
A Fault Tolerant Distributed Location Service
for Geographic Ad Hoc Routing

András Benczúr∗ Tamás Lukovszki†

Abstract

We introduce a new distributed location service, thehypercubic location service (HLS) for wireless
mobile ad hoc networks. It provides information about geographic position of nodes, which is required
by position based routing methods. Together with a positionbased routing, in particular with a greedy
routing in appropriate spanner graphs, HLS contributes an efficient network layer of wireless ad hoc net-
works. Underlying HLS is anO(logn) degree graph which is based on a dynamic version of hypercubic
graphs, especially of the De Bruijn graph. We introduce the notion of effective bits of node IDs and we
define the hypercubic neighborhood relation accordingly. We show how dynamic operations, insertion
and deletion of a node with a random ID can be performed in logarithmic time in such hypercubic graphs.

A key feature of HLS is its very strong fault tolerance as wellas scalability to large changes in the
number of nodes, allowing very flexible control over the network size. A large network can be gradually
built from a few nodes and then again it can be reduced to a verysmall size with fast network topology
updates. In addition the architecture is extremely fault tolerant. It resists the simultaneous failure of
a constant fraction of the nodes, including even a systematic destruction within certain regions. The
combination of scalability and fault tolerance results in anetwork which survives even a fast destruction.

1 Introduction

This work considers the problem of routing in large wirelessmobile ad hoc mobile. Ad hoc networks
require no fixed infrastructure. They are thus particularlysuitable for example for rescue operations in
regions affected by a natural disaster. In ad hoc networks the mobile hosts also perform routing tasks. The
dynamics of such networks require routing strategies substantially different from the ones used in static
communication networks, since storing and updating large routing tables at mobile hosts would congest the
network with administration packages very fast.

Ad hoc routing received a lot of attention in the last years. Several routing algorithms have been de-
veloped: the so-called proactive protocols that continuously maintain route informations for all destinations
like DSDV [18], and the reactive ones that construct the routes for the destinations as required like DSR [9],
TORA [16], AODV [17]. Neither types of strategies are fully satisfying however: the proactive ones suffer
from a congestion of administrative messages when devices begin to move relatively fast; reactive strategies
in contrast have the drawback of long network search routes and thus high initiation costs.

∗Computer and Automation Research Institute of the Hungarian Academy of Sciences,benczur@sztaki.hu and Depart-
ment of Operations Research, Eötvös University, Budapest. Supported from grants OTKA T-30132 and T-29772; NWO-OTKA;
AKP 104024

†Heinz Nixdorf Institute and Deptartment of Mathematics andComputer Science, Paderborn University
talu@uni-paderborn.de. Supported by the DFG-SFB 376.

1

Li et al. [11] present a routing strategy that combines the advantages ofproactive and reactive rout-
ing. They describe a method which consists of two sublayers.The first sublayer provides a position based
method, called geographic forwarding. This mechanism can be used when the source node knows the ge-
ographic position of the destination. Position based routing methods utilize the geographic position of the
destination node for choosing the next node in the routing path. (For a survey on position based routing
see [15].) The other sublayer, called Geographic Location Service (GLS) provides a method to obtain this
position information. In GLS, each mobile node selects a fewother nodes as its location servers using the
idea of consistent hashing combined with location informations. Assuming that the nodes can determine
their current geographic position any time – e.g. by using a global positioning system (GPS) or some other
method – they periodically resend position information to the location servers by a similar routing mech-
anism used for normal data transmission. In order to initiate communication, the source node needs the
geographic position of the destination. It has to find a location server of the destination. A location server
can be determined by visiting a well-defined sequence of nodes such that each acts as a location server of
the next in the sequence.

We present a new location service that, by keeping most features of the GLS [11], also improves it in
several senses.

• We improve the degree of the graph underlying the location service toO(logn), which is independent
from the geographic distribution of the nodes.

• We provide very strong fault tolerance that also includes the self-scaling of the network, still we keep
degrees at least as low as in the GLS.

• Unlike GLS, we need very little assumption about how the density varies across geographic subre-
gions.

• HLS also survives a systematic destruction of devices, alsoa destruction of all devices within a region.
• Our location service forms a sublayer or the network layer, thus providing the flexibility of combining

HLS with an arbitrary position based or other routing strategy.
• We keep the amount of administrative traffic close to that of [11] even in the fault free case, with a

slight loss in the locality of communication that we can fix bya multi-layer solution.

In our Hypercubic Location Service (HLS) each node is identified by a unique random ID. Such a random
ID distribution can be easily achieved by either hashing thenode’s IP or other physical address into a
sufficiently large interval or hard-wiring a random sequence into the device. The nodes are organized in
a dynamic and fault tolerant network based on hypercubic network [10] with respect to their random ID.
In such networks neighbor IDs can be obtained by simple bit shift and bit flip operations of IDs. In order
to manage the situation that most of possible random IDs are not present in the network, we introduce the
notion ofeffective bits of the IDs and define the neighborhood relation in our hypercubic graphs according
to such bits.

Each node in the network maintain location information of its hypercubic neighbors by periodically
sending its own position to that neighbors. When the location of a node is known, a position based routing
strategy can be used for sending messages to that node.

Routing via HLS: When a nodeu wants to send data to another nodev, first u has to detect the location
of nodev. This happens as follows: The random ID ofv can be obtained from the random ID ofu by
performing a certain sequence of elementary bit operations. This sequence defines a path in the hypercubic
network fromu to v. Nodeu sends a so-called location request forv on this path. The location request
contains the ID ofu and v and the location ofu. Since the hypercubic neighbors are storing up-to-date
location information from each other, the location requestwill be sent to the next node on the hypercube

2

path using position based routing. When the location request reachesv, thenv sends its own location tou by
using position based routing. Afteru has received the position ofv it sends the data tov using the position
based routing, as well.

