points. Then
we build a tree-like structure based on these clusters. For the clustering we use the
cones of C'. Now we describe this procedure more precisely.

First we create a cluster c¢l/({v}) containing the unique point v. For each cluster that
we create, we choose a point as the representative of the cluster. The representative of
cl({v}) is v. The clustering of the set V'\ {v} is recursive. The recursion stops if V'\ {v}
is the empty set. Otherwise, we do the following. For each cone ¢ € C' let V) be the
set of points of V'\ {v} contained in ¢. If a point is contained in more than one cone then

o8

assign the point only to one of them. If one cone, say ¢, contains more than m/2 points,
then partition the points of V., arbitrarily into two sets Vcl(v) and VCQ(U) both having at
most m /2 points. For each nonempty set V), ¢ € C (or in the case that V) had to be
partitioned, for each V) and V7)), let Nj.(v) C Vi(s) be the set of the min(i, |Vw)|)-
nearest neighbors of v in V) w.r.t. the distance dist.. The points contained in the
same N .(v) define a new cluster c/(N;.(v)). Note that in this way we obtain at most
|C|+1 new clusters. We say that these clusters are the children of cl({v}) and cl({v}) is
the parent of these clusters. For each new cluster c/(V; .(v)) we choose a representative
ue € N;.(v) such that dist.(v,u.) = max{dist.(v,u) : u € N;.(v)}. Then, for each
set Vo), ¢ € C (and Vcl(v), Vf(v) if exist), we recursively cluster V) \ N;.(v) using the
cones around u,.

After the clustering is done, for each cluster ¢l # cl({v}) we add an edge in G, g,(V)
from each point u € cl to each point w of the parent cluster of cl. Figure 3.2 shows an
example for év,gyi(V). The dotted lines represent the boundaries of the cones at the
representatives of the clusters.

Figure 3.2: The directed graph évﬁ’g(V) for a point set V in IR%.

Lemma 3.8 Let V be a set of m points in R, v € V a fized point, and1 < k < m—2
an integer number. Let 0 < 6 < w/3 be an angle and C be a O-frame. Then the graph

N

Goor+1(V) is a (k, (%)%v)—VFTssS for V. Its degree is bounded by O(|C|k)

1—2sin(8/2
and it can be computed in O(|C|(mlogm + km)) time.

Proof: For each point u € V let ¢l(u) denote the cluster containing it. The outdegree
of each point u € V \ {v} in Gygxs1(V) is bounded by k + 1, because each point u
has only edges to the points contained in the parent cluster of c¢l(u) and the number
of points in each cluster is bounded by k£ + 1. (Each internal cluster — i.e., a cluster
which is different from c¢l(v) and has at least one child — contains exactly k + 1 points).
Since each cluster has at most |C| + 1 children, the indegree of the points is bounded
by (|C|+1)(k+1). The bound for the construction time follows from the fact that the
recursion has depth O(logm).

99

Now we prove the fault tolerant single sink spanner property. Consider an arbitrary
point u € V' \ {v}. Let Py := uy,...,u;, up = v and u; = v, be the unique path from u
to v in G’U!g,kﬂ(V) such that each internal vertex u;, 1 <4 < [, is the representative of
a cluster. Note that [= O(logm). The length of Py is at most Wln(e/m disty(u,v). If
the edge (u,v) € év,g,k+1(V), this claim holds trivially, otherwise, it follows by applying
Lemma 2.11 iteratively to the triples w; 1, u;,u;1, 2 = 1,...,1 — 1, in the same way as
in the proof of Theorem 3.1.

Now let V! € V' \ {u,v} be a set of at most k£ points. We show that there is a uv-path
P in Gyprs1(V) \ V' such that length(P) < joghgr length(Py). This will imply
the desired stretch factor (#11(9/2))2' Let P be the path constructed as follows. Let
Vg := u, ¢ := 0 and let P contain the single point vy. If v; = v then stop. Otherwise,
let v; 41 be an arbitrary point with (v;, v;41) € CA}’U,g,kH(V) \ V'. Add the vertex v;;; to
P and repeat the procedure with v;.

\

Vi

Figure 3.3: The paths Py := ug,...,u; and P := vg,...,v;. The dotted lines show the
cone boundaries.

The above algorithm is well defined in each step. To see this, consider the ith iteration.
If the cluster cl(v) is the parent of cl(v;) then the algorithm chooses v as v;+; and
terminates. Otherwise, the parent of c¢l(v;) contains k£ + 1 points and, hence, at least
one point disjoint from V’. The algorithm chooses such a point as v;;1. Clearly, the
algorithm terminates after [= O(logm) steps and constructs a uv-path P = vy, ..., v
(Figure 3.3) with

length(P) = Y disty(v;,vi41)

0<i<l

S Z (diStQ (’Ui, ui—|—1) + diStQ(ui+1, Uz’—l—l)) (31)
0<i<l

= Z (distg(vi, Uit1) + dista(uy, UZ)) + disty(uy, v;) — dists(ug, vo)
0<i<l h 5 7 5 g

< > 1725111(0/2) disty (ui, Uit1) (3.2)
0<i<l
172si11(0/2) length(Fo).

60

(3.1) holds because of the triangle inequality and (3.2) follows by applying Lemma 2.11
to the triples w;y1,v;,u;, 2 =0,...,0 —1:

disty(vi,u;) < disty(uiyr,u;) — (1 — 2sin(6/2)) disto(u;1,v;) and
disty(ui,u;)) < dista(vi,u;) — (1 —2sin(0/2)) dista(vs, u;).

By addition and rearrangement of these inequalities we obtain that

d’iStQ(Ui+1, Ui) + d’l;StQ(/Ui, ’U,Z) < diStQ (ui—|—17 UZ)

1
1—2sin(6/2)

Hence, the claimed stretch factor of év,g,kH(V) follows. O

3.3.2 A bounded degree k-vetrex fault tolerant f-spanner

Theorem 3.9 Let S be a set of n points in RY, f > 1 a real constant, and k an
integer, 1 < k <mn —2. Then there is a (k, f)-VFTS G for S whose degree is bounded
by O(k?). The total number of edges in G is O(k*n) and G can be constructed in
O(nlog®* n + knlogn + k?n) time.

Proof: Let Gy be a directed (k, f1/3)-VFTS for S whose outdegree is O(k), for
example, let G be the (k + 1)th order f-graph Gy, 1(S) with f/3 > Tn(a/z) For
each point s € S let Ny,(s) := {u € S: (u,s) € Go}. Let G be the directed graph with
vertex set S which is created such that for each s € S we construct Gy g x11(Nin (s)U{s})

and we add the edges of Gs,g,Hl(Nm(YU {s}) to G.

We can bound the degree of G as follows. For each s € S, the graph G contains the
edges of Gy g x41(Nin(s) U {s}). In this VFTssS each vertex u has an in- and outdegree
O(k). Now for each u € S, we have to count the graphs G gx.1(Nin(s) U {s}), s € S,
that contain u. Clearly, the number of such graphs is equal to one plus the outdegree
of u in Gy, which is O(k). Therefore, the degree of each u € S in G is O(k?).

Now we show that G is a (k, f)-VFTS for S. Let S C S, |S'| < k. Consider two
arbitrary points s, € S\ S’. Since Gy is a (k, f'/3)-VFTS for S, there is an f1/3-
spanner path Py in Gy \ S’ between s and ¢. Furthermore, for each edge (u,v) € P,
there is an f%3-spanner path P, in G \ S', because G contains all edges of the graph
Go.9.5+1(Nin(v) U {v}) which is, by Lemma 3.8, a (k, f%/3,v)-VFTssS for Ny, (v) U {v}.
Therefore, the path P := Uy,)ep, Puv is contained in G \ S" and P is a f-spanner path
between s and ¢. O

61

3.4 Fault tolerant spanners with Steiner points

Now we describe a simple method, which for an arbitrary set S of n points in R%, f > 1,
and k € IN, constructs a (k, f)-EFTSS and (k, f)-VFTSS for S with O(kn) edges and
kn Steiner points. Then we prove the surprising fact that these upper bounds on the
number of edges and on the number Steiner points in a (k, f)-EFTSS are optimal up
to constant factors.

3.4.1 Upper bounds

Theorem 3.10 Let S C IR? be a set of n points, k € IN, and let f > 1 a real constant.
Then there is a (k, f)-EFTSS and o (k, f)-VFTSS G for S with kn Steiner points and
O(kn) edges.

Proof: Assume that the Euclidean distance between the closest pair of S is one.
Otherwise, we scale S accordingly. Let € be a real number such that 0 < e < (f —1)/3.
Let f* = f — 2¢ and let G* = (S, E*) be an f*-spanner for S with O(n) edges. G* can
be computed, for example, using the method described in [23] or in [71]. We construct
from G* a (k, f)-EFTSS/VFTSS G for S in the following way. Let o € IR? be a fixed
point and let D := {z € R : disty(0,2) = €} be the sphere with radius ¢ whose center
is 0. Let p', ..., p* be k distinct points on D. (If d = 1, let p*, ..., p* be k distinct points
such that 0 < dists(0,p;) <€, 1 <i < k.) For each point s € S, translate the sphere D
and the points p', ..., p* on it such that s becomes the center of the sphere. Let s', ..., s*

denote the translated points around s. We construct the graph G = (V, E) such that

V o= {s s, .., s":5€8} and
E = {(s,t):(s,t) € E*} U {(5,8"):5€5,1<i<k} U
{(s",1") : (s,t) € E*,1 <4 < k}.

Figure 3.4: Example for the graphs G* and G for k = 3,d = 2.

Clearly, the graph G has kn Steiner points and O(kn) edges. It is obvious that G
is a k-EFTSS and k-VFTSS for S because for each pair of points s, € S and for

62

each f*-spanner path P* = s,s1,...,5_1,t in G* between s and ¢, there are k£ + 1
edge disjoint and up to the endpoints vertex disjoint st-paths P° = s, s, ..., 5,_1,t and
Pi=ss' st .. sttt 1<i<k, in G whose length is at most

length(P*) +2¢ < f*-disty(s,t) +2e < f-dists(s,t).

