A Fault Tolerant Distributed Location Service
for Geographic Ad Hoc Routing

Andras Bencz(r Tamas LukovszKi

Abstract

We introduce a new distributed location service, ltigpercubic location service (HLS) for wireless
mobile ad hoc networks. It provides information about gepgic position of nodes, which is required
by position based routing methods. Together with a postiased routing, in particular with a greedy
routing in appropriate spanner graphs, HLS contributedfarient network layer of wireless ad hoc net-
works. Underlying HLS is a®(logn) degree graph which is based on a dynamic version of hypercubi
graphs, especially of the De Bruijn graph. We introduce thigom of effective bits of node IDs and we
define the hypercubic neighborhood relation accordinglg. Show how dynamic operations, insertion
and deletion of a node with a random ID can be performed irrltigaic time in such hypercubic graphs.

A key feature of HLS is its very strong fault tolerance as vesliscalability to large changes in the
number of nodes, allowing very flexible control over the natasize. A large network can be gradually
built from a few nodes and then again it can be reduced to asregll size with fast network topology
updates. In addition the architecture is extremely fadétremt. It resists the simultaneous failure of
a constant fraction of the nodes, including even a systengigstruction within certain regions. The
combination of scalability and fault tolerance results metwork which survives even a fast destruction.

1 Introduction

This work considers the problem of routing in large wirelessbile ad hoc mobile. Ad hoc networks
require no fixed infrastructure. They are thus particulauytable for example for rescue operations in
regions affected by a natural disaster. In ad hoc networksnibbile hosts also perform routing tasks. The
dynamics of such networks require routing strategies ankiatly different from the ones used in static
communication networks, since storing and updating langémg tables at mobile hosts would congest the
network with administration packages very fast.

Ad hoc routing received a lot of attention in the last yearsve®al routing algorithms have been de-
veloped: the so-called proactive protocols that contisiyomaintain route informations for all destinations
like DSDV [18], and the reactive ones that construct theestior the destinations as required like DSR [9],
TORA [16], AODV [17]. Neither types of strategies are fullgtsfying however: the proactive ones suffer
from a congestion of administrative messages when devigis ko move relatively fast; reactive strategies
in contrast have the drawback of long network search routdgtaus high initiation costs.

*Computer and Automation Research Institute of the Hungakieademy of Science®enczur @zt aki . hu and Depart-
ment of Operations Research, Edtvds University, Budag@spported from grants OTKA T-30132 and T-29772; NWO-OTKA
AKP 104024

THeinz Nixdorf Institute and Deptartment of Mathematics an@omputer Science, Paderborn University
tal u@ni - pader bor n. de. Supported by the DFG-SFB 376.

Li et al. [11] present a routing strategy that combines theaathges ofproactive and reactive rout-
ing. They describe a method which consists of two sublayEng. first sublayer provides a position based
method, called geographic forwarding. This mechanism eanded when the source node knows the ge-
ographic position of the destination. Position based nguimethods utilize the geographic position of the
destination node for choosing the next node in the routirty.péFor a survey on position based routing
see [15].) The other sublayer, called Geographic Locatienvi€e (GLS) provides a method to obtain this
position information. In GLS, each mobile node selects adéver nodes as its location servers using the
idea of consistent hashing combined with location infororet. Assuming that the nodes can determine
their current geographic position any time —.dog using a global positioning system (GPS) or some other
method — they periodically resend position informationhe tocation servers by a similar routing mech-
anism used for normal data transmission. In order to ieit@mmunication, the source node needs the
geographic position of the destination. It has to find a ocaserver of the destination. A location server
can be determined by visiting a well-defined sequence of:i1edeh that each acts as a location server of
the next in the sequence.

We present a new location service that, by keeping mostresnf the GLS [11], also improves it in
several senses.

e We improve the degree of the graph underlying the locatiovicetoO(logn), which is independent
from the geographic distribution of the nodes.

e We provide very strong fault tolerance that also includessilf-scaling of the network, still we keep
degrees at least as low as in the GLS.

e Unlike GLS, we need very little assumption about how the tgngries across geographic subre-
gions.

e HLS also survives a systematic destruction of devices,atsestruction of all devices within a region.

e Our location service forms a sublayer or the network layers fproviding the flexibility of combining
HLS with an arbitrary position based or other routing stygite

e We keep the amount of administrative traffic close to thatldfl [even in the fault free case, with a
slight loss in the locality of communication that we can fixdoynulti-layer solution.

In our Hypercubic Location Service (HLS) each node is idettiby a unique random ID. Such a random
ID distribution can be easily achieved by either hashingrtbde’s IP or other physical address into a
sufficiently large interval or hard-wiring a random sequeitto the device. The nodes are organized in
a dynamic and fault tolerant network based on hypercubiewargt [10] with respect to their random ID.
In such networks neighbor IDs can be obtained by simple kit ahd bit flip operations of IDs. In order
to manage the situation that most of possible random IDs @reresent in the network, we introduce the
notion of effective bits of the IDs and define the neighborhood relation in our hygacgraphs according
to such bits.

Each node in the network maintain location information efhiypercubic neighbors by periodically
sending its own position to that neighbors. When the logatiba node is known, a position based routing
strategy can be used for sending messages to that node.