The random distribution of mobile node IDs ensures two key features of the HLS:

• We prove that the location work and the storage requirementsare balanced across all the nodes.
• Since the IDs are independent of the geographic location or any other sensible network property, HLS

resists faults of almost all nodes in a certain region or a systematical destruction of a constant fraction
of nodes.

As mentioned above, in order to route the message between twoconsecutive nodes of the hypercube path,
we can use any position based routing strategy. In particular, we can use appropriate sparse graphs called
power spanners [13] that allow low power routing and/or a greedy position based routing with guaranteed
delivery [2]. We suggest the use of the so-called Yao graph [22] as an underlying geometric sublayer, a
graph with a number of desirable properties including:

• Each node has a constant number of outgoing edges.
• The graph can be computed and maintained efficiently in a distributed manner (see [21] for example),

allowing fast recovery from faults.
• The graph allows a very simple position based routing strategy, called sector routing, which guaranties

a short routing path.
• For each pair of nodes, the graph contains a path that very closely approximates the transmission

energy of an energy optimal path[13, 20, 21].

1.1 Our Results

We present a routing and location service algorithm for wireless mobile ad hoc networks. This constitutes a
network layer of the communication network without any fixedinfrastructure. The algorithm is divided into
two sublayers, one for the location service and one for position based routing between known locations. For
the location service we describe a novel highly fault tolerant self-scaling architecture called Hypercubic Lo-
cation Service (HLS). The architecture resembles of classical structures in parallel computing [10], bringing
closer the ideas of parallel computing and ad hoc networking.

As underlying topology of the Hypercubic Location Service we relax the definition of hypercubic graphs
by introducing the notion of effective bits of node IDs and wedefine neighbors of a node according to the
effective bits. We show that dynamic operations, such as insertion and deletion of a node with a random ID,
only require the update of the information on a logarithmic number of nodes. The resulting location service
HLS meets the following requirements.

Short paths: For all pairs of source and destination nodes there are shortlocation search path. If nodes
are evenly distributed, our basic algorithm looses a minorO(logn) factor compared to the GLS of Li et al.
[11] on the average1, a loss that becomes even less as the distribution becomes uneven. GLS is superior
over the basic HLS only in the locality of search paths; this is partly an inherent effect of keeping location
servers with an even geographic distribution to survive systematic faults. However the modular architecture
allows easy multi-level solutions that compromise betweentolerance of geographical faults and locality of
search that match GLS path lengths while improving its faulttolerance.

1This factor can be improved toO(
√

logn), choosing at each node the geographically closest hypercubic neighbor as next
location server.

3

Low degree: Each node should store and update the location of only a very small number of other nodes;
symmetrically the location of each node should be stored only at a small number of other nodes. Even simple
versions of the HLS – based on the dynamized hypercube – achieve a degree ofO(log2 n). The practically
satisfyingO(logn) degree HLS is based on a dynamized version of the so-called DeBruijn graph [10].

Fault tolerance: Location search is fault tolerant, i.e. a source can find the location of a living destination
with high probability, even if a constant fraction of the nodes crashes at the same time. (For the probabilistic
model see Section 3).

Survival of attacks: HLS tolerates even the fault of a constant fraction of nodes even in the case when
the faults are systematically made under a certain pattern.This desirable property is achieved by making no
use of geographic or other device-sensitive information inthe location service sublayer. Thus if node IDs
are randomly distributed, either as a hash value of the node’s IP or other physical address or as a hard-wired
random sequence, no systematic attack (or disaster in a region) can disable communication as long as a large
fraction of the nodes are alive.

Scalability: Starting with a network containing only one node, we can build a large network by adding new
nodes. Also we may turn off most of the nodes and still keep smaller network running. This functionality
is based on a novel idea in the theory of hypercubic networks.We introduce the definition of effective
bits (effective ID) of a node and define its neighborhood appropriately. We prove several properties of this
network and we show how dynamic operations, insertion and deletion of a node with a random ID, can be
performed inO(logn) time with high probability. We are not aware of previous appearance of this idea in
the literature.

Self-scaling: Dynamic scalability adds a strong support to fault tolerance. Whenever a fault is detected,
the remaining nodes may restructure network topology by removing the non-responding node; later they
may again rebuild the original scenario if the node recovers. Network topology updates are local in the
logical layer of the location service, thus require only a small amount of administrative traffic over the
network. By the simplicity and speed of restructuring the network may survive even a very large scale
destruction. In order to provide this feature, alive nodes continuously remove crashed ones and update its
own neighborhood.

Load balancing: In a scenario with mobile devices communicating through mobile nodes that act as
location servers for the devices, fault tolerant service isprovided by letting a few nodes act as the location
server of the device. HLS provides a simple method of selecting location servers in a dynamic, fault tolerant
and self-scaling manner. We prove that this method achievesasymptotically optimal load balancing with
high probability. In order to obtain this result, unlike GLS, we does not need any assumption about the
geographic distribution of the nodes.

2 Spanners, Power Spanners, The Yao Graph

Spanners: Spanner graphs have been investigated intensively in the last decades in the computational
geometry (see e.g. [4] for a survey) and they has been received a lot of attentionas appropriate topologies
for wireless ad hoc networks in the last years [2, 6, 7, 8, 12, 13, 21].