Figure 3.4 shows an example. O

3.4.2 Lower bounds

Now we prove that the upper bounds on the number of edges and Steiner points showed
in the previus subsection are optimal up to constant factors.

Theorem 3.11 For each k € IN, n > 2, and f > 1, there exists a set S C R® of
n points such that each (k, f)-EFTSS for S contains at least k|n/2] = Q(kn) Steiner
points and (2k +1)|n/2] + (k+1)([n/2] — 1) = Q(kn) edges.

Proof: We give an example for a set S of n points in the plane for which we show that
each (k, f)-EFTSS for S contains at least k|n/2] Steiner points and (2k + 1)|n/2] +
(k+1)([n/2] — 1) = 2kn edges. For two points p, ¢ € IR* let

el(p,q) := {z € R*: disty(p, x) + disty(q,) < f - disty(p,q)}.

If s,t are two points in S and G is a (k, f)-EFTSS for S then each f-spanner path
between s and ¢ must be contained entirely in el(s,t). Clearly, a path which contains a
point 7 outside el(s, t) has a length at least disty(s,)+ dista(t,) which is greater than
f-disty(s,t). Let G4 be the smallest subgraph of G which contains all f-spanner paths
between s and t. Since G is a (k, f)-EFTSS, G5 must be k-edge connected. Otherwise,
we could separate s from t in G; by deletion of a set E' of k edges, and therefore, we
would not have any f-spanner path in G \ E'. Since the graph G, is k-edge connected,
Menger’s Theorem (see, e.g., in [20]) implies that it contains at least k+ 1 edge disjoint
st-paths. Hence, G5 — and, therefore, el(s,t) — contains at least k vertices different
from s and t and at least 2k — 1 edges of G.

Now we show how to place the points of S in order to get the desired lower bounds.
We construct the set S of n points in the plane hierarchically bottom-up. First we
assume that n is a power of two. Let [be a horizontal line and let o be any fixed
point of [. We place the points of S on [. We put s; € S to o and sy € S right to s;
such that disty(s1,s2) = 1. Let € > 0 be a fixed real number. We translate el(si, sq)
with the points s; and sy right on [, by a Euclidean distance f + e. This translation

63

guarantees that el(sy, s3) and the translated ellipsoid are distinct. Let s3 and s4 denote
the translated points s; and sq, respectively. In general, in the ith step, 1 <1 < logn,
we translate the ellipsoid el(si, soi) with the points s, ..., $9i to the right on [, by a
Euclidean distance f - dists(s1, S9i) + €. Denote the translated points by $10i, ..., Sgit1
(Figure 3.5). Then the ellipsoids el(s1, $9i) and el(sqi 1, Sgi+1) are distinct. We say that
the ellipsoid el(s1, Sqi+1) is the parent of el(s1, s9i) and el(s149i, Spi+1). Furthermore, we
call the two children of an ellipsoid siblings of one another. We denote by parent(el(.,.))
and sib(el(.,.)) the parent and the sibling of an ellipsoid el(.,.), respectively.

e(sisd e
[ti}e{l—o —————— &wwec —————— o—:}———:'l—c —————— ow —————

Figure 3.5: Example for a set S of n points for which each (k, f)-EFTSS contains at
least k|n/2| Steiner points and |n/2|(2k +1) + ([n/2] — 1)(k +1)/2 edges.

Now we count the Steiner points and the edges in an arbitrary (k, f)-EFTSS G for the
set S. Consider a pair of points sg;_1, 9 € S, 1 < j < n/2. For this pair, there are at
least k£ + 1 edge disjoint paths in G contained entirely in el(sy;_1, s9;). Since, for j # 5’
the ellipsoids el(sgj_1, s2;) and el(sg;r—1, 525) are disjoint, each el(sg;_1, s2;) contains
in the interior at least £ Steiner points and 2k + 1 edges. Furthermore, s9;_1 and s,
must be (k + 1)-edge connected with the points of sib(el(s2;_1,52;)). Therefore, we
have at least k£ + 1 edges contained entirely in parent(el(sqj_1,52;)) that have exactly
one endpoint in el(syj_1,52;). We can repeat these arguments at each level of the
hierarchy of the ellipsoids. Then we obtain that the number of edges in G is at least
(2k+1)n/24+ (k+1)(n/2—-1) = (3k +2)n/2 — k — 1 and the number of Steiner points
is at least kn/2.

Now we consider the case that n not a power of two. Let 2¢ < n < 21, We place the
points in the same way as in the case when n was a power of two. After we translated
el(s1, s9i) and obtained the points sy i, ..., Sei+1 We simply remove s,,1, ..., Sgi+1. Let G
be an arbitrary k£ edge fault tolerant Steiner f-spanner for S. The number of Steiner
points in G is at least the sum of the Steiner points contained in el(sy, Spi) and the
Steiner points contained in el(sgit14,). Similarly, the number of edges in G is at least
the number of edges contained entirely in the interior of el(sy, soi) plus the number of
edges contained entirely in the interior of el(s9i 11 ,,) plus the number of edges crossing
the boundary of these two ellipsoids. We have seen that G contains in the interior of
el(s1, S9:) at least k2~ Steiner points and (3k + 1)2°~! — (k 4 1) edges. Furthermore,

64

there are at least k& + 1 edge disjoint paths between el(s1, S9i) and el(sqi 1, S,), and so
the number of edges crossing the boundary of el(sy, s9i) is at least k£ + 1. We count the
Steiner points and edges contained in el(syi 11, 5,) recursively. Let n = Y o<;<|i0gn) 0i2'
with b; € {0,1}. Then the number of Steiner points in G is at least

o obik27 = kln/2],

1<i<|logn|

and the number of edges in G is at least

(Y biBk+2)27") = (k+1) +bo(k +1)

1<i<|logn]
=Bk+2)|n/2] —(k+1)+by(k+1)
=(2k+1)|n/2]| + (k+1)([n/2] —1).

Hence, the claim of the theorem follows. O

3.5 Conclusion and open problems

We have shown that for each set S C IR? of n points, each real constant f > 1, and each
integer 1 <k <n-—2,a (k, f)-VFTS for S can be constructed with O(kn) edges. This
bound is optimal up to a constant factor and it improves the former O(k*n) bound of
Levcopoulos et al. [54]. Then we have given a short proof of the fact that each (k, f)-
VFTS is also a (k, f)-EFTS even in the directed case. It implies that we can construct
a (k, f)-EFTS with O(kn) edges which bound is also optimal up to a constant factor
and improves the former O(k?n) bound of Levcopoulos et al. [54]. After this we have
constructed a (k, f)-VFTS whose outdegree is bounded by O(k?). The best known
former bound for the degree was O(c**!) for a constant c. Finally, we have considered
a more natural but stronger definition of edge fault tolerance, which not necessarily
can be satisfied using only simple edges between points of S and we have studied fault
tolerant Steiner spanners. We have proven that for each S, each real constant f > 1,
and each £ € IN there is a (k, f)-EFTSS and a (k, f)-VFTSS for S with O(kn) edges
and kn Steiner points. Then we have shown that there exist S, such that for each f > 1
and each k € IN, any (k, f)-EFTSS for S has Q(kn) edges and Steiner points.

Some interesting problems remain unsolved. Is it possible to construct a (k, f)-VFTS
whose degree is bounded by O(k)? Levcopoulos et al. [54] studied fault tolerant spanners
with low weight. Let w(MST) be the weight of the minimum spanning tree of S. In
[54] it is proven that for each S a (k, f)-VFTS can be constructed whose weight is
O(ck**w(MST)) for some constant c. Can this upper bound be improved? In [54] it

65

is also proven that Q(k*w(MST)) is a lower bound on the weight. Is it possible to
construct a (k, f)-VFTS with lower weight using Steiner points? Finally, we do not
know any results for fault tolerant spanners with low diameter.

66

Chapter 4

Applications in walkthrough
systems

In this chapter we examine some algorithmic aspects of the management of large geo-
metric scenes in interactive walkthrough systems. The goal of walkthrough systems is
a simulation and visualization of a three-dimensional scene. A scene consists of objects
that are usually modeled by triangle meshes. The visitor of such a scene walks around
and her environment is visualized on the screen or on a special output device. For a
smooth animation we have hard real time requirements. Empirically, the computer has
to render at least twenty pictures (frames) per second. If the animation is computed
with less than twenty frames per second, navigation in the scenes is hard or impossible.

4.1 Geometric search problems in walkthrough sys-

tems

In todays computer systems the the objects of a scene are modeled by triangle meshes.
The triangles of such a mesh contain geometric and object specific information, e.g.,
three-dimensional coordinates, color, textures, transparency information, etc... For
every position of the visitor the computer has to compute a view of the scene. Hidden
triangles have to be eliminated (hidden surface removal) and for all visible triangles
color and brightness has to be computed. This process is called rendering.

The rendering process is often supported by special hardware, but the time for the
rendering of a picture depends on the complexity of the scene, i.e., the number of
triangles and the number of pixels that are needed for drawing a triangle. Therefore,
if the scene is too large the real time requirement can only be guaranteed if the system

67

does not spend computation time for objects whose influence is not significant for the
quality of the picture appearing on the screen. To control this situation real time and
approximation algorithms are necessary to reduce the complexity of those parts of the
scene that are far away, and thus, have a low influence to the quality of the rendered
image.

Most of the methods used in computer graphics to reduce the complexity of the scene
are highly dependent on its geometry. The change of the scene is joined with much
programming work. Our goal is to develop real time algorithms for managing large and
dynamic geometric scenes. Our scene is dynamic in the sense that a visitor can insert
and/or delete objects. The basis for our considerations is an abstract modelling of the
problem introduced by Fischer et al. [39] and refined in [41].

One of the most important problems to be solved in walkthrough systems is the search
problem: In order to guarantee the real time behavior of our algorithms it is important
that the time for the search, insertion, and deletion of objects is independent of the
scene size. We focus on this problem.

The scenes that we consider are arbitrarily large and they consist of non overlapping
unit size balls. Our methods exploit the fact that the visitor can only see a relatively
small piece of the scene.

We fix an angle a. We say that an object is important if it appears from the visitor’s
position in an angle at least « (Figure 4.1). These objects may be, for example, greater
than a pixel on the display. Our goal is to develop data structures that support the
selection of the important objects.