Routing via HLS: When a nodei wants to send data to another nogldirst u has to detect the location
of nodev. This happens as follows: The random IDwtan be obtained from the random ID ofby
performing a certain sequence of elementary bit operatidhis sequence defines a path in the hypercubic
network fromu to v. Nodeu sends a so-called location request Yoon this path. The location request
contains the ID ofu andv and the location ofi. Since the hypercubic neighbors are storing up-to-date
location information from each other, the location requesitbe sent to the next node on the hypercube

2

path using position based routing. When the location rdqeeshew, thenv sends its own location toby
using position based routing. Afterhas received the position gfit sends the data te using the position
based routing, as well.

The random distribution of mobile node IDs ensures two keyuees of the HLS:

e We prove that the location work and the storage requirenemstbalanced across all the nodes.

¢ Since the IDs are independent of the geographic locationyother sensible network property, HLS
resists faults of almost all nodes in a certain region or tesyatical destruction of a constant fraction
of nodes.

As mentioned above, in order to route the message betweeodmsecutive nodes of the hypercube path,

we can use any position based routing strategy. In particwia can use appropriate sparse graphs called
power spanners [13] that allow low power routing and/or adyeposition based routing with guaranteed

delivery [2]. We suggest the use of the so-called Yao gragh § an underlying geometric sublayer, a

graph with a number of desirable properties including:

e Each node has a constant number of outgoing edges.

e The graph can be computed and maintained efficiently in aldlis¢d manner (see [21] for example),
allowing fast recovery from faults.

e The graph allows a very simple position based routing siyatalled sector routing, which guaranties
a short routing path.

e For each pair of nodes, the graph contains a path that vesglgl@approximates the transmission
energy of an energy optimal path[13, 20, 21].

1.1 Our Results

We present a routing and location service algorithm for lwgg mobile ad hoc networks. This constitutes a
network layer of the communication network without any fixefastructure. The algorithm is divided into
two sublayers, one for the location service and one for jpositased routing between known locations. For
the location service we describe a novel highly fault toieself-scaling architecture called Hypercubic Lo-
cation Service (HLS). The architecture resembles of dasstructures in parallel computing [10], bringing
closer the ideas of parallel computing and ad hoc networking

As underlying topology of the Hypercubic Location Service ielax the definition of hypercubic graphs
by introducing the notion of effective bits of hode IDs and dedine neighbors of a node according to the
effective bits. We show that dynamic operations, such astios and deletion of a node with a random ID,
only require the update of the information on a logarithmicnber of nodes. The resulting location service
HLS meets the following requirements.

Short paths: For all pairs of source and destination nodes there are klwation search path. If nodes
are evenly distributed, our basic algorithm looses a mid@dogn) factor compared to the GLS of Li et al.
[11] on the averade a loss that becomes even less as the distribution beconeesrunGLS is superior
over the basic HLS only in the locality of search paths; thipartly an inherent effect of keeping location
servers with an even geographic distribution to survivéesyatic faults. However the modular architecture
allows easy multi-level solutions that compromise betwederance of geographical faults and locality of
search that match GLS path lengths while improving its fenéirance.

1This factor can be improved t©(y/logn), choosing at each node the geographically closest hypieragighbor as next
location server.

Low degree: Each node should store and update the location of only a veayl asumber of other nodes;
symmetrically the location of each node should be storeg @ird small number of other nodes. Even simple
versions of the HLS — based on the dynamized hypercube —~a&chidegree o@(log2 n). The practically
satisfyingO(logn) degree HLS is based on a dynamized version of the so-calldgrig graph [10].

Fault tolerance: Location search is fault tolerant, i.@ source can find the location of a living destination
with high probability, even if a constant fraction of the esdcrashes at the same time. (For the probabilistic
model see Section 3).

Survival of attacks: HLS tolerates even the fault of a constant fraction of nodes én the case when
the faults are systematically made under a certain patfédris.desirable property is achieved by making no
use of geographic or other device-sensitive informatiothelocation service sublayer. Thus if node IDs
are randomly distributed, either as a hash value of the sdBedr other physical address or as a hard-wired
random sequence, no systematic attack (or disaster in@ijegan disable communication as long as a large
fraction of the nodes are alive.

Scalability: Starting with a network containing only one node, we candaaiirge network by adding new
nodes. Also we may turn off most of the nodes and still keepllsmaetwork running. This functionality
is based on a novel idea in the theory of hypercubic netwokkg. introduce the definition of effective
bits (effective ID) of a node and define its neighborhood appately. We prove several properties of this
network and we show how dynamic operations, insertion afetida of a node with a random ID, can be
performed inO(logn) time with high probability. We are not aware of previous sgp@ce of this idea in
the literature.

Self-scaling: Dynamic scalability adds a strong support to fault toleeand/henever a fault is detected,
the remaining nodes may restructure network topology byoxémg the non-responding node; later they
may again rebuild the original scenario if the node recavéstwork topology updates are local in the
logical layer of the location service, thus require only aaramount of administrative traffic over the
network. By the simplicity and speed of restructuring théwveek may survive even a very large scale
destruction. In order to provide this feature, alive nodestiouously remove crashed ones and update its
own neighborhood.

Load balancing: In a scenario with mobile devices communicating through iteohodes that act as
location servers for the devices, fault tolerant serviger@vided by letting a few nodes act as the location
server of the device. HLS provides a simple method of selgdtication servers in a dynamic, fault tolerant
and self-scaling manner. We prove that this method achiasgsptotically optimal load balancing with
high probability. In order to obtain this result, unlike GL\8e does not need any assumption about the
geographic distribution of the nodes.