4

For u,v ∈ R
2, let ||u,v|| be the Euclidean distance betweenu andv. Let V be a set ofn points in the

plane andt > 1 be a real constant. LetG = (V,E) be a graph whose edges are straight line segments
between pairs of points ofV . G is aEuclidean t-spanner, short at-spanner for V , if for all pairs of points
u,v ∈V there exists a (directed) pathP = u,u1, ...,u|P|−1,v from u to v in G, u0 = u, u|P| = v, whose length
||P|| := ∑0≤i<|P| ||ui,ui+1|| is at mostt · ||u,v||, whereP denotes the number of edges inP. Such a path is
called at-spanner path andt is called thestretch factor of G. Spanner graphs guarantee the existence of a
short path between any pairs of nodes. There are spanners allowing an efficient distributed construction using
only local informations about the nodes. Lot of such spanners also provide us with a simple memoryless
routing mechanism, which routes the packets to he destination node along at-spanner path.

Power spanners: A couple of sparse graph topologies have investigated concerning the energy consump-
tion of the wireless network, where the nodes can vary their transmitting power. The energy to send over
distancex is given by a function pow(x) := xd for some constantd ≥ 2 (constant factors are omitted for
simplicity).

In [13] the notion ofd-powert-spanners has been introduced to measure the quality of different topolo-
gies w.r.t. the energy consumption of the network. A graphG = (V,E) is a d-power t-spanner, or (d, t)-
power spanner for V , if for all u,v ∈V , there is a pathP = u,u1, ...,u|P|−1,v, u = u0, v = u|P|, from u to v in
G such that pow(P) := ∑0≤i<|P| ||ui,ui+1||d is at most t ·min{∑0≤i<m ||wi,wi+1||d : u = w0,w1, ...,wm = v,
w0, ...,wm ∈V}. With other words, the required energy for sending a messagealongP approximates the
energy required on an energy optimal path up to a constant factor t.

For some of the topologies, for which it was known that they are spanners, has been shown that they
are alsod-power spanners with a certain power stretch factor [13, 20,21]. Now we prove a theorem which
shows a general relation between spanners and power spanners. Applying this theorem we can immediately
improve the known bounds on the power stretch factor of some graphs. For the proofs see Appendix B.

Theorem 2.1. Let G = (V,E) be a Euclidean t-spanner for V and let 0 < c ≤ t be a real constant. If for
each pair of nodes u,v ∈V , there is a t-spanner path P = u,u1, ...,u|P|−1,v in G, u0 = u, u|P| = v, such that

for each edge uiui+1 ∈ P, ||ui,ui+1||
||u,v|| ≤ c, then G is a d-power cd−1t-spanner for V .

Yao graphs: One of the most intensively studied topologies concerning energy consumption and memory-
less position based routing is the Yao graph (Θ graph) [22, 5]. It and its variants have numerous applications
and a rich history in various fields of computer science [1, 3,8, 12, 13, 14, 20].

The Yao graphGY (V) = (V,EY) for a setV of n points in the plane is defined as follows. Letk be
an integer andθ = 2π/k. Let hi, i = 0, ...,k −1, be the halfline coincident with the rotated positivex-axis
around the origo by an angleiθ, and letci be the cone betweenhi andhi+1modk. For a pointp ∈ R

2 let ci(p),
i = 0, ...,k−1, be the translated coneci whose apex is atp. For eachp ∈V , let αp be an angle, 0≤ αp < θ,
and letc′i(p) be the rotated coneci(p) aroundp by an angleαp. We call the conesc′i(p) thesectors of p. For
p ∈V andc′i(p), i = 0, ...,k−1, letni(p) ∈ S be the Euclidean nearest neighbor ofp in c′i(p), if exists, and
connectp to ni(p) by a directed edge, i.e. EY = {(p,ni(p)) : 0≤ i < k, c′i(p)∩V 6= /0}.

Lemma 2.2. [19] Let V be a set of n pints in the plane, k > 6, and θ = 2π/k. Then the Yao graph GY (V) is
a t-spanner for V with t = 1

1−2sin(θ/2) .

We remark that the definition of the Yao graph (θ-graph) in [19] is slightly different from our definition.
It does not contain the parameterαp which describes the possibility of the individual rotationof the sectors

5

around the nodes, and it uses a slightly different distance function instead of the Euclidean distance. But
each steps of the proof remains true also with our modifications.

The proof of the above lemma in [19] is a constructive one. It constructs at-spanner path between two
arbitrary pointsp,q ∈ V as follows. Letp′ := p. While p′ 6= q follow the edge in the sectorc′i(p′) which
containsq, and setp′ = ni(p′).

The above construction of at-spanner path immediately gives us a simple routing strategy, if following
holds. (i) Each nodep ∈ V knows its own geographic position, (ii) the package which has to be routed
contains the geographic position of the destination node, and (iii) p knows the geographic position of its
Yao graph neighborsni(p), 0≤ i < k. We call the above routing strategysector routing.

The Yao graph neighbors can be determined efficiently in a distributed and power efficient manner, as
described in [21] for a variation of the Yao graph. This distributed construction assumes the existence of
a MAC layer, e.g. IEEE 802.11, which resolves interference problems. Furthermore, it is assumed that
the mobile nodes use directed radio and they can increase thetransmission power (in discrete steps) in the
sectors. Each node sends ”hello” signals in each sector withincreasing transmission power until at least one
node hears them and responds or the maximum power is reached.When a node hears this signal it sends
an acknowledge signal which also can contain its geographicposition. Then the node only has to choose
the closest one among the responding nodes in each sector. The nodes periodically apply this procedure in
order to keep their Yao neighbors up to date.