O

Figure 4.1: The object appears from the visitor’s position in angle .

Representing the objects by points in IR?, we obtain a kind of circular range searching
problem. For a given a set S C IR? of n points. For a query query(q,r) we have to
report the points of S in the interior of the circle with center ¢ and radius r, where r is
determined by the angle cv. The difference between the classical circular range searching
problem and our searching problem is that in the classical range searching problem we
know nothing about the structure of the queries. But we can exploit the spatial locality
of the queries, namely, that the visitor moves continuously and so consecutive query
positions are near to each other. We give efficient solutions for the following problems.

The moving visitor searching problem: We say that the visitor moves slowly if
the quotient % is a constant, where ¢ is the maximum Euclidean distance between two

68

consecutive query positions and z is the Euclidean distance between a closest pair of S.
This assumption is motivated by the fact that in a scene consisting of non overlapping
balls the centers of the balls can not be arbitrarily near to one another. Under the
assumption that the visitor moves slowly through the scene, for a query query(q,r) we
have to report the points of S in the interior of the circle with center ¢ and radius r.
We show that under this assumption it is possible to perform a point location for the
query position in O(1) time.

The dynamic searching problem: In the dynamic case the visitor can insert or
delete an object at her current position. Our goal is to develop a linear space data
structure with the same query time as in the static case and with an update time
similar to the query time.

Our goal is to develop deterministic data structures for the above problems with O(n)
space requirement. Since we work with very large data, we want to use as small space
as possible. Data structures with superlinear space complexity are not acceptable for
our purposes. Moreover, the constants in the O-notation are important. Furthermore,
we require from our data structures that the reporting and the update time will be
nearly linear in the size of the output. More precisely, we require an O(1 + k) query
and update time, where k is the number of points of S in a disc whose center is the
position ¢ of the visitor and radius is f times the radius r of the query disc, where
f > 1is a small real constant.

4.1.1 Related problems, state of the art

Since the scene which we consider consists of unit size balls, the important objects (the
objects that appear from the visitor’s position in an angle at least «) are contained

in a ball whose center is the visitor’s position ¢ and radius is r = Hence,

2singa/2)'
representing the objects of the scene by points in IR? (]R3) we can report the important
objects by solving a circular range searching problem. In the general form of the circular
range searching problem we have a set S of n points in IR?. For a query query(q,r) we
have to report the points of S that are contained in the ball with center ¢ and radius r.
This ball is called a query ball. In the two-dimensional case a query ball is also called

a query disc.

4.1.1.1 Circular range searching

For an overview of different kinds of range searching problems we refer to the sur-
vey of Matousek [58] and Agarwal and Erickson [1]. Time optimal solutions for the

69

two-dimensional circular range searching problem use higher order Voronoi diagrams.
Informally, the ith order Voronoi diagram V D;(S) of a set S of n sites in the d-space,
1 < ¢ < n, partitions the space into regions such that each point within a fixed re-
gion has the same i closest sites. The regions of V' D;(S) are convex polyhedra. The
number of non empty regions in the two-dimensional ¢th order Voronoi diagram can
be bounded by O(i(n — i)) [53]. Bentley and Maurer [14] presented a technique which
extracts the sites of the Voronoi region containing q in the ith order Voronoi diagram of
S for 1 = 2%logn, 2! log n, 22 log n, ... consecutively. It stops, if one of the i sites that are
assigned to the Voronoi cell containing g is further from ¢ than the radius r of the query
disc. In [14] an O(lognloglogn + k) query time is obtained, where £ is the number of
the sites of S that are contained in the query disc. The space requirement of the data
structures is O(n?). Chazelle et al. [25] improved the query time to O(logn + k) and
the space requirement to O(n(lognloglogn)?) using the algorithmic concept filtering
search. Aggarwal et al. [3] reduced the space requirement to O(nlogn) applying spe-
cial compacting techniques. They achieve with this method an optimal query time for
the circular range searching problem, but the data structure has a superlinear space
requirement already in the two-dimensional case. Furthermore, the method in [3] uses
the planar separator theorem of Lipton and Tarjan [55] for compacting the Voronoi
diagram. We do not know any appropriate counterpart of this theorem which could be
used for higher dimensional Voronoi diagrams. To find such a separator theorem seems
to be a hard problem.

4.1.1.1 Proximity problems, nearest neighbor queries

In some of the range searching methods one has to solve a prorimity problem. In the
above circular range searching method one have to solve a so called i-nearest neighbor
problem, i.e., for an integer 7 the set S of n sites must be preprocessed into a data
structure such that for a query point ¢ one can determine fast the ¢ nearest sites of
q. The case if + = 1 is of particular interest. The following results show that it is not
possible to get a query time independent of n without any restrictions on this problem.

Finding the nearest neighbor of a query point ¢ in S has an Q(logn) time complexity
in the algebraic computation tree model [13]. The planar version of this problem
has been solved optimally with O(logn) query time and O(n) space. But in higher
dimensions no data structure of size O(n log?® n) is known that answers queries in
polylogarithmic time. The approrimate nearest neighbor problem, i.e., finding a point
p € S to the query point ¢ such that dists(q,p) < (1 + €)dista(q,q*), where ¢* € S
is the exact nearest neighbor of ¢, was solved optimally by Arya et al. [7]. They gave
a data structure in dimension d > 2 of size O(n) that supports answering a query in
O(logn) time. The constant factor in the query time depends on e. This data structure

70

can be constructed in O(nlogn) time. For proximity problems on point sets in R¢ a
comprehensive overview is given by Smid [76].

4.1.2 Our approach

Instead of applying sophisticated methods we can use an arbitrary (weak) spanner G(S)
for S to answer a circular range query query(q,r) as follows. First we must find a near
neighbor ¢* € S — not necessarily the nearest neighbor — of ¢ in the given point set S.
Then we have to perform a breadth first search (BFS)in G(S) which starts at the vertex
g* and visits only points s € S such that dists(q*,s) < f(r + dists(q,q*)), where f is
the stretch factor of G(S). More precisely, we initialize a list front := {¢*} and mark
q* as visited. While front # () we do the following: Remove the first point p € front
from front, mark p as visited, and append each non visited neighbor s € S of p in
G(S) with dista(¢*,s) < f(r + dista(q,q*)) to front. This implies that the BFS visits
each point s € S with disty(q,s) < r. As we will see, if we use the f-graph Gy(S) as
underlying weak spanner for the search, after finding some certain points we must only
visit points s € S with disty(q,s) < fr in the BFS. The ball with center ¢ and radius
fris called critical ball or critical disc in the two-dimensional case. Another advantage
of using the #-graph is that in the BF'S we must only traverse the outgoing edges at
each point. This and the fact that the outdegree of the §-graph is a constant imply that
the search time is bounded by the number of sites s € S for which disty(q, s) < fr.

The only problem we have is, how to find a point at which we can start the BFS. The
results presented in Subsection 4.1.1 show that finding an appropriate near neighbor for
a query point is a hard problem in the general case. In order to solve this in constant
time we extend the set of n original points by O(n) auxiliary points, so-called Steiner
points and we exploit the spacial locality of consecutive queries, i.e., we utilize that the
visitor moves slowly.

4.1.3 Outline

First we describe a randomized solution of Fischer et al. [39] for the moving visitor
search problem. We begin with the static problem, where the objects of the scene are
static during the walkthrough. Then we describe the fully dynamic version of the data
structure, where the visitor is able to insert or delete an object at her current position.

After this we present our own deterministic data structure which has been published
in [40]. Here we also begin with the static problem and then we give a solution for the

71

incremental problem, where the visitor is allowed to insert a new object at her current
position.

In both methods the original set S of n points will be extended by Steiner points and
the underlying data structures are based on so-called Steiner weak spanners. Unfortu-
nately, both solutions — the randomized and the deterministic — use also non algebraic
operations for the construction of data structures.

Finally, we investigate the question how we can report the important objects when the
scene consists of balls of different sizes. We show a simple technique which allows us to
use circular range searching methods to solve this problems. Then we show geometric
mappings that reduce this problem to halfspace range searching problems in higher
dimensions.

4.2 A randomized solution

In this section we present a randomized data structure of Fischer et al. [39]. This
solution does not take advantage from the assumption that the visitor moves slowly.
Let S be a set of n points in the plane, where each point of S represents an object of
the scene. The data structures presented in this section are based on the #-graph Gy(S)
of the set S as defined in Subsection 2.1.3 for 0 < # < % and as in Subsection 2.1.4
for = 7.

4.2.1 The static data structure

For the description of the data structure we need the following definition. Let a > 0,
0 < # < 7 be real numbers, and C' a f-frame. A set S of n points in the plane is
called (a, 0)-crowded if for each point ¢ € IR? and for each cone ¢ € C holds that either
S Ne(g) =0 or there is a point s € S N c(q) with dists(q, s) < a. In [39] is stated the
following.

Theorem 4.1 [39] Let a > 0, 0 < § < § be real numbers, S an (a, 0)-crowded point set
in the plane, G¢(S) the O-graph of S, and f the weak spanner stretch factor of Gy(S).
Then for each s,t € S there is a directed path in Go(S) from s to t such that for each
vertex v on this path holds that disty(s,v) < dists(s,t) + fa.

We remark that Theorem 4.1 holds also for the case if # = 7. This theorem implies
that using the @-graph Gy(S) of an (a, f)-crowded point set S we can perform a query

72

query(q,r) such that we first find a point s € S whose distance from ¢ is at most
a and then we perform a BFS started at s visiting only vertices contained in the disc
{x € R? : disty(s, x) < r+dists(q, s)+ fa}. We call this disc the critical disc. It remains
to solve the problem, how we can make an arbitrary set S of points (a, #)-crowded such
that ¢ < r and how we can find a point s € S with dists(q, s) < a.

The above problems were solved in [39] by extending the original set S of n points
with a set M of Steiner points that are placed on the vertices of a grid which cover
the bounding box of S. Formally, let B := [x1, 23] X [y1,y2] be the bounding box of S
(i.e., B is the smallest axis-parallel rectangle which contains S) and [:= m.
We place a Steiner point p € M on each position (z; + il,y; + jl), i = 0, ..., [75],
J =0,..., [¥7%]. With this density of the grid we guarantee that the extended point set
becomes (a, #)-crowded. Furthermore, for each query position we can locate a Steiner

point within a distance a in constant time (using the floor operation).