2 Spanners, Power Spanners, The Yao Graph

Spanners: Spanner graphs have been investigated intensively in 8ted&cades in the computational
geometry (see e.g4] for a survey) and they has been received a lot of atterg®appropriate topologies
for wireless ad hoc networks in the last years [2, 6, 7, 8, B221].

Foru,v € R?, let ||u,v|| be the Euclidean distance betwegeandv. LetV be a set oh points in the
plane andt > 1 be a real constant. L& = (V,E) be a graph whose edges are straight line segments
between pairs of points &f. G is aEuclidean t-spanner, short at-spanner for V, if for all pairs of points
u,v €V there exists a (directed) pakh= u,uy,...,up_1,vfromutovin G, up = u, up; = v, whose length
[PI] := Yo<i<p/||Ui, Ui1]| is at mostt - [|u, v|[, whereP denotes the number of edgesHn Such a path is
called at-spanner path andt is called thestretch factor of G. Spanner graphs guarantee the existence of a
short path between any pairs of nodes. There are spanmessrggjlan efficient distributed construction using
only local informations about the nodes. Lot of such spaniaéso provide us with a simple memoryless
routing mechanism, which routes the packets to he desimatde along &spanner path.

Power spanners: A couple of sparse graph topologies have investigated coimgethe energy consump-
tion of the wireless network, where the nodes can vary theirsimitting power. The energy to send over
distancex is given by a function poyx) := x¢ for some constand > 2 (constant factors are omitted for
simplicity).

In [13] the notion ofd-powert-spanners has been introduced to measure the quality efetiff topolo-
gies w.r.t the energy consumption of the network. A graph= (V,E) is ad-power t-spanner, or (d,t)-
power spanner for V, if for all u,v € V, there is a patl? = u,uy, ..., Up|_1,V, U= Uy, V= Up|, fromuto vin
G such that poWP) := ¥ i ||Ui, Ui+1/|? is at mostt - Min{ ¥ o<im||Wi, Wisa||? U= Wo,w1,....Wn =V,

Wo, ...,Wm € V' }. With other words, the required energy for sending a mesabmey P approximates the
energy required on an energy optimal path up to a constaturfac

For some of the topologies, for which it was known that they swanners, has been shown that they
are alsad-power spanners with a certain power stretch factor [1322Q, Now we prove a theorem which
shows a general relation between spanners and power spaAp@iying this theorem we can immediately
improve the known bounds on the power stretch factor of saraehs. For the proofs see Appendix B.

Theorem 2.1. Let G = (V,E) be a Euclidean t-spanner for V and let 0 < ¢ <t be areal constant. If for
each pair of nodes u,v € V, thereis a t-spanner path P = u, Uy, ...,Up|_1,Vin G, Up = U, Up| =V, such that

for each edge uju;.1 € P, Hu“‘h“‘v*ul” < ¢, then G is a d-power c—t-spanner for V.

Yao graphs: One of the most intensively studied topologies concernireggy consumption and memory-
less position based routing is the Yao gra@tgfaph) [22, 5]. It and its variants have numerous applicatio
and a rich history in various fields of computer science [B,3.2, 13, 14, 20].

The Yao graphGy (V) = (V,Ey) for a setV of n points in the plane is defined as follows. Lebe
an integer an® = 2r/k. Leth;, i =0,...,k—1, be the halfline coincident with the rotated positivaxis
around the origo by an angi8, and letc; be the cone betwedn andh;_;1mogk. FOr a pointp € R? let Gi(p),

i =0,...,.k—1, be the translated comgwhose apex is gv. For eachp €V, letap be an angle, & a, < 6,

and letc/(p) be the rotated cong(p) aroundp by an anglex,. We call the cones](p) thesectors of p. For
peV andc/(p),i=0,...k—1, letn(p) € Sbe the Euclidean nearest neighborpah c¢/(p), if exists, and
connectp to nj(p) by a directed edge, i.&y = {(p,ni(p)) : 0<i <Kk, ¢(p)NV # 0}.

Lemma 2.2. [19] Let V be a set of n pintsin the plane, k > 6, and 8 = 211/k. Then the Yao graph Gy (V) is
at-spanner for V witht = T]ﬁ(e/Z)

We remark that the definition of the Yao grahdraph) in [19] is slightly different from our definition.
It does not contain the parameteg which describes the possibility of the individual rotatioithe sectors

around the nodes, and it uses a slightly different distaooetion instead of the Euclidean distance. But
each steps of the proof remains true also with our modifinatio

The proof of the above lemma in [19] is a constructive oneolistructs d-spanner path between two
arbitrary pointsp,q € V as follows. Letp’ := p. While p’ # q follow the edge in the secta(p’) which
containsg, and sety’ = ni(p').

The above construction oftaspanner path immediately gives us a simple routing styatetpllowing
holds. {) Each nodep € V knows its own geographic positionij)(the package which has to be routed
contains the geographic position of the destination nodd, (@) p knows the geographic position of its
Yao graph neighbors;(p), 0 <i < k. We call the above routing strategsctor routing.

The Yao graph neighbors can be determined efficiently in @iloised and power efficient manner, as
described in [21] for a variation of the Yao graph. This digtted construction assumes the existence of
a MAC layer, e.g IEEE 802.11, which resolves interference problems. Funtbee, it is assumed that
the mobile nodes use directed radio and they can increageatigmission power (in discrete steps) in the
sectors. Each node sends "hello” signals in each sectorimdthasing transmission power until at least one
node hears them and responds or the maximum power is read¥ieeh a node hears this signal it sends
an acknowledge signal which also can contain its geograpbsdtion. Then the node only has to choose
the closest one among the responding nodes in each secwnotes periodically apply this procedure in
order to keep their Yao neighbors up to date.