In [13] it has been proved that the Yao graph is a(d, t)-power spanner fort = (1
1−2sin(θ/2))

d . Since
θ < π/3, none of the edgesuiui+1 in thet-spanner path constructed by the sector routing can be longer than
the Euclidean distance between the source and the destination node. Hence, we can apply Theorem 2.1 with
c = 1 and we obtain immediately an improvement on the power stretch factor of the Yao graph.

Theorem 2.3. Let V be a set of n points in the plane, d ≥ 2, and 0 ≤ θ < π/3. Then the Yao graph is a
(d, t)-power spanner with t = 1

1−2sin(θ/2) .

The t-spanner path produced by the sector routing does not necessary approximate the energy optimal
path up to a constant factor. There are distributions of the points, where the energy of such a path can be
arbitrarily higher then the energy of the energy optimal path. However, in the case of uniformly distributed
points the energy of the sector routing path is not far from the optimum.

3 Location Service

We are ready to describe our Hypercubic Location Service (HLS). For the simplicity of the presentation
we reach our final version HLS in simple steps of improvements. The section is organized as follows. In
Section 3.1 we define a dynamic version of a hypercube where the number of nodes may change by addition
and deletion. In the first version fault tolerance is not supported (removal of a node is for example allowed
only after acknowledged by neighbors); we enhance the dynamic hypercube with fault tolerance in Section
3.3 by a load balanced node replication scheme over the hypercube.

In Section 3.2 we take a first step to resolve the problem of impractically high degrees in the location
service that would cause an unaffordably high amount of administrative traffic across the network. High
degrees ofω(logn) result as a cumulative effect of fault tolerance, dynamic updates, and the hypercube
itself. We show that a main degree factor stems from the hypercube itself. In ad-dimensional hypercube
with sequences ofd bits used as node indices, routing can be made by flipping address bits in an arbitrary
sequence – a flexibility that we cannot take advantage of in our algorithm. Indeed, we may well just always
flip the last bit that differs. As described in Section 3.2, this is exactly what the De Bruijn graph does: it

6

rotates the bits and then flips the last bit if necessary. Thussubsequent nodes over a path may change all bits
by always flipping the actual last one.

A replication parameterr of the location service immediately leads to a degree of 4r if the HLS is built
upon De Bruijn graphs. This degree parameter also appears inthe congestion of the Yao graph edges caused
by the administrative traffic to update geographic positionon the location service neighbors.

Lemma 3.1. Assume that in a degree d location service graph the average Yao graph path length cor-
responding to location service edges is ℓ. Then the average congestion of a Yao graph edge caused by
geographic position updates is O(dℓ). �

For a uniform distribution of the nodes in a 2D squareℓ =
√

n; in practice however the congestion over
the Yao graph is very hard to estimate since we may not assume even distribution.

3.1 Dynamic hypercube

Based on the classical hypercube network [10] we define a dynamic hypercube network that supports the
addition and deletion of new nodes by dynamically updating network topology. Updates are kept local which
leads to lower communication costs.

First we assign to each node a sufficiently large number of independent random bits as node IDs. LetN
be a sufficiently large upper bound on the potential number ofnodes. Let there ben ≪ N nodes, each with a
logN bit ID. Since not all of theN possible addresses are assigned, we consider only part of the bits acting
as an address by the following rule.

Theeffective ID of a nodes is the shortest prefix ofk bits of the ID, such that for all nodes that
agree withs in the firstk bits also agree in the(k + 1)-st. Note that the(k + 2)-nd and further
bits may or may not be equal.

We define pairs of nodes that communicate their location to each other. For two nodess1 ands2 we say that

s2 is areplicate of s1 if their effective IDs are equal;

s2 is atype i neighbor of s1, i≥ 1, if their effective ID differs in exactly one bit, in biti (allowing
that one effective ID is longer and no restriction is imposedupon these bits); in particular ifs1

hask effective bits, then a typek neighbor is called alast bit neighbor.

While the typei neighbors are not necessarily unique, we have a high probability bound on their number.

We say that an event occurs withhigh probability (w.h.p.) its probability is 1−n−c, wheren is
the current number of nodes andc > 0 is a constant.

For the proof of the following claims see the Appendix.

Lemma 3.2. The maximum number of type i neighbors and replicates over all nodes is O(logn), w.h.p.

In our network each node only knows its neighbors. This may then effect in messages sent to nonexistent
IDs. It it may have several reasons: the node is switched off or it is crashed, or the source called a wrong,
nonexistent number. In order to manage this situation, we simply let each node act as a server for all IDs
with the same effective ID bits. The distribution of theN full IDs to nodes is unique; we also show that
appropriate load balancing is achieved.

Lemma 3.3. The effective ID of all nodes have at least logn− c log logn and at most c logn bits, w.h.p.

7

Lemma 3.4. Each node serves for at most N
n c logn IDs, w.h.p.

Next we give algorithms for routing and adding/removing nodes from the network. We assume no
faults, i.e. in our model each node has an exact knowledge of its neighborhood in the network topology.
When adding a node, we must notify all affected nodes about the change and receive acknowledgments
before starting operation. Finally when removing a node, wemust notify all (affected) nodes and wait for
acknowledgments. Algorithms are described with pseudocode in Appendix A.