Unfortunately, it is not possible to bound the number of Steiner points by any function
of n, because the bounding box B can be arbitrarily large. If we store all Steiner points,
the space complexity could be enormous. Fischer et al. [39] showed the following way to
keep the space complexity linear in n. For this they introduced the notion of essential
Steiner points. A Steiner point p € M is called essential if at least one of its neighbors
in the undirected #-graph G4(S U M) is an original point of S. Let M’ be the set of
essential Steiner points. In [39] it is proven that number of points in M’ is O(n). This
follows from the facts that (i) there is no directed edge in the #-graph which is longer
than a, because of the (a,f)-crowdedness and (i) the number of Steiner points that
are not further from an original point than a is bounded by a constant.

The data structure in [39] stores only the original point set S, the set M’ of the essential
Steiner points and the subgraph of G¢(S U M) induced by S U M'. In addition, the
positions of the essential Steiner points — more precisely, the pairs (i, j) of integers such
that (z; + il,y; + jl) is a position of an essential Steiner point — are maintained in
a perfect hash list as described in [33, 32]. This randomized data structure supports
lookup operations in O(1) worst-case time, it needs O(n) space and can be constructed
in O(n) time with high probability, i.e., with probability 1 —n~%, where a can be chosen
as an arbitrarily large constant. Using this data structure we achieve the following
result.

Theorem 4.2 [39] Let S be a set of n points in the plane and a € IR be a lower bound
on the radius of the circular range queries. The set S can be preprocessed into data
structure which supports for a point ¢ € R?* and radius r > a to report the points of S
that are not further from q than r in O(k + (2 +r/a)?) time, where k is the number of
points of S in the critical disc. This data structure needs O(n) space. a

73

4.2.2 The fully dynamic data structure

Now we sketch how a point can be inserted or deleted efficiently. We maintain the set
M’ of essential Steiner points in a dynamic perfect hash list [32]. This randomized data
structure supports lookup, insert, and delete operations in O(1) time, where the time
bound for the insert and delete operations hold with high probability. The hash list
needs linear space.

When a point is inserted or deleted, some of the non essential Steiner points may
become essential and vice versa. Since we maintain in our data structure a (a,6)-
crowded point set it is sufficient to check the Steiner points whose Euclidean distance
from the position ¢ is at most a, whether they change their status from non essential to
essential or vice versa. Only these Steiner points can be an undirected neighbor of the
inserted or deleted point at the position q. Therfore, we have only to check a constant
number of Steiner points, and so, we must perform a constant number of operations
on the perfect hash list. The constant depends on f. Furthermore, for updating the
adjacencies in the graph we must check also the original points of S within a distance a
from ¢. Since these points represent unit size balls, their number is bounded by O(a?).

Theorem 4.3 [39] Let S be a set of n points in the plane and a € IR be lower bound
on the radius of the circular range queries. The set S can be preprocessed into data
structure which supports for a point ¢ € R? and radius v > a to report the points of S
that are not further from q than r in O(k + (2+ r/a)?) time, where k is the number of
points of S in the critical disc. Furthermore, at the positon q a point can be inserted
in O(a?) and deleted in O(a?loga) time with high probability. The data structure needs
O(n) space. O

The advantage of this randomized data structure is that it can be implemented easily.
Moreover, the generalization in higher dimensions is straightforward, using a higher
dimensional grid and #-graph. A disadvantage is the large space overhead, because of
using hashing.

4.3 A deterministic solution

In this section we present a deterministic data structure for the static and for the
incremental moving visitor searching problem. To achieve the desired time bounds we
need the assumption that the visitor of the scene moves slowly. This data structure was
published in [40]. It is based on the graph G/2(S) which was defined in Subsection 2.1.4.

74

Before we describe the data structure, we prove a useful property of the graph Gy(S)
for 0 < @ < % and 6 = 7. This property implies that we can answer a query query(q,r)
such that after the solution of a certain proximity problem, we only have to visit such
vertices in the BFS that are not further from ¢ than fr, where f is the weak spanner
stretch factor of G4(S). Remember, for § = T is f = /34 /5 and for 0 < 0 < 3 is

2
f = max(y/1 + 48sin*(8/2), v/5 — 4cosf).

Lemma 4.4 Let S be a set of n points in IR?* and 0 be an angle such that 0 < § < 3 or
0 = 5. Furthermore, let q € IR? be a query point, t € S a site, c(q) with apex q which
contains t, and s € SNc(q) a site for which dist.(q, s) = min(dist.(q,s") : s € SNc(q)).
Then there is a directed path P in Gy(S) from s to t such that for each verter v € P
holds that disty(q,v) < f - dists(q,t).

Proof: We only prove the lemma for § = 7. When 0 < 6 < %, the proof is similar.
In the proof of Theorem 2.5 we showed that there is a path P in G,/5(S) from s to ¢
which is entirely contained in the square range B, = {x € IR? : dist; (¢, z) < dist,(t,s)}.
Furthermore, we know that dist(t,s) < dist;(t,q). Therefore, the path from s to ¢ is
entirely contained in the square B, = {x € IR? : dist,(t,x) < dist,(t,q)}. This implies
the claimed bound on disty (g, v) for each vertex v € P. O

The above lemma implies the following method to report the points of S that are
contained in the query disc. For the center of the query disc ¢, in each cone ¢(q), ¢ € C,
c(qg) NS # 0, we have to find a nearest neighbor nn.(q) w.r.t. dist.. After this, in the
BFS procedure we initialize front to be the set {nn.(q) : ¢ € C, dist2(q,nn.(q)) < fr}.
Then we proceed as described in Subsection 4.1.2 visiting only points whose Euclidean
distance from ¢ is at most fr.

It remains to solve the problem how we can find the nearest neighbors of the query
position ¢ in the cones in constant time. For this we exploit that the visitor moves
slowly through the scene. We extend the original point set S with O(n) carefully
placed Steiner points, then we construct the graph G,/2(S’) for the extended point set
S’, and we take advantage of the fact that the nearest neighbors of the query position
¢ in the extended point set S’ is close to the nearest neighbors of the previous query
position g,re,. First we present a data structure for the static problem then we describe
how we can insert new points into this structure efficiently.

4.3.1 The static data structure

We begin with the description of the construction of the data structure. Then we show
how we can use it to find the nearest neighbors of the query position in constant time

75

assuming that the visitor moves slowly. Subsequently, we present algorithmic details of
the construction.

4.3.1.1 The construction

We place the O(n) Steiner points similar as in the mesh generation method of Bern et
al. [17, 18]. First we construct a linear size, balanced quadtree [75, 74| for the point set
S and we put the Steiner points to the corners of the boxes of this quadtree. Now we
describe this technique briefly.

Definitions [17]: A quadtree is a recursive subdivision of the plane into square boxes.
The nodes of the quadtree are the boxes. Each box is either a leaf of the tree or is split
into four equal-area children. A box has four possible neighbors in the four cardinal
directions; a neighbor is a box of the same size sharing a side. A corner of a box is one
of the four vertices of its square. The corners of the quadtree are the points that are
corners of its boxes. A side of a box is split if one of the neighboring boxes sharing it
is split. A quadtree is called balanced if each side of an unsplit box has at most one
corner in its interior. An extended neighbor of a box is another box of the same size
sharing a side or a corner with it.

Building balanced quadtree for S [17]: We start with a root box b which is con-
centric with and twice as large as the smallest bounding square of S. We recursively
split b as long as b has a point of S in its interior and one of the following conditions
holds.

(1) b has at least two points or

(74) b has side length [and contains a single point p € S with nearest neighbor in S
closer than 2v/2[or

(73i) one of the extended neighbors of b is split.

Then we balance the quadtree. We remark that the balancing increases the space
requirement of the quadtree only by a constant factor. After all splits are done, every
leaf box, which contains a point of S, is surrounded by eight empty leaf boxes of the
same size.

Building linear size balanced quadtree [17]: The only nonlinear behavior of the
above algorithm occurs, when a nonempty box is split without separating points of S. If
this happens, we need to ”shortcut” the quadtree construction to produce small boxes
around a “dense” cluster without passing through many intermediate size of boxes.
We construct the quadtree for the cluster recursively and we treat the cluster as an
individual point. In this way we obtain a linear size quadtree for S, i.e., the number

76

of the boxes is linear in n. As mentioned in [17] the linear size quadtree for S can be
constructed in O(nlogn) time and O(n) space. We present some algorithmic details
later.

Here ends the part borrowed from Bern et al. [17].

We call a dense cluster with the containing box and the eight extended neighbor boxes
an extended cluster. Within each extended cluster we also maintain the balance prop-
erty. Hence, each extended cluster contains only a constant number of corners on its
boundary. This property will be crucial for the fast navigation.

Building G/, from the quadtree: We extend S with the O(n) corners of the linear
size quadtree and construct the graph G /2(S’) for the extended point set S’. If we have
the quadtree, we can determine for each point of S’ its four neighbors in Gr/2(S’) in
constant time. It follows from the fact that the neighbors of a point p € S" in G, /2(5")
are in the interior of the leaf box b(p) containing p or they are in the interior of a
neighboring box of b(p). Figure 4.2 illustrates the possible cases.

a) c) i

A

/ o

Figure 4.2: The scheme to construct G,/»(S’) from the quadtree: a) An original point

of S, the box containing it and the eight extended neighbor boxes. b) A split side. c)
A shortcut.