In [13] it has been proved that the Yao graph igdat)-power spanner fot = (Wln(e/z))d- Since
0 < 1/3, none of the edgasui 1 in thet-spanner path constructed by the sector routing can berdnge
the Euclidean distance between the source and the destimaitde. Hence, we can apply Theorem 2.1 with
¢ =1 and we obtain immediately an improvement on the powerc$tri@ictor of the Yao graph.

Theorem 2.3. Let V be a set of n points in the plane, d > 2, and 0 < 8 < 11/3. Then the Yao graph is a
(d,t)-power spanner witht = —5gigrs-

Thet-spanner path produced by the sector routing does not raegesgsproximate the energy optimal
path up to a constant factor. There are distributions of thietp, where the energy of such a path can be
arbitrarily higher then the energy of the energy optimahp&towever, in the case of uniformly distributed
points the energy of the sector routing path is not far froengptimum.

3 Location Service

We are ready to describe our Hypercubic Location ServiceSHEor the simplicity of the presentation
we reach our final version HLS in simple steps of improvemefitse section is organized as follows. In
Section 3.1 we define a dynamic version of a hypercube wheneummber of nodes may change by addition
and deletion. In the first version fault tolerance is not sufgdl (removal of a node is for example allowed
only after acknowledged by neighbors); we enhance the dinlaypercube with fault tolerance in Section
3.3 by a load balanced node replication scheme over the tyiper

In Section 3.2 we take a first step to resolve the problem ofactjally high degrees in the location
service that would cause an unaffordably high amount of adtnative traffic across the network. High
degrees ofw(logn) result as a cumulative effect of fault tolerance, dynamidaies, and the hypercube
itself. We show that a main degree factor stems from the loyber itself. In ad-dimensional hypercube
with sequences dl bits used as node indices, routing can be made by flippingeaddits in an arbitrary
sequence — a flexibility that we cannot take advantage ofirlgorithm. Indeed, we may well just always
flip the last bit that differs. As described in Section 3.2stis exactly what the De Bruijn graph does: it

6

rotates the bits and then flips the last bit if necessary. Shbsequent nodes over a path may change all bits
by always flipping the actual last one.

A replication parameter of the location service immediately leads to a degreeraf the HLS is built
upon De Bruijn graphs. This degree parameter also appetrs aongestion of the Yao graph edges caused
by the administrative traffic to update geographic positarthe location service neighbors.

Lemma 3.1. Assume that in a degree d location service graph the average Yao graph path length cor-
responding to location service edges is ¢. Then the average congestion of a Yao graph edge caused by
geographic position updates is O(d?). d

For a uniform distribution of the nodes in a 2D squére /n; in practice however the congestion over
the Yao graph is very hard to estimate since we may not assuemedéstribution.

3.1 Dynamic hypercube

Based on the classical hypercube network [10] we define andignaypercube network that supports the
addition and deletion of new nodes by dynamically updatieigvork topology. Updates are kept local which
leads to lower communication costs.

First we assign to each node a sufficiently large number @fpeddent random bits as node IDs. Net
be a sufficiently large upper bound on the potential numbandes. Let there be< N nodes, each with a
logN bit ID. Since not all of theN possible addresses are assigned, we consider only pag bitthacting
as an address by the following rule.

Theeffective ID of a nodesis the shortest prefix df bits of the ID, such that for all nodes that
agree withsin the firstk bits also agree in thgk+ 1)-st. Note that theék + 2)-nd and further
bits may or may not be equal.

We define pairs of nodes that communicate their location ¢b ether. For two nodes ands, we say that

s, is areplicate of s if their effective IDs are equal;

s, is atypei neighbor of s, 1 > 1, if their effective ID differs in exactly one bit, in bit(allowing
that one effective ID is longer and no restriction is impoapdn these bits); in particular $
hask effective bits, then a typk neighbor is called &st bit neighbor.

While the type neighbors are not necessarily unique, we have a high priggdimund on their number.

We say that an event occurs wittgh probability (w.h.p) its probability is 1— n~¢, wheren is
the current number of nodes aad- O is a constant.

For the proof of the following claims see the Appendix.
Lemma 3.2. The maximum number of type i neighbors and replicates over all nodesis O(logn), w.h.p.

In our network each node only knows its neighbors. This mawg #ffect in messages sent to nonexistent
IDs. It it may have several reasons: the node is switchedrdffis crashed, or the source called a wrong,
nonexistent number. In order to manage this situation, welsi let each node act as a server for all IDs
with the same effective ID bits. The distribution of thefull IDs to nodes is unique; we also show that
appropriate load balancing is achieved.

Lemma 3.3. The effective ID of all nodes have at least logn — cloglogn and at most clogn bits, w.h.p.

7

Lemma 3.4. Each node serves for at most %clogn IDs, w.h.p.

Next we give algorithms for routing and adding/removing @@drom the network. We assume no
faults, i.e in our model each node has an exact knowledge of its neigbbdrin the network topology.
When adding a node, we must notify all affected nodes abautkiange and receive acknowledgments
before starting operation. Finally when removing a node st notify all (affected) nodes and wait for
acknowledgments. Algorithms are described with pseudaaodppendix A.