Routing in a dynamic hypercube proceeds as follows. If the message destination ID equals with the node
ID in the (i−1) most significant bits, then the node passes it to a typei neighbor, if exists. We show that the
required Typei neighbor always exists; for this assume that the message resides at nodes. Let i be the index
of the most significant bit where node and destination IDs differ. Thens must have a typei neighbor since
the destination ID itself acts as a candidate.

Insertion of a node: When adding nodes, we first connect the geographically closest node by gradually
increasing the power of a network search signal. Through this node we route a special ”wakeup” message in
which the the destination field is filled with the ID ofs. Sinces has not yet joined the network, this message
gets stuck at a certain nodes′. Let k be the number of effective bits of nodes′. By definition, the ID ofs is
agrees in the firstk bits with the ID ofs′. Furthermore, each node with the same ID prefix of lengthk must
have the same(k +1)-st bit ass′.

Given nodes′ and the valuek, we distinguish two cases. If the ID ofs ands′ also agree in the(k +1)-st
bit, thens becomes a new replicate; the neighbors ofs are identical to those ofs′ thus all neighborhood
information is available froms′. Nodes′ may also notify all neighbors of the new neighbor nodes.

Finally if the (k + 1)-st bits differ, thens is a node with no replicate. Fori ≤ k its type i neighbors
are identical to those ofs′. In addition s becomes the unique type(k + 1) neighbor ofs′ and of all of
its replicates. The original neighborhood ofs′ now splits between the replicates ofs′ and s by adding a
new effective address bit, following theadd effective bit algorithm (see Appendix) initiated by node
s0 = s′.

In both casess′ is capable of updating the entire network view in a single communication round with its
neighbors ands. A single message (and acknowledgment) needs to be sent to all neighbors notifying them
of the arrival ofs and another one tos containing the list of current neighbor locations.

Removing a node: When removing nodes, we must notify all of its neighbors. By sending all neighbor-
hood information to all neighbors, they are capable of updating the entire network view with the exception
whens has no replicates (other than itself). In this case ifs hadk bits in its effective ID, then the typek
neighbors ofs must drop their last effective ID bit.

We mention that in the non-fault-tolerant model, since it may take a while till the network view is
updated, a removed nodes must perform routing tasks if requested as long as all messages submitted about
the removal are confirmed. Once however confirmations are arrived, no neighbor ofs will ever try to uses
again for routing.

3.2 Low-degree hypercubic networks – De Bruijn graphs

Next we define a dynamic network which we derive from constantdegree hypercubic graphs, from De Bruijn
graphs [10]. TheN-node De Bruijn graphs defined as follows (see Fig. 1). Each node has a unique logN bit
ID. Two nodes are connected if IDs arise as a

8

1. left shift by one followed by the addition of an arbitrary least significant bit, i.e. an IDbβ is connected
to β0 and toβ1, b ∈ {0,1}, β ∈ {0,1}logN−1; or

2. right shift by one followed by the addition of an arbitrarymost significant bit, i.e. an ID βb is con-
nected to 0β and to 1β.

TheN-node De Bruijn graph has degree four (two of both types) and the length of the longest path is logN.
Routing (by left shifts) is performed by selecting the largest numberi, such that after logN − i left shifts of
the node’s ID the firsti bits agree with the destination ID. Then the message is passed to a neighbor with left
shifted ID where the quantityi increases by one; since the valuei increases, the message arrives in at most
logN steps.

Now we define the dynamic De Bruijn graph, which will be the base of our low-degree location service.
Dynamic updates in this graph are performed similarly to thehypercube. Network scaling by adding or
dropping effective bits is possible by the key property of DeBruijn networks that ad-dimensional De Bruijn
graph is the edge graph of the(d +1)-dimensional one [10]. Instead of using this fact we give direct proofs
of the bit add and drop algorithm correctness (see Appendix).

For each nodev, let kv be the number of effective bits ofv. Let G be the graph which contains an edge
(u,v) if and only if theku,v := min{ku,kv} most significant ID bits ofv can be obtained from theku,v most
significant bits fromu either by a left shift and the addition of an arbitraryku,v-th (least significant) bit, or
a right shift and the addition of an arbitrary most significant bit. We say thatv is a left neighbor of u in the
former and aright neighbor in the latter case. The graphG is called thedynamic De Bruijn graph.

Lemma 3.5. The maximum number of left (right) neighbors over all nodes is O(logn), w.h.p.

For the purposes of the discussion we use the termsreplicate andlast bit neighbor as in Section 3.1 with
the same definition as there. Notice however that last bit neighbors are no longer neighbors in the dynamic
De Bruijn graph, they are at least of distance two (siblings of a common right neighbor), or, if their number
of effective ID bits differ byδ, they may reside on different paths starting from a common right ancestor of
at mostδ right neighbor steps.

Routing (by left shifts) in the dynamic De Bruijn graph is performed as follows. For a nodev let lv be
a the minimum number of left shifts followed by the addition of an arbitrarykv-th bit in the effective ID of
v, which is necessary to obtain the firstkv bits of the destination. When a packet arrives at a nodev, then it
will be passed to the left neighborv′ of v, where the valuelv′ decreases and the decrease is maximal. Then
the packet arrives to the destination in at mostks steps, whereks is the number of effective bits of the start
nodes, which isO(logn).

When a nodev with a random ID is inserted (deleted) into the network, the number of effective bits
of several nodes may change. Then the neighborhood of some nodes must be accordingly updated. The
following two Lemma imply that only neighboring nodes and replicates ofv are affected by the change.

