Proceedings WAE’98, Saarbriicken, Germany, August 20-22, 1998
Ed. Kurt Mehlhorn, pp. 1-3 1

A Network Based Approach
for
Realtime Walkthrough of Massive Models*

Matthias Fischer, Tamdas Lukovszki, and Martin Ziegler
Heinz Nizdorf Institute and Department of Computer Science, University of Paderborn
Fiirstenallee 11, 33102 Paderborn, Germany
e-mail: {mafi, talu, ziegler}@uni-paderborn.de

ABSTRACT

New dynamic search data structures developed recently guarantee constant execution time per
search and update, i.e., they fulfil the real-time requirements necessary for interactive walk-
through in large geometric scenes. Yet, superiority or even applicability of these new methods
in practice was still an open question.

Their prototypical implementation presented in this work uses common libraries on standard
workstations and thus represents a first strut to bridge this gap. Indeed our experimental results
give an indication on the actual performance of these theoretical ideas on real machines and
possible bottlenecks in future developments. By special algorithmic enhancements, we can even
avoid the otherwise essential preprocessing step.

1. Introduction

Scientific visualization as well as computer tomography in medical diagnosis, computer aided
design (CAD), and architectural construction are examples of applications which display large geo-
metric data (virtual scenes) by interactive user control. If this control supports arbitrary changes
of the virtual camera’s position and orientation, this process is called walkthrough. In dynamic
walkthrough, the user can insert and delete objects in the scene (modification).

Today three-dimensional (massive) objects are most commonly represented by their boundary,
approximated and decomposed into surface polygons enclosing the object. These polygons (usually
cut further into triangles) are stored as their vertices’ and edges’ coordinates together with a normal
vector, color information, and texture data.

From this model representation, the computer generates a picture by performing the steps of
projection, hidden-surface removal, and shading [6]. This time consuming process is called rendering
and supported by hardware (e.g., z-buffer algorithm). The cost for rendering can be estimated by
O(n + a) [9] and depends on two parameters: the number n of polygons and the sum a over all
pixels and all polygons needed for drawing these polygons (without considering their visibility). For
simplification, we will regard n as dominant.

In order to get a movie-like smooth sequence of images, as well as responsive navigation, a fixed
frame rate of at least 20 fps (frames per second) has to be computed. This strict real-time condition
raises severe problems, since even high end graphic systems cannot guarantee such rates for very
large scenes (n = 1,000, 000).

*Partially supported by EU ESPRIT Long Term Research Project 20244 (ALCOM-IT), and DFG Grant Me872/7-1.

A Network Based Approach for Realtime Walkthrough of Massive Models 2

The walkthrough problem: Let C(M) denote the complexity of scene M in the above cost
measure (number of polygons), and let Cy be the maximum complexity for which some specific
rendering machine can still guarantee 20fps. Then the problem is to compute a model M, with a
complexity C(M,) < Cq for every interval of time ¢t. For 20 fps, time intervals are as short as 50ms.

This problem is difficult to solve because from the visitor’s position, model M, should resemble
scene M as much as possible. Additional severity arises for very large scenes which do not fit into
to main memory (swapping) where access to secondary storage media can easily spoil the real-time
requirements, if not performed carefully.

General approach: Most graphic systems pursue a similar approach to this problem (they differ
in the kind of approximation and their rendering strategies):

M Ma My
model approximation rendering rendering
database culling model pipeline

Figure 1: General approach

They compute a model M, (See Fig. 1) including data structures for culling and polygonal model
approximations of the scene M. Hence the complexity of M, is larger than that of M. But during
interactive walkthrough, the system needs only a part M, of the scene M, for an approximately cor-
rect view; e.g., large and very distant objects will be rendered using their approximations contained
in M,. Both approximations and culling information can be computed in a preprocessing phase
(e.g., level of details models [7], visibility graph [12, 8]) or dynamically during walkthrough (e.g.,
repeated use of previously rendered objects via texture mapping [11] or visibility computations [3]).

The search problem: In this general approach, computation of the rendering poses the problem
of deciding which objects are to be approximated (or to be rendered with full quality). For each
frame, the system will have to search M, for the sub-scene M, presented to the visitor, choose — or
even compute — approximations for all objects in M,., and then render these approximations together
with the rest of M,.