Routing in a dynamic hypercube proceeds as follows. If thesage destination ID equals with the node
ID in the (i — 1) most significant bits, then the node passes it to a tyéghbor, if exists. We show that the
required Type neighbor always exists; for this assume that the messagiesest node. Leti be the index
of the most significant bit where node and destination IDiedifThens must have a typeneighbor since
the destination ID itself acts as a candidate.

Insertion of a node: When adding nods, we first connect the geographically closest node by gradual
increasing the power of a network search signal. Throughrtbde we route a special "wakeup” message in
which the the destination field is filled with the ID afSinces has not yet joined the network, this message
gets stuck at a certain node Let k be the number of effective bits of node By definition, the ID ofsis
agrees in the firdt bits with the ID ofs’. Furthermore, each node with the same ID prefix of lefhgthust
have the samék+ 1)-st bit ass'.

Given nodes' and the valud, we distinguish two cases. If the ID efands’ also agree in thék+ 1)-st
bit, thens becomes a new replicate; the neighbors afe identical to those of thus all neighborhood
information is available frons. Nodes may also notify all neighbors of the new neighbor nede

Finally if the (k+ 1)-st bits differ, thens is a node with no replicate. Far< k its typei neighbors
are identical to those of. In additions becomes the unique typd+ 1) neighbor ofs' and of all of
its replicates. The original neighborhood $fnow splits between the replicates fands by adding a
new effective address bit, following tlaeld ef f ect i ve_bi t algorithm (see Appendix) initiated by node
$=¢5.

In both cases' is capable of updating the entire network view in a single mwamication round with its
neighbors and. A single message (and acknowledgment) needs to be sehtigtibors notifying them
of the arrival ofs and another one t®containing the list of current neighbor locations.

Removing a node: When removing nods, we must notify all of its neighbors. By sending all neighbor
hood information to all neighbors, they are capable of updahe entire network view with the exception
whens has no replicates (other than itself). In this casghfadk bits in its effective ID, then the typlk
neighbors of must drop their last effective ID bit.

We mention that in the non-fault-tolerant model, since itynt@ke a while till the network view is
updated, a removed nodenust perform routing tasks if requested as long as all messsigbmitted about
the removal are confirmed. Once however confirmations areedrmo neighbor of will ever try to uses
again for routing.

3.2 Low-degree hypercubic networks — De Bruijn graphs

Next we define a dynamic network which we derive from consagree hypercubic graphs, from De Bruijn
graphs [10]. TheN-node De Bruijn graphs defined as follows (see Fig. 1). Eadeinas a unique Idg bit
ID. Two nodes are connected if IDs arise as a

1. left shift by one followed by the addition of an arbitragakt significant bit, i.ean ID b is connected
to B0 and toB1, b € {0,1}, B € {0,1}'°9N-1; or

2. right shift by one followed by the addition of an arbitranost significant bit, i.ean ID 3b is con-
nected to @ and to .

TheN-node De Bruijn graph has degree four (two of both types) hadeangth of the longest path is Ibg
Routing (by left shifts) is performed by selecting the latyeumbeti, such that after loiy — i left shifts of
the node’s ID the firsitbits agree with the destination ID. Then the message is gasseneighbor with left
shifted ID where the quantityincreases by one; since the vaiuacreases, the message arrives in at most
logN steps.

Now we define the dynamic De Bruijn graph, which will be thedatour low-degree location service.
Dynamic updates in this graph are performed similarly tohigpercube. Network scaling by adding or
dropping effective bits is possible by the key property offyaijn networks that a-dimensional De Bruijn
graph is the edge graph of té-+ 1)-dimensional one [10]. Instead of using this fact we givecliproofs
of the bit add and drop algorithm correctness (see Appendix)

For each node, let k, be the number of effective bits of Let G be the graph which contains an edge
(u,v) if and only if thek,, := min{ky, k,} most significant ID bits of7 can be obtained from thig,, most
significant bits fromu either by a left shift and the addition of an arbitrdgy,-th (least significant) bit, or
a right shift and the addition of an arbitrary most significhin. We say thav is aleft neighbor of u in the
former and aight neighbor in the latter case. The graghis called thedynamic De Bruijn graph.

Lemma 3.5. The maximum number of left (right) neighbors over all nodesis O(logn), w.h.p.

For the purposes of the discussion we use the teepiicate andlast bit neighbor as in Section 3.1 with
the same definition as there. Notice however that last bihieirs are no longer neighbors in the dynamic
De Bruijn graph, they are at least of distance two (siblings common right neighbor), or, if their number
of effective ID bits differ byd, they may reside on different paths starting from a commgint lancestor of
at mosto right neighbor steps.

Routing (by left shifts) in the dynamic De Bruijn graph is fsemed as follows. For a nodelet |, be
a the minimum number of left shifts followed by the additidrao arbitraryk,-th bit in the effective ID of
v, which is necessary to obtain the fikstbits of the destination. When a packet arrives at a nodeen it
will be passed to the left neighbef of v, where the valué, decreases and the decrease is maximal. Then
the packet arrives to the destination in at massteps, wherdg is the number of effective bits of the start
nodes, which isO(logn).

When a nodes with a random ID is inserted (deleted) into the network, thenher of effective bits
of several nodes may change. Then the neighborhood of sodes moust be accordingly updated. The
following two Lemma imply that only neighboring nodes anglieates ofv are affected by the change.

Lemma 3.6. (bit addition) Let G’ be a dynamic De Bruijn graph obtained from G, such that the effective
ks, ID bits of an arbitrary node sp are extended by an additional (ks, + 1)-st effective bit and the edges are
updated accordingly. Then the set of left and right neighbors of sp € G’ are subsets of those in G.