Lemma 3.6. (bit addition) Let G′ be a dynamic De Bruijn graph obtained from G, such that the effective
ks0 ID bits of an arbitrary node s0 are extended by an additional (ks0 +1)-st effective bit and the edges are
updated accordingly. Then the set of left and right neighbors of s0 ∈ G′ are subsets of those in G.

Lemma 3.7. (bit removal)Let G′ be a dynamic De Bruijn graph obtained from G, such that the last effective
bit of an arbitrary node s0 is deleted and the edges are updated accordingly. Then the set of left and right
neighbors of s0 in G′ are all left and right neighbors of s0 in G or a last bit neighbor of s0 in G.

Lemma 3.8. The number of nodes affected by the insertion/deletion of a node v is O(logn), w.h.p.

9

Proof. When a nodev is inserted, the length of the effective ID only changes at the replicates ofv. By
Lemma 3.2, their number isO(logn) w.h.p. Furthermore, the nodev and all of its replicates had the same
neighbors, whose number, by Lemma 3.5, isO(logn) w.h.p. Thus, w.h.p., there areO(logn) nodes, where
the change of the number of effective bits must be propagated.

When a nodev is deleted, several nodes may become replicates of each other by shortening the effective
IDs. By Lemma 3.2, the number of new replicates will beO(logn) w.h.p. They all will have the same
neighborhood, which contains all old neighbors, and whose size, by Lemma 3.5, isO(logn) w.h.p.

3.3 Fault tolerance by replication

The dynamic hypercubic networks in the previous sections are prone to faults when nodes unexpectedly
crash without passing update information to their neighbors. Now we define a fault-tolerant network topol-
ogy, which circumvent routing failures by replicating eachnode in approximatelyr copies, wherer is a
prescribed function of the network size. The ID of the replicates is obtained by cutting a certain number of
least significant bits from the effective IDs. Typei neighbors are defined accordingly. When a hypercubic
neighborw of a nodev crashes,v can route the packages to any of the replicates ofw. This replicate has the
same neighbors asw had, therefore, it can continue the routing.

Using r = c logn replicates, if nodes fail with a probability bounded by a constant p < 1, one copy of
each node will stay alive, and each packet destinated to an alive node can be delivered w.h.p.

Notice that the nodes have no knowledge ofn, and hence, cannot compute logn. However by Lemma 3.3
we know that the number of effective bits estimates logn within a factor of two.

Fault tolerance can be combined with the dynamic updates of the previous subsections. Whenever the
routing detects a fault, the network view (i.e. the neighborhood) of the affected nodes is updated as in
Section 3.1. In our model we assume that the updates can be performed fast enough that after the update the
neighborhood informations are consistent in the network.

For each nodes we decide to cutb bits of the effective ID according to the rule that the numberof
replicates must be betweenc1r andc2r, for two appropriate constantc1 < c2. More precisely, we define four
constantsc0 < c1 < c2 < c3. A node request the addition (deletion) of an effective bit if its view of replicates
is abovec3 · r (belowc0 · r). All replicates must accept the request if their view is above c2 · r (belowc1 · r).

Finally we prove that, as long asr = Ω(logn), the size of the replicates remainsΘ(logn) after applying
the algorithmsadd/drop effective bit.

Lemma 3.9. If the number of replicates of all nodes are Θ(r) for some r = Ω(logn), then the same holds
after applying add effective bit or drop effective bit.

4 Conclusion

We described an ad hoc mobile routing algorithm that achieves a very high level of fault tolerance while
requiring only a low amount of storage and administrative communication. The two ingredients of our solu-
tion are a novel location service with an architecture resembling of classical structures in parallel computing
[10], bringing closer the ideas of parallel computing and adhoc networking, and spanner graphs, a structure
of computational geometry that has recently received much attention in mobile networking.

Our location service easily cooperates with any geographicrouting method or other routing ideas. Fur-
ther investigation is needed to find the empirically best topology to be used in our algorithm. Here several
variants of the Yao graph should be investigated, includingsparsified versions as in [13, 20, 21]. We also

10

plan to combine the location service with caching methods such as in the AODV protocol [17] in future
work.

The final parameters of our location service for n nodes are summarized as follows.

• Paths of logn location servers, each step over this path corresponding toa geographic sector routing
across the network;

• Degree depending on the level of fault tolerance with a minimum of 4 and a value ofc′ logn to meet
the high probability 1−n−c requirement;

• Load balancing with expected optimal value and peaks of a constant factor from optimum, w.h.p.;
• Fault tolerance (with high probability 1−n−c at any time) andscalability includingself-scaling fully

supported.
• Survival of systematic attacks is provided by a random ID distribution (such as hashing IP addresses);

the location service ID thus has no relation to the geographic position or other physical notion of the
nodes.

References

[1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Smid.Euclidean spanners: Short, thin, and lanky. In
ACM Symposium on Theory of Computing (STOC’95), pages 489–498, 1995.

[2] J. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks.
In Workshop on Discrete Algorithms an Methods for Mobile Computing and Communications (DIALM’99),
pages 48–55, 1999.

[3] K. L. Clarkson. Approximation algorithms for shortest path motion planning (extended abstract). InACM
Symposium on Theory of Computing (STOC’87), pages 56–65, 1987.

[4] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,Handbook of Computational
Geometry, chapter 9, pages 425–461. Elsevier, 2000.

[5] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems. InACM
Symposium on Theory of Computing (STOC’84), pages 135–143, 1984.

[6] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu.Discrete mobile centers. InACM Symposium on
Computational Geometry (SCG’01), pages 188–196, 2001.