This search problem is crucial for both visual impression and immediate responses to user in-
teraction. In particular it should be really fast. Otherwise the costs for searching lets say some
cluster of objects might consume most of the rendering time we intended to save by displaying
approximations instead of the cluster itself.

In order to achieve high quality pictures, the processor should spend most of its time with
rendering, not with searching.

[4] presents a very fast data structure for this goal. Other common approaches use a hierarchical
structure based on ideas from Clark [2]. As an example consider the sequence of sub-scenes “world
- country - town - house” organized in a tree. In existing systems, this concept is implemented with
different data structure like BSP Trees (Binary Space Partitions) or Octrees.

Goals of this paper: This work is a major step towards a prototypic implementation of the ideas
described in [5]. In particular, the authors’ theoretical investigation on abstractly modeled dynamic
walkthrough animation with several distributed visitors appears to yield a practically applicable
system. In conjunction with methods from [4], this results in a network-based non-hierarchical data
structure for solving the search problem in a scene.

Section 2 presents a brief description of this abstract animation system and its data structures.
The current state of implementation is described in Section 3, and in Section 4 we describe an

A Network Based Approach for Realtime Walkthrough of Massive Models 3

evaluation of its performance. These experimental results are of importance to identify possible
bottlenecks in future developments. In Section 5, we suggest an extension of the system considered
in [5] to get rid of preprocessing by exploiting the advantage of locality.

2. A short survey of our system

Our model: Presume scene S consists of an arbitrary number of simple objects (e.g., balls) iden-
tified by their centers. The balls can be arbitrarily distributed over the scene, but they must not
overlap.

Several visitors are sitting at their graphics workstations (rendering machines). They — or more
precisely: their counterparts in this virtual world — can walk to arbitrary positions of the scene. For
an approximately correct view, every visitor only needs the part Vi(z) C S of the scene. The set
Vi(z) = {b € S :d(b,x) <t} consists of all objects with Euclidean distance at most ¢ from z. We
call the set V;(z) the t-environment of xz. The distance ¢ is chosen so that the rendering complexity
of the objects in Vi(z) is at most Cp, i.e., the rendering machine can render the objects with a
fixed frame rate (e.g., 20fps). The scenes we have in mind are very large and have a great spatial
extension so that most of the scene is stored on disks.

The scene can be modified by a modeler. Like the visitor he can walk to arbitrary positions of
the scene. At any time he may insert or delete objects from the scene. These updates should occur
in real-time and immediately affect the visitors’ views.

Architecture: The very large scene description cannot be kept entirely in memory but must
be fetched from secondary storage media. Since disk access is slow we introduce a two level access
scheme for the rendering machine. Like a buffer the rendering machine will store a larger environment
Vr(y) for a position y and T >> ¢ in the rendering machine’s main memory so that the ¢-environment
Vi(x) can be extracted very fast.

To disburden the rendering processor, we assign this work to a third machine, the manager.
This concept is introduced in [10], we adopt the approach here. The manager has access to the
scene stored at disk. He computes the T-environment Vi (y) for the rendering machine at fixed time
intervals (steps). In every time interval ¢ + 1 the rendering machine will send the position z; of its
visitor to the manager who in turn computes Vr(x;) and sends this to the visitor.

The data sent should be a differential update of the form Vp(z;)\ Vr(zi—1) and Vp(z;—1) \ Vr(z;)
that allows easy computation of Vr(z;) out of Vr(z;_1).

Let v be the maximal speed of the moving visitor and tiny the length of a time interval. If
T < 2uting + t, then the visitor cannot in one step leave the t-environment Vr(z), i.e., for an
arbitrary successor position z' to z: Vi(z') C Vr(z).

Data structures: For computing Vr(z) or V;(z), we have to answer the following queries:

Given an arbitrary number m of balls. For position z in the scene (this position is known in data
structure, too), SEARCH(z,T') reports all balls as a data structure D(x) so that for each position y
with d(z,y) < T — t the t-environment V;(y) of y can be computed from Vr(x) very fast. The last
property is important since the rendering machine has to do this at least 20 times per second. More
explicitly, we require SEARCH(z,T) to be of output sensitive running time in the sense that it has
computational complexity O(1 + k) where k = |SEARCH(z,T)].