Lemma 3.7. (bitremoval)Let G’ be a dynamic De Bruijn graph obtained from G, such that the last effective
bit of an arbitrary node s is deleted and the edges are updated accordingly. Then the set of left and right
neighbors of s in G’ are all left and right neighbors of 5o in G or a last bit neighbor of 5in G.

Lemma 3.8. The number of nodes affected by the insertion/deletion of a node v is O(logn), w.h.p.

Proof. When a nodey is inserted, the length of the effective ID only changes atréplicates of. By
Lemma 3.2, their number ©(logn) w.h.p. Furthermore, the nodeand all of its replicates had the same
neighbors, whose number, by Lemma 3.50{gogn) w.h.p. Thus, w.h.p there areéD(logn) nodes, where
the change of the number of effective bits must be propagated

When a node is deleted, several nodes may become replicates of eaahbytsbortening the effective
IDs. By Lemma 3.2, the number of new replicates will®dogn) w.h.p. They all will have the same
neighborhood, which contains all old neighbors, and whase by Lemma 3.5, i©(logn) w.h.p. O

3.3 Fault tolerance by replication

The dynamic hypercubic networks in the previous sectiorspaone to faults when nodes unexpectedly
crash without passing update information to their neighbblow we define a fault-tolerant network topol-
ogy, which circumvent routing failures by replicating eaubde in approximately copies, where is a
prescribed function of the network size. The ID of the regilis is obtained by cutting a certain number of
least significant bits from the effective IDs. Typaeighbors are defined accordingly. When a hypercubic
neighborw of a nodev crashesy can route the packages to any of the replicates.dfhis replicate has the
same neighbors ag had, therefore, it can continue the routing.

Usingr = clogn replicates, if nodes fail with a probability bounded by astamtp < 1, one copy of
each node will stay alive, and each packet destinated tavanradde can be delivered w.h.p.

Notice that the nodes have no knowledge,cdnd hence, cannot compute legHowever by Lemma 3.3
we know that the number of effective bits estimatesiegthin a factor of two.

Fault tolerance can be combined with the dynamic updatelseoptevious subsections. Whenever the
routing detects a fault, the network view (ine neighborhood) of the affected nodes is updated as in
Section 3.1. In our model we assume that the updates canfeerped fast enough that after the update the
neighborhood informations are consistent in the network.

For each node we decide to cub bits of the effective ID according to the rule that the numbgr
replicates must be betweegr andcpr, for two appropriate constant < c,. More precisely, we define four
constantsy < €1 < C; < €3. A node request the addition (deletion) of an effectivefbisiview of replicates
is abovecs - r (belowcy - r). All replicates must accept the request if their view is\ab - r (belowcy - r).

Finally we prove that, as long as= Q(logn), the size of the replicates remai®logn) after applying
the algorithmsadd/ drop_ef fecti ve bi t.

Lemma 3.9. If the number of replicates of all nodes are O(r) for somer = Q(logn), then the same holds
after applying add_ef fecti vebit ordropeffectivebit.

4 Conclusion

We described an ad hoc mobile routing algorithm that ackieveery high level of fault tolerance while
requiring only a low amount of storage and administrativegwnication. The two ingredients of our solu-
tion are a novel location service with an architecture rdsgmg of classical structures in parallel computing
[10], bringing closer the ideas of parallel computing andhad networking, and spanner graphs, a structure
of computational geometry that has recently received mttelnton in mobile networking.

Our location service easily cooperates with any geograghiting method or other routing ideas. Fur-
ther investigation is needed to find the empirically besbtogy to be used in our algorithm. Here several
variants of the Yao graph should be investigated, includipgrsified versions as in [13, 20, 21]. We also

10

plan to combine the location service with caching method$ ss in the AODV protocol [17] in future
work.
The final parameters of our location service for n nodes arersrized as follows.

e Paths of logn location servers, each step over this path correspondiagyemgraphic sector routing
across the network;

e Degree depending on the level of fault tolerance with a minimum ohd a value o’ logn to meet
the high probability - n—¢ requirement;

e Load balancing with expected optimal value and peaks of a constant facbon fsptimum, w.h.p

e Fault tolerance (with high probability 1- n—¢ at any time) andcalability including self-scaling fully
supported.

e Survival of systematic attacks is provided by a random ID distribution (such as hashing léresses);
the location service ID thus has no relation to the geograpbsition or other physical notion of the
nodes.

References
[1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Sntiiclidean spanners: Short, thin, and lanky. In
ACM Symposium on Theory of Computing (STOC' 95), pages 489-498, 1995.

[2] J. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Rogtmith guaranteed delivery in ad hoc wireless networks.
In Workshop on Discrete Algorithms an Methods for Mobile Computing and Communications (DIALM’99),
pages 48-55, 1999.

[3] K. L. Clarkson. Approximation algorithms for shortesath motion planning (extended abstract). AGM
Symposium on Theory of Computing (STOC'’ 87), pages 56—65, 1987.

[4] D. Eppstein. Spanning trees and spanners. In J.-R. Satk.aUrrutia, editorsiHandbook of Computational
Geometry, chapter 9, pages 425-461. Elsevier, 2000.

[5] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling andtesl techniques for geometry problems.A@M
Symposium on Theory of Computing (STOC' 84), pages 135-143, 1984.

[6] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zbiscrete mobile centers. IACM Symposium on
Computational Geometry (SCG’01), pages 188-196, 2001.