4.3.1.2 Point location in constant time when the visitor moves slowly

If we have G/2(S"), we can determine for each point p’ of S’ the leaf box b(p') of the
quadtree containing p' in constant time. Furthermore, if = is the distance between the
closest pair of S then the side length of the smallest box of the quadtree is a constant
fraction of z. These observations imply that for the query position ¢, the box b(q) of
the quadtree containing ¢ can be computed in constant time using Gr/2(S’), if we know
the box b(gprey) containing the previous query position gpe,, since the line segment

77

[@prev, q] crosses only a constant number of leaf boxes of the quadtree. The crossings
and so the box b(g) can be computed in constant time. Then the nearest neighbor of ¢
in S’ in each cone ¢(q), ¢ € C, also can be determined in constant time. Therefore, in
order to answer a query query(q,r), we can start the BFS after we initialized the list
front with these nearest neighbors. We conclude:

Theorem 4.5 Let S be set of n points in the plane. Assume that the visitor moves
slowly. Then there is a data structure which supports for a query query(q,r) to report
the points of S within the query disc in O(1+ k) time, where k is the number of vertices

v of Gr/2(S") for them disty(q,v) < ry/3 + V/5 holds. The space requirement of the data
structure is O(n) and can be constructed in O(nlogn) time. O

4.3.1.3 Algorithmic details of the quadtree construction

Computing a quadtree without shortcuts: If the points of S are distributed such
that we never need a shortcut, the quadtree can be constructed in in O(nlogn) time
using only algebraic operations. This can be obtained by a method which is very
similar to the tree construction algorithm of Vaidya [79] and of Callahan [21]. We sort
the points of S by its z- and y-coordinates obtaining two sorted doubly linked lists L,
and L,. In both lists for each point p € S we have a cross-pointer to its position in the
other list. At each time, when we separate points of S by a vertical and a horizontal line
segment, we split out the smaller point set from the lists. We consider a box splitting
as a vertical split followed by horizontal split in both sides.

We now describe, how to maintain the sorted lists during these splits. First we create
copies Lg and Ly of the lists L, and L,. We will need this copies later. In L{ we maintain
for each item a pointer p_orig to its position in L,. Similarly, in Lj we maintain for each
item a pointer p_orig to its position in L,. Then we perform the following recursive
procedure. We create two empty lists L and L;. They will contain the points of the
smaller point set resulting from the split. We search the list L, simultaneously from
left to right and from right to left until we find a point that belongs to the other side of
the separating vertical line segment. The search time is linear to the size of the smaller
set. W.l.o.g. we assume that the search from left to right was shorter.

Then we begin from left again, walk sequential in L, up to the first point right to the
separating vertical line. During this walk we delete the points from L, and insert them
at the end of L!. Using the cross-pointers we delete this points from L,, as well, and
insert them at the end of L;. After this vertical splitting the list L! is already sorted
but the list L;, is not. It would be inefficient to sort it now, first we leave it unsorted and

78

split the lists L, and L, (the remaining longer lists that are both sorted) recursively
horizontal.

At the last recursion level, when L, (and L,) contains at most one point, we sort all
the unsorted lists L., L;, that are created at a higher level of the recursion, as follows.
We traverse the two lists Lg and Ly that are the copies of the original lists L, and L,
before the deletions. For each encountered item, we remove the corresponding item —
which is given by the pointer p_orig — from L (L;, resp.) and insert it again at the end
of the same list L} (L;, resp.). In this way we can guarantee that in each list L}, (L,
resp.) each two items appear in the same order as in L¢ (L;, resp.). Consequently, all
lists L, and L; are sorted and the total time for the sorting is linear in the length of

L.

Finally, we deallocate the copy lists Lg and L, make a copy from each list L;, L, and
process each L), L; recursively until each list contains at most one item. Figure 4.3
illustrates the lists appearing in the above description.

Ly | | LS
Ly | | L
oo Ly | |
Ly [L, | |

e [el]

i %
L Lx
o L L,

Figure 4.3: The lists Ly, Ly, L., L, and L, Ly during the splitting algorithm.

Clearly, the running time of above splitting algorithm is O(nlogn), because if an item
is splitted out from a list, it will be inserted into a list whose size is at most half the
size of its original list. It can happen at most logn times per item. After the splitting
algorithm we have to complete the obtained tree to a balanced quadtree corresponding
our definition. This can be done in O(n) time.

Realize shortcuts: Now we turn to the problem how we can detect during the above
algorithm, whether a shortcut is necessary and how this can be performed in constant
time. We describe the solution of Bern et al. [18] for this problem.

In [18] it is assumed that the coordinates of the input points are integer numbers that
can be stored in a single computer word. The underlying computation model is a
special RAM which is able to perform simple arithmetic, shift and Boolean operations

79

on words, and to detect the position of the most significant non-zero bit of a computer
word in constant time!. The sides of all squares in the quadtree have length of the form
2¢, and for any square of side length 2! the coordinates of all four corners are multiples
of 2. For two input points p = (pg,p,) and ¢ = (g, g,) we define their derived square
as the smallest quadtree box containing p and ¢. The side length [of this square can
be computed from the position ¢ of the most significant non-zero bit of the maximum
of (p; XOR ¢;) and (p, XOR g,), the side length is [= 271, The bottom left corner
of this square can be found by masking off the last 7 bits of p, and p,. The derived
square of an arbitrary point set is defined analogously. This is the smallest quadtree
box containing the point set. It can be computed from the minimum and maximum z-
and y-coordinate in the point set. Since the splitting algorithm maintain the points in
sorted lists, the minimum and the maximum coordinate can be determined in constant
time. Consequently, we can check at each level of the recursion in constant time,
whether a shortcut is necessary by computing the derived box of the current point set
and comparing it with the derived box of the point set of its parent in the tree. Hence,
the shortcut can be performed in constant time.

4.3.2 The incremental data structure, lazy updates

In this subsection we study the incremental version of the search problem, where in-
sertion of a new point into S at the current position of the visitor is allowed. We show
how we can insert a point into the graph G, /2(S") in the same time as the query time.

When we insert a new point into Gr/2(S’), we first must update the quadtree such
that the balance property is maintained. Then we must update the adjacencies at the
affected vertices of G/5(S’) corresponding to corners of the changed boxes or their
neighboring boxes. Updating G/2(S’) at the affected vertices costs only a constant
time per box even in the case of a changed shortcut. Therefore, the update time is
linear in the number of affected boxes. The main problem is to maintain the balance
property. Let [(b) be denote the level of box b, it is the length of the tree path from
the root box of the quadtree to the box b. If a leaf box b is splitted then the balance
condition can be violated in each level higher than [(b) (Figure 4.4). Therefore, the
worst-case update time for the rebalancing of the quadtree depends on the depth of the
quadtree, and so, on the total scene.

Let D, be a query disc with radius r and D, be the cricital disc which is concentric

with D, and has a radius rf = 7/3+ /5. In order to make the rebalancing time
independent from the total size of the scene, we perform lazy updates, i.e., we split

LThis operation can also be written as |log, a], where a is number stored in a computer word.

80

Figure 4.4: Rebalancing of the quadtree

only the boxes that intersect the critical disc D,;. After the splittings we update only
the vertices of Gr/2(S’) that are contained in D,;. The remaining splittings will be
performed later, when the current critical disc intersects the according boxes. Therefore,
at the beginning of each query we have to check, whether the current critical disc D,
intersects new leaf boxes that violate the balance property. In this case we perform the
necessary splittings. In this way we guarantee that the update time is at most linear
in the number of vertices of the updated graph G/2(S’) in the disc D,;. This time is
equal to the time of the searching. We summarize:

Theorem 4.6 Let S be set of n points in the plane. Assume that the visitor moves
slowly. Then there is an incremental data structure for the mowving visitor searching
problem which supports insertion of a new point at the current position q of the visitor
and for query(q,r) it allows reporting of the points of S within the query disc both in
O(1 + k) time, where k is the number of vertices v of Gr/2(S") for which disty(q,v) <

/3 + /5 holds. The space requirement of the data structure is O(n). O

4.4 Objects with different sizes

In this section we develop data structures for the searching problem in geometric scenes
that consist of balls with different sizes. We represent the objects of such a scene by
weighted points, such that the weight w(s) of a point s € S C IR? is the diameter of
the ball represented by s. Similar to the case of equal size balls, we have to determine
the objects appearing from the visitor’s position in an angle which is not less than

a fixed constant «. Using weighted points to represent the objects of the scene the
1
2sin(a/2)
query(q,) we have to report the set {s € S : ﬁ disty(q, s) < r} of weighted points.

above problem can be formulated as follows: Let r := For a query operation

In the first part of this section we develop a general technique, which allows us to

81

use data structures for circular range searching to report the objects appearing from
the visitor’s position in an angle at most a. This technique is applicable to each
decomposable searching problems on weighted points.

In the second part of the section we use geometric transformations to obtain a higher
dimensional halfspace range searching problem and solve this problem with known
algorithms. This approach was, for example, used in [46, 2, 9, 36, 83] for similar
problems.

4.4.1 Using circular range searching in size classes

In this subsection we exploit that our search problem is a so-called decomposable search
problem [15, 65, 35]. We use a special decomposition which allows us to apply circu-
lar range searching algorithms for an approximated solution of the original searching
problem.

Decomposable search problems are search problems that satisfy the following condi-
tions [35]: Let S be a set of objects and let S be arbitrarily partitioned into two sets
S1 and S3. Furthermore, let () be an arbitrary query object, and A; and A, be the
answers to the queries for S; and () and for S, and @, respectively. Then the answer A
for S and @) can be computed in constant time from A; and As. Our searching problem
satisfy this condition obviously.

To handle objects with different sizes we partition the points of S into size classes. Let
Wmin be the size of the smallest object and wy,,, the size of the largest object of the
scene. We define the aspect ratio of the scene A := ymez. Let | := [log A]. We partition
the objects into [classes such that in each class the largest object is at most two times
larger than the smallest object. More precisely, let S; := {s € S : 27 wy,, < w(s) <
2Win} for i = 1,...,1. We call S; a size class of S. (If A is a power of two then let S,
also contain the objects with size wy,.) In each class S; we treat the points as they
had the same size and for each S; we independently build a circular range searching
data structure. Note that if the largest and the smallest object of the scene have a
size 1km and 1mm, respectively, we only have twenty classes. We can answer a query
query(q,r) for weighted points such that we start a circular range query in each non
empty class S; with center ¢ and radius 7; = 2° 'wp,r. (This is the distance, from
which an object of size 2‘w,,;, appears in angle o.) Then we concatenate the results
and verify for each obtained point s, whether ﬁ dists(q, s) < r holds.