[7] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu.Geometric spanner for routing in mobile networks.
In ACM Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC’01), pages 45–55, 2001.

[8] Y. Hassin and D. Peleg. Sparse communication networks and efficient routing in the plane.Distributed Comput-
ing, 14(4):205–215, 2001.

[9] D. B. Johnson and D. A. Malz. Dynamic source routing in ad hoc wireless networks. InMobile Computing,
volume 353. Kluwer Academic Publishers, 1996.

[10] T. Leighton.Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[11] J. Li, J. Jannotti, D. S. J. De Couto, D. Karger, and R. Morris. A scalable location service for geographic ad
hoc routing. InACM International Conference on Mobile Computing and Networking (MobiCom’00), pages
120–130, 2000.

[12] X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of a planar spanner and routing for ad hoc wireless
networks. InIEEE INFOCOM, 2002.

[13] X.-Y. Li, P.-J. Wan, and Y. Wang. Power efficient and sparse spanner for wireless ad hoc networks. InIEEE
International Conference on Computer Communications and Networks (ICCCN’01), 2001.

11

[14] T. Lukovszki. New results of fault tolerant geometric spanners. InWorkshop on Algorithms and Data Structures
(WADS’99), pages 193–204, 1999.

[15] M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in mobile ad hoc networks.IEEE
Network Magazine, 15(6):30–39, 2001.

[16] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless networks. In
IEEE INFOCOM, pages 1405–1413, 1997.

[17] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on demand distance vector (AODV) routing. InIETF
Internet Draft, (Work in Progress) draft-ietf-manet-aodv-09.txt, November 2001.

[18] C. E. Perkins and P. Bhagwar. Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile
computers. InACM SIGCOMM ’94 Conference on Communications Architectures, Protocols and Applications,
pages 234–244, 1994.

[19] J. Ruppert and R. Seidel. Approximating thed-dimensional complete Euclidean graph. In3rd Canadian Con-
ference on Computational Geometry (CCCG’91), pages 207–210, 1991.

[20] Y. Wang and X.-Y. Li. Distributed spanner with bounded degree for wireless ad hoc networks. InParallel and
Distributed Computing Issues in Wireless networks and Mobile Computing, 2002.

[21] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed topology control for power efficient operaion in
wireless multihop ad hoc networks. InIEEE INFOCOM, 2001.

[22] A. C. Yao. On constructing minimum spanning trees ink-dimensional spaces and realted problems.SIAM
Journal on Computing, 11(4):721–736, 1982.

12

Appendix

A Algorithms

add effective bit

Initiator nodes0:
1. notify replicates;
2. if confirmation arrives from (all or prescribed fraction) nodes then
3. notify all replicates and Typei neighbors;
4. for all i where Typei neighbors have more effective ID bits thans0 do
5. drop neighbors that do not agree in new effective bit;

Replicates of s0:
1. if second notice arrives froms0 then
2. for all i where Typei neighbors have more effective ID bits thans do
3. drop neighbors that do not agree in new effective bit;

Type i neighbors of s0:
1. if first notice arrives froms0 and s0 has less effective bits thans then
2. drop Typei neighbors that do not agree in new effective bit;

drop effective bit

Initiator nodes0 with k effective ID bits:
1. notify replicates and Typek neighbors;
2. if confirmation arrives from (all or prescribed fraction) nodes then
3. merge neighbor lists received;
4. send neighbor list to replicates and Typek neighbors;
5. send list of replicates and Typek neighbors to all Typei neighbors;

Replicate or Typek neighbors of s0:
1. send neighbor list tos0

2. if second notice arrives froms0 then
3. merge new neighbor list;

Type i neighbors of s0:
1. merge Typei neighbor list;

13

B Proofs

Proof of Theorem 2.1. Consider two nodesu,v ∈ V . Let P∗ = u,u1, ...u|P∗ |−1,v u0 = u, u|P∗| = v, be an
energy optimal path fromu to v. The edges ofP∗ are not necessary contained inG, for each edgeuiui+1 ∈
P∗ there is at-spanner pathPi = ui,u1

i , ...,u
|Pi |−1
i ,ui+1 in G, u0

i = ui, u|Pi|
i = ui+1 with ||u j

i ,u
j+1
i ||

||ui,ui+1|| ≤ c for all
0≤ j < |Pi|. Then

pow(Pi) = ∑
0≤ j<|Pi|

pow(u j
i ,u

j+1
i) = ∑

0≤ j<|Pi|
||u j

i ,u
j+1
i ||d

≤ ∑
0≤ j<|Pi|

||u j
i ,u

j+1
i || · (c||ui,ui+1||)d−1

= cd−1||ui,ui+1||)d−1 ∑
0≤ j<|Pi|

||u j
i ,u

j+1
i ||

≤ cd−1||ui,ui+1||d−1 · t||ui,ui+1||
= cd−1t ·pow(ui,ui+1). (1)

Consider the pathP = P0 ◦ ... ◦P|P∗ |−1 from u to v in G. Then after applying (1) to eachPi we obtain that
pow(P) = ∑i pow(Pi) ≤ cd−1t ∑i pow(ui,ui+1) ≤ cd−1t ·pow(P∗). This proves the claim.

Proof of Lemma 3.2. We use standard probability calculation. By selectingN as a sufficiently large upper
bound on the number of nodes and randomly distributing IDs weassume each bit of each ID is selected
independently at random. Hence we will assume a fixed ID for node s and randomly select ID both of other
nodes in an appropriate order of our choice.