UPDATE(z, T, y) reports all balls in Vr(z)\Vr(y) and Vr(y)\Vr(z) such that — given D(x) — the
update D(y) can be computed very fast.

INSERT(2) and DELETE(z) insert and delete a ball at the actual position z. Again, output
sensitive running time is of high importance in order to respect the real-time requirements.

In [5], a data structure called y-angle graph is presented that fulfils our requirements with the
following additional properties: Let ¢ be constant, m the number of balls, [:= |V ()|, l =

A Network Based Approach for Realtime Walkthrough of Massive Models 4

[Vr: (2)\Vr (y)|, and I := [V (y)\Vr(2)|. Then
o the data structure needs space O(m)
e SEARCH(z,T) can be done in time O(l + (£)?) = O(T?)
e UPDATE(z,T,y) can be done in time O(l1 + > + @) =O(T - (r +¢)), if Vp(=) is given.
e DELETE(z) can be done in time O(c? log(c)) with high propability (w.h.p.)
o INSERT(z) can be done in time O(c?) w.h.p.
For an exact description of the data structures, see [5]. A derandomized improvement with lower

constants for both space and time requirements can be found in [4].

3. Implementation

Modeler/Visitor: Through the user interface the modeler/visitor can control three parts of the
program: ‘navigation’, ‘scene manipulation’; ‘measurements tools’ (See Fig. 2).

user interface
Monitor
scene —— class
manipulation [navigation | [measurements | y M onitor
/ Modeler Visitor
class class class
class tgManager | | tgM anager tgM anager
Rendering
class class class
tgRender communication Communication
Figure 2: Implementation visitor Figure 3: Implementation manager

The modeler /visitor controls navigation through the scene with the keyboard and mouse devices.
She looks to the scene like a camera and can change the cameras’ position and orientation arbitrarily.
The modeler may insert and delete objects at every position.

In order to get reproducible experiments, we need some means to make the visitor move along the
same path in the same scene several times. Therefore, we implemented a tool for recording, saving,
and loading fixed camera positions and orientation. After loading these positions the computer will
automatically move along them like the visitor did before.

Basis of the modeler/visitor program are the classes Rendering, tgRender, and communication.
The data structure Vi(z) for the y-angle graph is controlled by the tgRender class, whereas class
communication handles the communication with the manager and the Rendering class’ task is to
manage the polygonal scene description and to finally render the scene.

Manager: Like the modeler and visitor, the manager can be controlled via a graphical user inter-
face. The basis for the manager is the class tgManager. The y-angle graph is stored in this class as
a static member. For every instance of a visitor/modeler that wants to walk through the scene, an
object of the class tgManager is defined. In the example, we have a modeler and a visitor. Therefore,
two objects are defined (cf. fig. 3).

For tests and evaluation of our implementation, a monitor is implemented which shows the
~-angle graph graph and the position and ¢-environment of every visitor/modeler (See Fig. 4).

A Network Based Approach for Realtime Walkthrough of Massive Models 5

Generat FSec 0 FSec 3 sa1e 10000 o Mo 00

Fsee 1 FSec d Middle: Delete
Seed rid Wi
Fsec2 FSecs A Ungebung /2 Right: Insere ~ Crid Wideh

1
F Shou Grid Edges O —

F Shou Ball Edges € vepest X Dinension
F Show Grid i Desert
¥ Show Balls

o D I

T =
& Monitor

\J/ ¥ -——————————————————————]

Figure 4: Screenshot Manager Figure 5: Screenshot Visitor/Modeler

For clipping the y-angle graph in this window, we have a third instance of class tgManager. The
t-environment of this object consist of the graph in the monitor window. The communication to the
visitor and the manager is handled by an instance of the communication class.

Libraries and Communication Protocol: The implementation of the manager should run on
a workstation without special graphics system (SUN Ultra Sparc, 200 MHz), therefore we used
only standard libraries for Unix based systems. Our idea is to perform expensive computations on
inexpensive computer systems. The special graphics system should be disburdened.