This method works with various circular range searching algorithms. Let D be a data
structure used for solving the circular range searching problem in the size classes. As-
sume that the space requirement of D is O(f(n)) and that D supports answering queries

82

in O(g(n) + k) time, where k£ depends on the size of the output. Furthermore, assume
that f(n)/n is nondecreasing and g(n)/n is nonincreasing. Then the above searching
data structure for weighted points has a space complexity O(f(n) +) and supports
answering queries in O(l - g(n) + k') time, where k' = 3,,, k; and k; is the output
sensitive part of the query time in the circular range searching data structure for the
size class S;.

4.4.2 Transformation to halfspace range searching

In this subsection we transform the d-dimensional problem of reporting the points
{s € §: ﬁ disty(q,s) < r} to a halfspace range searching problem in IR4*! if
each query has the same radius r (i.e., the angle « is fixed) and to a halfspace range
searching problem in IR*™? if r is variable. Then we can solve the halfspace range
searching problem by known techniques.

Such geometric transformations were used, for example, in [46, 2, 36, 9, 83]. In par-
ticular, we remark that using this method, Gupta et al. [46] presented a solution for
the following intersection searching problem: Let B := {Bj,..., B,} be a collection of
closed d-balls in IR?, d > 2. For a query d-ball Q we have to report the balls of B
that are intersected by . In [46] this problem is transformed to a (d + 2)-dimensional
halfspace range searching problem. This immediately implies also a solution for our
d-dimensional reporting problem on weighted points if each query disc has the same
radius 7. We map each weighted point s € S(C IR?) to a d-ball B with center s and
radius w(s)r, and we map the query position ¢ to a ball @) with center ¢ radius zero.

In order to understand the spirit of this kind of geometric mappings, we first transform
a d-dimensional circular range searching problem (on unweighted points) to a (d + 1)-
dimensional halfspace range searching problem: Let S C IR¢ be a set of n points. For
a query query(q,r) we have to report the points of S whose Euclidean distance from ¢
is at most . For a point s € R? we denote its ith coordinate by s;. A point s € S is
contained in the query ball if and only if

> (gi— si)? <r?

1<i<d

holds. Let us define a transform 7 which maps the points of S to the surface of a
(d + 1)-dimensional paraboloid as follows:

v(s) := (31,...,sd, > sf)

1<i<d

83

Also, let us define 8 which maps the center ¢ and the radius r of a query to a (d + 1)-
dimensional hyperplane as follows:

Blg,r) i Tar1 ="+ Y 2qmi— Y. ¢

1<i<d 1<i<d

It is easy to show that a point s € S is contained in the ball with center ¢ and radius r
if and only if y(s) € B(q,)", where (g,) is the closed halfspace lying below £(q,),
i.e., the halfspace 2441 < 7% 4+ X 1<ica 26 — X 1<i<a i (Figure 4.5). To see this, it is
sufficient to show that

dists(q,s) <r ifandonlyif > sF < 4+ Y 28— > ¢

1<i<d 1<i<d 1<i<d
This can be done by simple algebraic manipulation.

[

Figure 4.5: disty(q, s) < r if and only if v(s) below 5(q, 7).

Now we consider the following reporting problem. We have a set S C IR% of n weighted
points and a radius r € IR. For a query query(q) we must report the points {s € S :
ﬁ disty(q,s) < r}. Let us define v which maps the points of S to points into IR%*!
as follows.

v(s) := (31, e Say D S5 — w(s)2r2).

1<i<d

Also, let us define 8 which maps the query point g to a (d + 1)-dimensional hyperplane

as follows:
B(g) : xar1= Y. 2qimi— Y. q;.
1<i<d 1<i<d
It is easy to verify that —— disty(q,s) < r holds for s € S if and only if v(s) €

w(s)
B(q) . Thus, we reduced the above weighted reporting problem to a (d+1)-dimensional

halfspace range searching problem.

84

Finally, we show a transformation in the case that r is also a parameter of the query,
i.e., we cannot use r in the mapping of the points of S. Let us define v which maps the
points of S to points in IR**? as follows.

v(s) := (51,...,sd,w(s)2, > sf)
1<i<d
Also, let us define 8 which maps the point ¢ and the radius r to a (d + 2)-dimensional
hyperplane as follows:

B(g,r): Taya = Y, 2qi%; + T’Tap1 — Y G-
1<:<d 1<i<d

Also here, it is easy to verify that () dists(q,s) < r holds for s € S if and only if
v(s) € B(¢q)". Thus, we have transformed the above problem to a (d + 2)-dimensional
halfspace range searching problem.

To solve the halfspace range searching problem we can use the data structure of Ma-
tousek [59], which, in IR?, uses O(nloglogn) space and has O(n'~Y/[P/2lpolylog n + k)
query time, where k is the output size. Alternatively, we can use the data structure of
Clarkson and Shor [29] which uses O(n!?/21+¢) space and has O(logn + k) query time.
Substituting p = d + 1 and p = d + 2, respectively, we obtain the following:

Theorem 4.7

(i): Let S be a set of n weighted points in R? and r € IR. S and r can be processed into
a data structure of size O(nloglogn) such that for a query point q € IR? the points
{s € 5: g5 dista(q,s) < r} can be reported in time O(n*~Y14/21polylog n + k),
where k zs the output size; or S can be processed into a data structure of size
O(nl421%¢) and O(logn + k) query time.

(77): Let S be a set of n weighted points in R¢. S can be processed into a data
structure of size O(nloglogn) such that for a query point ¢ € IRY and ra-
dius r € IR the points {s € S :) disty(q,s) < r} can be reported in time
O(n*~Y14/2+1polylog n + k), where k is the output size; or S can be processed
into a data structure of size O(nl¥2111%¢) and O(logn + k) query time. O

4.5 Conclusion and open problems

We have described a randomized solution of Fischer et al. [39] for the static and the

fully dynamic moving visitor searching problem and our own deterministic solution for

85

the static and the incremental moving visitor searching problem in scenes that consist
of unit size balls. In the deterministic data structure we have exploited the assumption
that the visitor moves slowly. Both solutions support query and update times that
are linear in the number of vertices of the underlying data structure in the interior of
the critical circle, in particular independent from the total number of objects of the
scene. Both data structures have linear size and they are relatively easy to implement.
Unfortunately, we were not able to give a deterministic solution for the fully dynamic
problem which also supports deletions as fast as insertions. An unpleasant property of
both data structures is that we also need non algebraic operations in the construction.
The question, whether a deterministic linear size data structure exists, which solves the
moving visitor problem and can be constructed in O(nlogn) time using only algebraic
operations, remains open.

We have presented solutions for the moving visitor problem in scenes that consist of
different size balls. We have seen that this problem can be transformed to a halfspace
range searching problem in a higher dimension. Then it can be solved using standard
techniques. The question, whether in the halfspace range searching data structures can
be exploited that the visitor moves slowly, remains unsolved.

86

Chapter 5

Lower bound on the construction
time of weak spanners with Steiner
points in the algebraic model

In this chapter we give an (nlogn) lower bound for the time for each algorithm in the
algebraic model [13] that construct a Steiner weak spanner with o(nlogn) edges and
with stretch factor f > 1. The content of this chapter is a slight modification of the
result of Chen et al. [26]. They proved such a lower bound on the construction time
of Steiner spanners. First we specify more precisely the class of graphs for which we
prove the lower bound.

Let p € IR be a fixed constant such that 1 < p < oco. We measure the distance between
points in the d-dimensional space IR with the L, metric. Let S be a set of n points in
IR%. Let G = (V, E) a (directed) graph such that

(i) V is a set of points in R¢,
(i) SCV,

(131) the edges of G are straight line segments in IR? connecting pairs of points in V.
The length of an edge is the L, distance dist, between the endpoints.

Let f > 1 be a real number. The graph G is a (directed) Steiner weak spanner for S with
stretch factor f w.r.t. the L, metric if for each two points s,¢ € S, there is a (directed)
path P from s to ¢ in G such that for each vertex v € P, dist,(s,v) < f - dist,(s,1).
If V = S then G is a weak spanner for S. Note that the definition of a Steiner weak
spanner is more general than the definition of a weak spanner for an extended point
set S’ for S in Chapter 4: for Steiner weak spanners we only require the existence of
a f-spanner path between the original points of S. Therefore, a lower bound on the

87

running time of algorithms constructing Steiner weak spanners holds also for algorithm
constructing weak spanners for S or for an extended set S’ of S. Clearly, each algorithm
that constructs a Steiner weak spanner with (nlogn) Steiner points or Q(nlogn)
edges needs Q(nlogn) time. Hence, it suffices to prove this lower bound for Steiner
weak spanners with o(nlogn) edges and o(nlogn) Steiner points.

We prove the Q(nlogn) bound for the one dimensional case when S C IR. This implies
the same lower bound for any dimension d > 1. We first give a very simple reduction
from the well known element distinctness problem which has an Q(nlogn) bound in the
algebraic decision tree model [13].

Remember, in the element distinctness problem we have n real numbers xy, ..., x,,
and we must decide whether they are pairwise distinct or not. The main idea for
the reduction of this problem to the construction of a Steiner weak f-spanner is the
following: If z; = z; for ¢ # j then each Steiner weak f-spanner for S = {z1,...,z,}
contains a path P between z; and z; such that for each point v € P, disty(z;,v) <
[- disty(z;, ;) = 0. It implies that each edge on P has length zero.

Let A be an algorithm that for the input S and f > 1 constructs a Steiner weak spanner
G for S with stretch factor f. Assume, that the vertices of G are labeled so that we
can distinguish the original points of S from the Steiner points. We construct a graph
G’ for G such that G’ has the same vertex set as G and an edge is in G’ if and only if it
is an edge in GG and has length zero. To solve the element distinctness problem we only
have to check for each connected component of G’ if it contains two distinct element of
S among its vertices. If there is a component with at least two original point of S then
output NO; otherwise, output YES. Hence, if we have a Steiner weak spanner G for S
with stretch factor f, we can solve the element distinctness problem in a time which is
linear in the number of edges of G, which is o(nlogn). Therefore, algorithm A must
have an Q(nlogn) running time.