To prove for replicates we fix nodes and select the ID bits of all other nodes bit by bit. The procedure
stops when thek effective bits are selected. Letr be the number of nodes having the samek most significant
bits ass. In the(k +1)-st selection round all of thisr nodes obtain the same bit ass. The probability of this
event is 2−r, implying r = O(logn), w.h.p.

For typei neighbors we follow a similar process except for skipping bit i in the selection process. Let
s be a fixed node withk effective bits. Letr be the number of nodes having the same bits ass at positions
1, ..., i−1, i+1, ...,k, and an arbitrary bit at positioni. These nodes are either replicates or Typei neighbors
of s. Now we consider the selection of the(k +1)-st bit together with thei-th. Choosing ani-th bit different
from thei-th bit of s the (k + 1)-st bit can be selected independently. But if we choose the same i-th bit as
thei-th bit of s then we only have a single choice for the(k+1)-st bit: it also must be equal to the(k+1)-st
bit of s. The probability of this event is(3/4)r , implying r = O(logn), w.h.p.

Proof of Lemma 3.3. For the lower bound we may appropriately modify the constants to assumen = 2r.
We may model the selection of the most significantr ID bits as randomly distributingn balls inton bins.
Notice that an effective ID ofr− c logr bits means that 2c logr = rc consecutive bins remain empty, started
with an indexi · rc, 0≤ i < n

rc . This has a probabilityn
rc · (1− rc

n)n ≤ n
rc · e−rc

= n−c′ .
For the upper bound we consider a pair of typec logn neighbors. The probability thatc logn−1 bits of

their ID are equal and while the last are different is 2−c logn = n−c. The claim follows.

Proof of Lemma 3.4. The upper bound follows by Lemma 3.3.

Proof of Lemma 3.5. We prove the claim for left neighbors. The proof for right neigbors is analogous.
We fix a nodes. Let s′ be a left neighbor ofs having a minimum number of effective bits among the left

14

neighbors ofs. Let k = min(ks,ks′) be the minimum number of effective bits ofs ands′. Let Lk−1 be the
set of nodes having the samek−1 most significant bits ass′. Clearly, all left neighbors ofs are contained in
Lk−1. Note,Lk−1 may also contain nodes which are not left neighbors ofs. Let r be the number of nodes in
Lk−1. It is an upper bound on the number of left neighbors ofs. In order to give a bound onr, we again use
the model of distributingn balls inton bins uniformly at random. Then determiningr is equivalent to the
counting the balls in consecutive bins, whose index start with the same max(logn,k−1) most significant bits
as the ID ofs′. By Lemma 3.3,k ≥ logn−c log logn, w.h.p. Therefore, we have to count the balls in at most
c′ logn bins. By a Chernoff bound we obtain that the numberr of balls in at mostc′ logn consecutive bins is
O(logn), w.h.p. Consequetly, also the probability of the joint event k ≥ logn− c log logn andr = O(logn)
is at least 1−n−c′′ .

Proof of Lemma 3.6. If a nodes hasks ≤ ks0, then their neighborhood relation remains unchanged. Hence
we may letk = ks0 and assumeks ≥ k +1; let the(k +1)-st, k-th, and(k−1)-st ID bits ofs0 bea, b andc,
respectively.

In the above setting we consider the possible(k + 1)-st, k-th, and(k−1)-st ID bits of a left neighbors
of s0. In G these bits arebxy wherex andy are arbitrary while inG′ they arebcz wherez is arbitrary. Since
the remaining most significant bits are uniquely determined, we see the neighbors inG with x = c remain
neighbors inG′ while the remaining are not.

We may resolve right neighbors by a similar argument. Letabc be as before; now a right neighbor inG
has an arbitrary most significant bit and ak-th bit with value a while inG′ we havek-th and(k + 1)-st bits
ab instead. Agains remains a neighbor if its(k +1)-st bit isb and we have no other neighbors.

Proof of Lemma 3.7. If a nodes hasks < ks0, then their neighborhood relation remains unchanged. Hence
we may letk = ks0 and assumeks ≥ k; let the(k − 2)-nd, (k− 1)-st, andk-th ID bits of s0 be a, b andc,
respectively.

By notifying last bit neighbors we may identify all replicates of nodes that arise by complementing the
k-th ID bit of s. Then all new left neighbors ofs0 are neighbors of the new replicates, hence after finding
thes, we are done by identifying new neighbors in a second communication round.

We may resolve right neighbors by a similar argument. There is no change if the right neighbors have less
thank ID bits. Otherwise the new right neighbors are the last bit neighbors of the old right neighbors.

Proof of Lemma 3.9. The first part follows by a Chernoff bound for the number of nodes with given new
effective bit 0 or 1. And the second part follows by a similar argument as in Lemma 3.2 since the new
replicates are all last bit neighbors.

C Figures

We included the screenshot of our tests of a 256-node fault tolerant degree 16 hypercubic location service
described in Section 3.2. We distributed nodes uniform at random within a square and built the Yao graph
below (Figure 2).

15

00 11

01

10

000

001

100

011

111

110

010

101

Figure 1: The low-degree location service base networks forN = 4 andN = 8. Arrows point from right
neighbor towards left neighbor.

Figure 2: The Yao graph of the 256 nodes distributed uniformly at random within a square.

Figure 3: The location path in the De Bruijn graph based HLS, when choosing an arbitrary neighbor

16

Figure 4: The location path in the De Bruijn graph based HLS, when choosing the closest neighbor

Figure 5: The Yao graph path obtained by sector routing

17