[7] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zeometric spanner for routing in mobile networks.
In ACM Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC' 01), pages 45-55, 2001.

[8] Y. Hassin and D. Peleg. Sparse communication networlsé#fitient routing in the planeDistributed Comput-
ing, 14(4):205-215, 2001.

[9] D. B. Johnson and D. A. Malz. Dynamic source routing in @t kvireless networks. IMobile Computing,
volume 353. Kluwer Academic Publishers, 1996.

[10] T. Leighton.Parallel Algorithms and Architectures. Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[11] J. Li, J. Jannotti, D. S. J. De Couto, D. Karger, and R. i4or A scalable location service for geographic ad
hoc routing. INACM International Conference on Maobile Computing and Networking (MobiCom'00), pages
120-130, 2000.

[12] X.-Y.Li, G. Calinescu, and P.-J. Wan. Distributed ctrastion of a planar spanner and routing for ad hoc wireless
networks. IN|EEE INFOCOM, 2002.

[13] X.-Y. Li, P.-J. Wan, and Y. Wang. Power efficient and sgaspanner for wireless ad hoc networks.|EEE
International Conference on Computer Communications and Networks (ICCCN’'01), 2001.

11

[14] T. Lukovszki. New results of fault tolerant geometrmasiners. InWbrkshop on Algorithms and Data Structures
(WADS 99), pages 193—-204, 1999.

[15] M. Mauve, J. Widmer, and H. Hartenstein. A survey on tiosibased routing in mobile ad hoc networkSEE
Network Magazine, 15(6):30-39, 2001.

[16] V. D. Park and M. S. Corson. A highly adaptive distritditeuting algorithm for mobile wireless networks. In
|EEE INFOCOM, pages 1405-1413, 1997.

[17] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc emdnd distance vector (AODV) routing. IBTF
Internet Draft, (Work in Progress) dr af t - i et f - manet - aodv- 09. t xt , November 2001.

[18] C. E. Perkins and P. Bhagwar. Highly dynamic destimaBequenced distance-vector routing (DSDV) for mobile
computers. IPACM SIGCOMM ’ 94 Conference on Communications Architectures, Protocols and Applications,
pages 234-244,1994.

[19] J. Ruppert and R. Seidel. Approximating tihelimensional complete Euclidean graph.3hl Canadian Con-
ference on Computational Geometry (CCCG'91), pages 207-210, 1991.

[20] Y. Wang and X.-Y. Li. Distributed spanner with boundeztidee for wireless ad hoc networks. Rarallel and
Distributed Computing I ssues in Wireless networks and Mobile Computing, 2002.

[21] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distrilead topology control for power efficient operaion in
wireless multihop ad hoc networks. IEEE INFOCOM, 2001.

[22] A. C. Yao. On constructing minimum spanning treeskidimensional spaces and realted problenSsAM
Journal on Computing, 11(4):721-736, 1982.

12

Appendix
A Algorithms

add effectivebit

Initiator nodesy:

1. notify replicates;

2. if confirmation arrives from (all or prescribed fraction) netieen

3. notify all replicates and Typieneighbors;

4 for all i where Typd neighbors have more effective ID bits thgydo
5 drop neighbors that do not agree in new effective bit;

Replicates of sy:

1. if second notice arrives frosy then

2. for all i where Typd neighbors have more effective ID bits thedo
3. drop neighbors that do not agree in new effective bit;

Typei neighbors of y:
1. if first notice arrives frongy and sy has less effective bits tharthen
2. drop Type neighbors that do not agree in new effective bit;

dropeffectivebit

Initiator nodesy with k effective ID bits:

1. notify replicates and Typeneighbors;

2. if confirmation arrives from (all or prescribed fraction) netieen

3. merge neighbor lists received,;

4 send neighbor list to replicates and Typeeighbors;

5 send list of replicates and Tyjganeighbors to all Type neighbors;

Replicate or Typdé neighbors of sy:

1. send neighbor list tey

2. if second notice arrives frosy then
3. merge new neighbor list;

Typei neighbors of sy:
1. merge Type neighbor list;

13

B Proofs

Proof of Theorem 2.1. Consider two nodes,v € V. Let P* = u,uy,...Up:|_1,V Up = U, Up:| =V, be an

energy optimal path from to v. The edges oP* are not necessary containedGnfor each edgeiu; 1 €
_ . . Juitt
P* there is at-spanner path?, = ui,uil,...,u!P'l 1,ui+1 in G, W = u, u!P" = Ui, 1 with |‘|‘Lljlliﬁ:+l|‘|‘ < c for all

0<j<|R]|. Then

A i idlng

pOW(PI) = pOW(uiJvuiH) = Z ||uij>uij+ ||
0<j<|R]| 0<j<|R|
—— -

< 5 |- (cllui, uiga |)9

0<j<|RY|

_ _ i j+1

= ¢ |ui, uia)00 > [luf,ul |
0<j<|RY|

¢ Jui, Ui a |4t Ui, Ui

= ¢t pow(ui, Uisa). 1)

Consider the patl® = Pyo...oPp:_; fromuto vin G. Then after applying (1) to eadh we obtain that
pow(P) = 5ipow(P) < ¢4t 3; pow(u;, Ui, 1) < ¢~ 1t - pow(P*). This proves the claim. O

Proof of Lemma 3.2. We use standard probability calculation. By selectihgs a sufficiently large upper
bound on the number of nodes and randomly distributing IDsasstime each bit of each ID is selected
independently at random. Hence we will assume a fixed ID fdersand randomly select ID both of other
nodes in an appropriate order of our choice.