The above lower bound proof is unsatisfying, since in the computational geometry we
often assume implicitly that all input elements are distinct. For such inputs we need
other arguments. In the case of pairwise distinct real numbers we give a reduction from
the membership problem in a point set W in IR". In this problem we have to decide for
an input point z € IR" if it is contained in W. We use the following well known result:

Theorem 5.1 (Ben-Or [13]) Any algorithm C that belongs to the algebraic model and
solves the membership problem in W C R"™ need Q(log N — n) worst-case time, where
N = max(#W,#(R" \ W)), and #W and #(IR" \ W) are the number of disjoint
connected components of W and R™ \ W.

Now we prove the following:

38

Theorem 5.2 Let d > 1 be an integer constant. Any algorithm A that belongs to the
algebraic model and computes a Steiner weak spanner for a given set S C R® of n
patrwise distinct point with stretch factor f > 1, need Q(nlogn) worst-case time.

Proof: We prove the theorem for one-dimensional point set. This implies the lower
bound for the higher dimensional case. In order to apply Theorem 5.1 we need to define
an appropriate algorithm C' such that

(1) C solves the decision problem for W C IR",
(17) C has a running time that is within a constant factor of the running time of A,

(131) W consists of many (at least n! in our case) distinct connected components.

In the reduction the input S for algorithm A (which is a set of n real numbers) corre-
sponds to a point in IR" whose ith coordinate is the ith real number of S. We must
take care in the definition of the point set W, since we only allow distinct real numbers
as inputs for A. Consider the following example: For 1 < i < j < n let h;; be the
(d — 1)-dimensional hyperplane in IR" whose points have equal ith and jth coordinate.
Let H={h;;:1<i<j<n}andU =1R"\H (Figure 5.1). The membership problem
for U can be solved in constant time if only pairwise distinct real numbers are allowed
as input (the algorithm must simply output YES), although the number of connected
components #U is at least n!. To see this, consider two distinct permutations 7= and
pof 1,2 .. n. Letpand r be the points of R" with coordinates p = (7 (1), ...,7(n))
and 7 = (p(1),...,p(n)). It is easy to see that p and ¢ belongs to distinct connected
components of U: Let ¢ and j be two indices such that 7 (i) < 7(j) and p(i) > p(j)-
Then any continuous curve ¢ in IR"™ between p and r contains a point ¢ whose ¢th and
jth coordinates are equal and so ¢ ¢ U. Therefore, p and r are contained in differ-
ent connected components. It implies that the number of connected components is at
least n!.

Figure 5.1: The hyperplanes = y,z = z and y = z in IR®.

89

The above example shows that we must take care in the definition of the set W C IR"
and the algorithm C whose valid inputs consist of distinct real coordinates. After the
definition of C' we define a related algorithm D that takes any point of IR" as input.

Before introducing algorithm C' we define an algorithm B which uses A and will be
used by C. B does the following on an input consisting of n pairwise distinct real
numbers zy,...,x, and a real number f > 1. It first runs algorithm A on the input
Z1,...,Zn and f to construct a Steiner weak spanner GG for this point set with stretch
factor f. Then B selects the shortest edge of non-zero length of G' and outputs the
length s of this edge. Note that because of the Steiner points, G may contain edges
with length zero, although the input points are pairwise distinct. Let T4(n, f) and
Tg(n, f) denote the worst-case running time of algorithm A and B, respectively. Then
Tg(n, f) < Ta(n, f) + o(nlogn), because G has o(nlogn) edges.

We now fix an integer n and a real number f > 1. For any permutation 7 of 1,2, ..., n,
let s, be the output of algorithm B for input « (1), 7(2),...,m(n) and f. Let ls* be the
minimum of the n! outputs, i.e., [s* = min;{ls;}.

Now we define algorithm C. It only accepts inputs of fixed length n, consisting of n
pairwise distinct real numbers. On input x4, ..., x,, algorithm C' first runs algorithm B
with z,...,z, and f. Let ls be the output of B. C outputs YES if [s > [s*, and NO
otherwise.

Since algorithm C' only accepts inputs of our fixed length n, and since we also fixed f,
we may assume that C' "knows” the value of [s*. Algorithm C exists, although we have
not explicitly computed ls*. Therefore, the worst-case running time T (n) of C is at

most Tg(n, f) + O(1).

Now we define algorithm D which is defined for each input of (x4, ..., z,) € R". Algo-
rithm C' was defined only for inputs consisting of n pairwise distinct real numbers. As
result it can perform some divisions without having to worry whether the denominator
is zero (for example divisions in the form z := y/(z; — z;)). Algorithm D performs the
same computation as C' on the input zy, ..., z, of n not necessary distinct real number,
except that each division z := y/z is replaced by

if z = 0 then output NO and terminate else z := y/z fi.

Since C' is a well defined algorithm, if the input consists of n pairwise distinct real
numbers then it will always be the case that x # 0. Therefore, C and D give the
same output for each n pairwise distinct real numbers. If the input elements are not
pairwise distinct then C' is not defined, whereas D is, although its output may not have
a meaning at all. Clearly, the worst-case running time of D is within a constant factor

90

of that of C. We prove that the worst-case running time of D is Q(nlogn). This also
implies the same lower bound for the worst-case running time for A.

First we state an important dependence between the output ls of algorithm B and
the distance between the closest pair of n distinct real numbers. For n (not necessary
distinct) real numbers 1, ..., T, let mingap(z1, ..., x,) = min{|z;—z;| : 1 < i < j < n}.

Lemma 5.3 Let ls be the output of algorithm B with n pairwise distinct real numbers
T1y ey Ty and f > 1. Then 0 < ls < f-mingap(z1, ..., T,).

Proof: Let i and j be two indices such that |z; — z,;| = mingap(z, ..., z,,). Since the
input elements are pairwise distinct, we have |z; — x;| > 0. Let G be the Steiner weak
spanner for the input with stretch factor f constructed by algorithm A and let P be a
path in G from z; to z; with the property that for each vertex v € P, |z;—v| < f-|z;—z;].
Clearly, P contains at least one edge of non-zero length. Consider the first such edge
(u,v) € P. Since each edge on P before (u,v) (if any) has length zero, u is coincident
with z;. Hence, Is < |u—v| = |z; —v| < f - |z; — ;. O

In order to apply Theorem 5.1 we now prove that the point set accepted by algorithm
D has many connected components. Let W be the set of all points (x1,...,2,) € R"
accepted by D.

Lemma 5.4 The set W has at least n! connected components.

Proof: Let m and p be two different permutations of 1,2,...,n. Because of the
definition of algorithm C, the points p = (7 (1),...,7(n)) and r = (p(1),..., p(n)) are
contained in W. We show that p and r belong to different connected components of
W. This will implies the claim of the lemma.

Let 4 and j, 0 < i < j < n, be two indices such that 7(i) < w(j) and p(i) > p(j)-
Then any continuous curve g : [0,1] — IR", with g(0) = p and g(1) = r intersects the
hyperplane z; = ;. Since g is continuous, it contains points for which the absolute
difference between the ith and jth coordinates is positive but arbitrarily small. Let

to = min{t: 0 <t < 1,mingap(g(t)) <Is*/(2f)}.

Note that #, exists, because g passes through the hyperplane z; = x;, where the function
mingap has the value zero, and mingap is continuous along g. Let ¢ = g(o). Note that
g has pairwise distinct coordinates. Let [s be the output of algorithm B started with
g and f. By Lemma 5.3 we have ls < f - mingap(q) < ls*/2. Therefore, algorithm D
does not accept ¢, and so ¢ does not belongs to W.

91

We have shown that any continuous curve connecting p and r passes through a point
outside W. Hence, p and r are contained in different connected component of W. 0O

We now return to the proof of Theorem 5.2. Lemma 5.4 and Theorem 5.1 imply that
any algorithm that accepts W has a running time Q(log(#W) —n) = Q(nlogn). Since
D is such an algorithm, it follows that for our fixed n and f, the worst-case running
time of D is at least ¢ nlogn, where c is a positive constant independent of n and f.
This implies that there is an input on which algorithm A takes at least ¢’nlogn time
for some positive constant ¢’. Since ¢’ does not depend on n and f, the lower bound
holds for all values of n and f. This completes the proof of Theorem 5.2. O

Remark: The above reduction does not works if we only allow integer numbers as
input: In Theorem 5.2 we showed that each permutation of 1,2, ...,n (more precisely,
each point of IR™ with such coordinates) is contained in W. But if W only consists
of these points and we know that the input consists of integer numbers, we can easily
test the membership in W in O(n) time: Consider an array indexed from 1 to n and
initialize all its elements to unmarked. We read the input sequentially. When we read
the ith element z; we check whether z; is a number between 1 and n. If it is then we
set the x;th element of the array to marked. Finally, we have only to check whether all
elements of the array are marked.

If we also allow the non algebraic floor function and conversion between integer and
real numbers in addition to the algebraic functions, we can use the above array to solve
the membership problem in W for a point with real coordinates in O(n) time, as well.

Remark: In the proof of Theorem 5.2 we defined the value [s* as the minimum of the
outputs of algorithm B over all permutations of 1,2, ...,n as input. If we want to prove
Theorem 5.2 only for spanners without Steiner points we can replace the value [s* by
1, since in each spanner without Steiner points the length of shortest edge is at least
the distance between the closest pair of the input point set, which is equal to 1 for each
permutation of 1,2, ..., n.

92

Bibliography

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. Tech-
nical Report CS-1997-11, Duke University, Department of Computer Science, 1997.
To appear: in Discrete and Computational Geometry: Ten Years Later.

[2] P. K. Agarwal and J. Matousek. On range searching with semialgebraic sets.
Discrete € Computational Geometry, 11:393—418, 1994.

[3] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrival problems by
compact Voronoi diagrams. In 22nd ACM Symposium on Theory of Computing
(STOC’90), pages 331-340, 1990.

[4] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[6] S. Arora, M. Grigni, D. Karger, and P. Klein A. Woloszyn. A polynomial-time
approximation scheme for weighted palnar graph TSP. In 9th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’98), pages 33—41, 1998.