For the graphical user interface of the modeler, visitor, and manager, we use X11, XToolkit, and
Motif. The implementation of the visitor and modeler runs on a special graphics workstation (SGI
02, 180Mhz). The rendering process of the scene is implemented with the standard libraries OpenGl
and Openlnventor and for the graphical user interface Viewkit (See Fig. 6).

application: visitor, modeler Viewkit
Motif
Openlnventor XToolkit
OpenGl | | sockets | |LEDA| | X11

Figure 6: Libraries used

The communication between the modeler, visitor, and manager is based on the TCP/IP protocol
(socket library). Therefore we can test our system on arbitrary systems, that are connected via
Internet. Our aim is to test the system on different communication networks (e.g., ATM, Ethernet,
etc.). A further advantage is the smaller communication overhead compared with other high level
communication libraries (MPI, PVM, etc.). Some special data structures are implemented with LEDA

[1].
4. Experimental Results

The objects of our scene are represented by unit size balls. A search data structure is responsible
for reporting all balls within distance ¢. The scene will in general be very large, so it has to be stored
on disk. The task of a further machine, the manager, is to access this disk. At fixed time intervals,
the rendering machine receives updates from the manager to its locally stored part of the scene.

The goal of this work is to determine how fast the visitor can walk through the scene and how
many balls can be rendered (number of balls). These parameters are crucial since they determine

A Network Based Approach for Realtime Walkthrough of Massive Models 6

practical applicability of our system. As it turns out, its performance is primarily limited by two
factors: One bottleneck is the communication channel between manager and rendering machine.
The second one arises from applying updates to the visitor’s part of the scene. Therefore we explore
the effect of these two constraints onto the speed of the visitor and the number of balls.

One surprising result of our research is that insertion of new objects to the scene graph reveals
to be rather time consuming; much more expensive than deletion or moving. The problem occurs
when, resulting from a visitor’s movement, new balls of the t-environment Vr(y) become part of
the subscene handled by the rendering machine. Due to caching-like optimizations in the graphics
library’s internal data structures, the process of introducing new objects each time induces some
kind of preprocessing or reinitialization. Emphasis lies on insertion of new objects: Deletion from
the library data base is fast, and so is re-insertion of the same ball.

To the y-angle graph , inserting and removing are symmetric and inexpensive operations. But
the library’s internal behavior is beyond our control. This has the following consequences for us:
Updates of Vr(y) of the rendering machine will be time consuming, but the update of V;(z) does
not cause a great time demand. So we have to concentrate on the update of Vi (y).

1000

1000

800

800

600
600
pol ygons

pol ygons

400

400

200

200

3.
3.

0.28+
2

250
200
150
1001
50
T
0.
0.
R

e e e Figure 8 Running time for initialization
Figure 7: Running time for initialization & & N

1 i f the ball -
in dependence of the ball complexity per polygon in dependence of the ball com

plexity

The cost for the initialization of a ball depends of the number of triangles used for the representing
its surface. Typically, in order to get a impression of a good approximation of a sphere, we need
roughly 200 triangles. With the complexity of the ball we denote the number of triangles used for
its representation. In Fig. 7 (figures are rotated), we have shown the initialization cost for balls of
complexity from 4 to 1000 triangles. As we can see, the initialization time is nearly linear in the
number of triangles. Since the curve did not cross the origin, the time cost per polygon of a ball is
a little greater for very small balls. In Fig. 8, we can see this. We have drawn the initialization cost
per triangle in dependence of balls with complexities from 4 to 1,000 triangles.

With this measured data we can compute how many balls we can initialize per second for balls of
different complexities. In Table 1 we have shown the ratio balls/sec for balls of different complexity.

A Network Based Approach for Realtime Walkthrough of Massive Models 7

In order to get this values we need the rendering processor’s full computational power (100%), i.e.,
it does not have any time for rendering.

triangles 4 100 208 304 | 400 | 508 | 604 | 700 | 808 | 904 | 1000
balls/sec || 714.28 | 38.09 | 19.04 | 12.69 | 9.34 | 7.04 | 6.21 | 5.29 | 4.65 | 4.1 | 3.77

Table 1: Initialization ratio for balls of different complexity (triangles)

So at this point, we are confronted with the question how much time of the rendering processors
computation power we will use for rendering computations and for initialization of the balls. This is
a problem since the goal is not to disburden the rendering machine so that it can render the scene. A
typically rendering capacity of our graphics workstation (SGI O2) can render up to 16,000 triangles
(e.g., 80 balls each of 200 triangles), if the processor is not loaded with other work. In the following,
we will describe that the practical measured values lead to satisfactory results. Furthermore we will
show that there are two tradeoffs which are convenient for our model.