To prove for replicates we fix nodeand select the ID bits of all other nodes bit by bit. The prared
stops when thé& effective bits are selected. Lebe the number of nodes having the sdomeost significant
bits ass. In the (k+ 1)-st selection round all of thisnodes obtain the same bit &isThe probability of this
eventis 2, implyingr = O(logn), w.h.p.

For typei neighbors we follow a similar process except for skippingi I the selection process. Let
s be a fixed node witlk effective bits. Letr be the number of nodes having the same bits @spositions
1,...,i—1/i+1 ..k and an arbitrary bit at position These nodes are either replicates or Tiypeighbors
of s. Now we consider the selection of thle+ 1)-st bit together with thé-th. Choosing ari-th bit different
from thei-th bit of s the (k+ 1)-st bit can be selected independently. But if we choose theesdh bit as
thei-th bit of sthen we only have a single choice for tfle+ 1)-st bit: it also must be equal to thik+ 1)-st
bit of s. The probability of this event i63/4)", implying r = O(logn), w.h.p. O

Proof of Lemma 3.3. For the lower bound we may appropriately modify the constémtassume = 2.
We may model the selection of the most significahD bits as randomly distributing balls inton bins.
Notice that an effective ID of — clogr bits means that%®9" = r¢ consecutive bins remain empty, started
with an indexi - ¢, 0< i < . This has a probabilityt - (1-S)"< 1 .e™ =n=°.

For the upper bound we consider a pair of tygbegn neighbors. The probability thalogn — 1 bits of
their ID are equal and while the last are different i§'9%8" = n—C. The claim follows. O

Proof of Lemma 3.4. The upper bound follows by Lemma 3.3. O

Proof of Lemma 3.5. We prove the claim for left neighbors. The proof for right giwirs is analogous.
We fix a nodes. Let S be a left neighbor 0§ having a minimum number of effective bits among the left

14

neighbors of. Letk = min(ks, ks) be the minimum number of effective bits sfinds. LetLk— 1 be the
set of nodes having the sarke- 1 most significant bits as. Clearly, all left neighbors of are contained in
Lk_1. Note,Lx_1 may also contain nodes which are not left neighbors dietr be the number of nodes in
Lk_1. Itis an upper bound on the number of left neighbors.dh order to give a bound on we again use
the model of distributingn balls inton bins uniformly at random. Then determinimngs equivalent to the
counting the balls in consecutive bins, whose index stdtt the same malogn, k— 1) most significant bits

as the ID ofs'. By Lemma 3.3k > logn— cloglogn, w.h.p. Therefore, we have to count the balls in at most
c’logn bins. By a Chernoff bound we obtain that the numbef balls in at most’logn consecutive bins is
O(logn), w.h.p. Consequetly, also the probability of the joint eMer logn— cloglogn andr = O(logn)

is at least - n~¢". O

Proof of Lemma 3.6. If a nodes hasks < kg,, then their neighborhood relation remains unchanged. élenc
we may letk = ks, and assumé&s > k+1; let the(k+ 1)-st, k-th, and(k — 1)-st ID bits ofsy bea, b andc,
respectively.

In the above setting we consider the possilide- 1)-st, k-th, and(k — 1)-st ID bits of a left neighbos
of sp. In G these bits arbxy wherex andy are arbitrary while inG’ they arebcz wherez is arbitrary. Since
the remaining most significant bits are uniquely determimeg see the neighbors & with x = ¢ remain
neighbors inG’ while the remaining are not.

We may resolve right neighbors by a similar argument.dbetbe as before; now a right neighbor@
has an arbitrary most significant bit and-¢h bit with value a while inG’ we havek-th and(k+ 1)-st bits
ab instead. Agairsremains a neighbor if it&k+ 1)-st bit isb and we have no other neighbors. O

Proof of Lemma 3.7. If a nodes hasks < kg,, then their neighborhood relation remains unchanged. élenc
we may letk = ks, and assumés > k; let the (k— 2)-nd, (k— 1)-st, andk-th ID bits of 55 be a, b andc,
respectively.

By notifying last bit neighbors we may identify all repliestof nodes that arise by complementing the
k-th ID bit of s. Then all new left neighbors & are neighbors of the new replicaehence after finding
thes, we are done by identifying new neighbors in a second comeation round.

We may resolve right neighbors by a similar argument. Then@ichange if the right neighbors have less
thank ID bits. Otherwise the new right neighbors are the last bigimgors of the old right neighbors. O

Proof of Lemma 3.9. The first part follows by a Chernoff bound for the number of e®avith given new
effective bit 0 or 1. And the second part follows by a similaglanent as in Lemma 3.2 since the new
replicates are all last bit neighbors. O

C Figures

We included the screenshot of our tests of a 256-node fdeltatat degree 16 hypercubic location service
described in Section 3.2. We distributed nodes uniform mdeen within a square and built the Yao graph
below (Figure 2).

15

01

00 11

10

Figure 1: The low-degree location service base networkdNfer 4 andN = 8. Arrows point from right
neighbor towards left neighbor.

Figure 2: The Yao graph of the 256 nodes distributed unifgratirandom within a square.

Figure 3: The location path in the De Bruijn graph based HLBrvchoosing an arbitrary neighbor

16

Figure 4: The location path in the De Bruijn graph based HLgmvchoosing the closest neighbor

Figure 5: The Yao graph path obtained by sector routing

17