[6] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean span-
ners: Short, thin, and lanky. In 27th ACM Symposium on Theory of Computing
(STOC’95), pages 489498, 1995.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An opti-
mal algorithm for approximate nearest neighbor searching. In 5th ACM-SIAM
Symposium on Discrete Algorithms (SODA’94), pages 573-582, 1994.

[8] S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms for
geometric spanners of small diameter. In 35th IEEE Symposium on Foundations
of Computer Science (FOCS’94), pages 703-712, 1994.

[9] F. Aurenhammer. A criterion of affine equality of cell complexes in IR? and convex
polyhedra in R, Discrete & Computational Geometry, 2:49-64, 1987.

[10] F. Aurenhammer. Voronoi diagrams — a survey of a foundamental geometric data
structure. ACM Computing Surveys, 23:346—-405, 1991.

93

[11] F. Aurenhammer and R. Klein. Voronoi diagrams. Technical Report TR-198,
Fernuniversitat Hagen, Praktische Informatik VI, 1996.

[12] M. Barner and F. Flohr. Analysis II. Walter de Gruyter, Berlin, 1983.

[13] M. Ben-Or. Lower bounds for algebraic computation trees. In 15th ACM Sympo-
sium on Theory of Computing (STOC’83), pages 80-86, 1983.

[14] J. L. Bentley and H. A. Maurer. A note on the euclidean near neighbor searching
in the plane. Information Processing Letters, 8:133-136, 1979.

[15] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformation. J. Algorithms, 1:301-358, 1980.

[16] M. Bern, L.P. Chew, D. Eppstein, and J. Ruppert. Dihedral bounds for mesh gen-
eration in high dimensions. In 6th ACM-SIAM Symposium on Discrete Algorithms
(SODA’95), pages 189-196, 1995.

[17] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. Journal of
Computer and System Sciences, 48:384-409, 1994.

[18] M. Bern, D. Eppstein, and S. H. Teng. Parallel construction of quadtrees and
quality triangulations. In &rd Workshop on Algorithms and Data Structures
(WADS’93), pages 188-199, 1993.

[19] F. Bigdeli. Regular Triangulations of Convex Polytopes and n-Cubes. PhD thesis,
University of Kentucky, Lexington, 1991.

[20] B. Bollobas. Ezxtremal Graph Theory. Academic Press Inc. (London) Ltd., 1978.

[21] P. B. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair Decom-
position and Its Applications. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, 1995.

[22] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. In 4th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’93), pages 291-300, 1993.

(23] P. B. Callahan and S. R. Kosaraju. A decompostion of multidimensional point
sets with applications to k-nearest neighbors and n-body potential fields. Journal
of the ACM, 42:67-90, 1995.

[24] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on

graph spanners. International Journal of Computational Geometry & Applications,
5:125-144, 1995.

94

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

B. Chazelle, R. Cole, F. P. Preparata, and C. Yap. New upper bounds for neighbor
searching. Information and Control, 68:105-124, 1986.

D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners
and approximate shortest paths. In 8th Canadian Conference on Computational
Geometry (CCCG’96), pages 155-160, 1996.

L. P. Chew. There is a planar graph almost as good as the complete graph. In 2nd
Annual ACM Symposium on Computational Geometry (SCG’86), pages 169-177,
1986.

K. L. Clarkson. Approximation algorithms for shortest path motion planning. In
19th ACM Symposium on Theory of Computing (STOC’87), pages 5665, 1987.

K. L. Clarkson and P. W. Shor. Application of random sampling in computational
geometry — II. Discrete & Computational Geometry, 4:387-421, 1989.

F. d’Amore, P. G. Franciosa, and G Liotta. A robust region approach to the com-
putation of geometric graphs. In 6th Annual European Symposium on Algorithms
(ESA’98), pages 175-186, 1998.

G. Das and P. J. Heffernan. Constructing degree-3 spanners with other sparseness
properties. International Journal of Foundations of Computer Science, 7:11-20,
1996.

M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time.
In Informatik: Festschrift zum 60. Geburtstag von Ginter Hotz, pages 95-119.
Teubner, Stuttgart, 1992.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23:748-761, 1994.

D. Dobkin and R. Lipton. On the complexity of computations under varying sets
of primitives. Journal of Computer and System Sciences, 18:86-91, 1979.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, EATCS
Monographs on Theoretical Computer Science, Vol 10, 1987.

H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete &
Computational Geometry, 1:25-46, 1986.

D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In CRC
Handbook of Algorithms and Theory of Computation, Chapter 22. CRC Press,
1997.

95

[38] J. G. Erickson. Lower Bounds for Fundamental Geometric Problems. PhD thesis,
University of California at Berkeley, 1996.

[39] M. Fischer, F. Meyer auf der Heide, and W.-B. Strothmann. Dynamic data struc-
tures for realtime management of large geometric scenes. In 5th Annual European
Symposium on Algorithms (ESA’97), pages 157170, 1997.

[40] M. Fischer, T. Lukovszki, and M. Ziegler. Geometric searching in walkthrough
animations with weak spanners in real time. In 6th Annual European Symposium
on Algorithms (ESA’98), pages 163-174, 1998.

[41] M. Fischer, T. Lukovszki, and M. Ziegler. A network based approach for real-
time walkthrough of massive models. In 2nd Workshop on Algorithm Engineering
(WAE’98), 1998.

[42] M. Fischer, T. Lukovszki, and M. Ziegler. Partitioned neighborhood spanners of
minimal outdegree. In 11th Canadian Conference on Computational Geometry
(CCCG’99), pages 47-50, 1999.

[43] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network algorithms. Journal of the ACM, 34:596-615, 1987.

[44] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47:424-436, 1993.

[45] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. Journal of Computer and System Sciences, 30:209-221, 1985.

[46] P. Gupta, R. Janardan, and M. Smid. On intersection searching problems involving
curved objects. In 4th Scandinavian Workshop on Algorithm Theory (SWAT’94),
pages 183-194, 1994.

[47] M. Haiman. A simple and relatively efficient triangulation of the n-cube. Discrete
& Computational Geometry, 6:287-289, 1991.

[48] J. G. Hocking and G. S. Young. Topology. Addison-Wesley, 1961.

[49] J. M. Keil. Approximating the complete Euclidean graph. In 1st Scandinavian
Workshop on Algorithm Theory (SWAT’88), pages 208-213, 1988.

[50] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete & Computational Geometry, 7:13-28, 1992.

[51] V. King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18:263-270, 1997.

96

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

V. Klee. On the complexity of d-dimensional Voronoi diagrams. Archiv der Math-
ematik, 34:75-80, 1980.

D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Transac-
tions on Computers, C-31:478-487, 1982.

C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for construct-
ing fault-tolerant geometric spanners. In 30th ACM Symposium on Theory of
Computing (STOC’98), pages 186-195, 1998.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36:177-189, 1979.

G. S. Lueker. A data structure for orthogonal range queries. In 19th IEEE Sym-
posium on Foundations of Computer Science (FOCS’78), pages 28-34, 1978.

T. Lukovszki. New results on fault tolerant geometric spanners. In 6th Workshop
on Algorithms and Data Structures (WADS’99), pages 193-204, 1999.

J. Matousek. Geometric range searching. ACM Computing Surveys, 26:421-461,
1991.

J. Matousek. Reporting points in halfspaces. Computational Geometry: Theory
and Applications, 2:169-186, 1992.

E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257-276,
1985.

K. Mehlhorn. Multi-Dimensional Searching and Computational Geometry, Data
Structures and Algorithms 3. Springer Verlag, 1984.

K. Mehlhorn and S. Nédher. Dynamic fractional cascading. Algorithmica, 5:215—
241, 1990.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

K. Mulmuley. Computational Geometry, an Introduction through Randomized Al-
gorithms. Prentice Hall, Englewood Cliffs, 1994.

M. H. Overmars. The Design of Dynamic Data Structures. Springer Verlag, 1983.

F. P. Preparata and M. I. Shamos. Computational Geometry An Introduction.
Springer Verlag, New York, 1985.

97

[67] M. O. Rabin. Proving simultaneous positivity of linear forms. Journal of Computer
and System Sciences, 6:639-650, 1972.

[68] S. B. Rao and W. D. Smith. Improved approximation schemes for geometrical
graphs via ‘spanners’ and ‘banyans’. In 30th ACM Symposium on Theory of Com-
puting (STOC’98), pages 540-550, 1998.

[69] E. M. Reingold. On the optimality of some set algorithms. Journal of the ACM,
19:649-659, 1972.

[70] C. A. Rogers. Covering a sphere with spheres. Mathematika, 10:157-164, 1963.

[71] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean
graph. In 8rd Canadian Conference on Computational Geometry (CCCG’91),
pages 207-210, 1991.

[72] J. F. Sallee. The middle-cut triangulations of the n-cube. SIAM Journal on
Algebraic and Discrete Methods, 5:407-419, 1984.

[73] J.S. Salowe. Constructing multidimensional spanner graphs. International Journal
of Computational Geometry & Applications, 1:99-107, 1991.

[74] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, 1990.

[75] H. Samet. The design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[76] M. Smid. Closest-Point Problems in Computational Geometry. Handbook on
Computational Geometry, edited by J.-R. Sack, North Holand, Amsterdam, 1998.

[77] J. M. Steele and A. C. Yao. Lower bounds for algebraic decision trees. Journal of
Algorithms, 3:1-8, 1982.

[78] M. J. Todd. The Computation of Fized Points and Applications. Springer Verlag,
Lecture Notes in Economical and Mathematical Systems, Vol 124, 1976.

[79] P. M. Vaidya. An O(nlogn) algorithm for the all-nearest-neighbors problem. Dis-
crete &4 Computational Geometry, 4:101-115, 1989.

[80] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in
k dimensions. Discrete €& Computational Geometry, 6:369-381, 1991.

[81] P. van Emde Boas, R. Kaas, and E. Ziljstra. Design and implementation of an
efficient priority queue. Math. Systems Theory, 10:99-127, 1977.

98

[82] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11:721-736, 1982.

[83] A. C. Yao and F. F. Yao. A general approach to d-dimensional geometric queries.
In 17th ACM Symposium on Theory of Computing (STOC’85), pages 163-174,
1985.

99