In Table 2, we have shown the maximum speed of the visitor for a scene consisting of balls having
a complexity of 100 triangles.

percentage for

initialization | size of ¢ | maximum speed
10% 100m 1.32 %
10% 500m 6.61 =
20% 100m 297 2
20% 500m 14.86 =*

Table 2: An example for scenes consisting of balls with a complexity of 100 triangles

If we allow 10% of the rendering machine’s computation power for initialization, we get a max-
imum speed of 1.32 * for a scene of 100m radius, and a maximum speed of 6.61 “* for a scene of
500m radius. In the other case, if we allow more time for initialization computation, e.g., 20% we
get a maximum speed of 2.97 ™ for a scene of 100m radius, and a maximum speed of 14.86 = for
a scene of 500m radius.

Here we have two tradeoffs: One between speed and size of the scene and the other between
speed and the percentage for initialization computations. If we enlarge our scene, we can get a
higher speed of the visitor. Future versions of our system will take advantage of this tradeoff, since
in a small scene with a high density of balls the visitor walks slowly to see every part of the scene.
Otherwise, in larger scenes with a lower density of balls, the visitor walks faster in order to reach
the next ball.

We can get a higher speed if we enlarge the percentage for initialization computations. In this
case, the remaining scene will have a less density, and so the visitor tries to reach the next object
with high speed. We will exploit this in our implementation so that the rendering machine tries to
initialize more balls if the visitor walks slowly. The absolute values of the maximum speed seem
usable for a practical application.

For the communication bottleneck, we get similar satisfying results. We will describe them in
our final report.

A Network Based Approach for Realtime Walkthrough of Massive Models 8

5. An extension of our architecture

At this point, our architecture will be extended in comparison to [5]. Our second problem
induced by the management of large scenes is the expensive space requirement for the search of data
structures of the objects. Because of locality, the visitor sees similar ¢-environments V;(z) of objects
in consecutive steps of a few time intervals, i.e., she needs not a search data structure that manages
all objects of the scene. We want to exploit this locality for saving memory of the manager and for
saving time of the QUERY-operations of the rendering machine. Therefore, we use a two level search
data structure of the manager. We distinguish a coarse grained level and a fine grained level (See
Fig. 9).

Y

AR
[A empty square
[]]

active square

square with balls

environment Vz(y)

fine grained level environment V/(X)

Figure 9: Two level access for the manager

At the coarse grained level, we divide the scene into squares. We denote squares with at least
one ball as full and those without balls as empty. All balls of the same full square at the coarse level
are stored on disk in a list. This list is represented by the center position of the full square and the
unsorted list of elements. At each time, there is exactly one square that is active (See Fig. 9). This
square contains the visitor’s position. For this square, all balls from the disk are loaded into the
main memory of the manager. These balls are contained in the so called fine grained level.

For each of the two levels, we have an (arbitrary) search data structure Dgoarse and Deyg -
Such a search data structure should have the operations QUERY and BUILD. BUILD builds the
data structure for a given input from scratch and QUERY is query-operation (e.g next neighbor
or range query) on the data structure. The input for Dgoarsp consists of the positions of the full
squares (we do not store the mesh explicitly) and the input for Dgys of all balls of the active
square. In our system, QUERY is one of the operations SEARCH, UPDATE, DELETE, and INSERT.
The manager computes for balls of the active square the t-environment Vi (y) as described above
with the Dy data structure.

A walk of the visitor through the scene results in the following operations for this two level
hierarchy: At every time we have a data structure Dgyg for the balls of the active square. The
manager computes from this data structure the set Vi (y) for the rendering machine. When the
visitor leaves the active square, the manager has to search the next neighboring full square in the
Dcoarse data structure (with QUERY operation of Dgoarse). If the directly neighboring square is
an empty square there is nothing to do. Otherwise, the manager loads all balls of the new active
square into the main memory and computes with the BUILD operation of Dgyg the data structure
for the fine grained level from scratch. The data structure Dy and all balls of the previously active

A Network Based Approach for Realtime Walkthrough of Massive Models 9

square are removed from memory. Now the manager can compute the t-environments Vi (y) with
the QUERY operations of Dy and so on. The dimension of the mesh should be chosen in a way
that it takes a lot of time for the visitor to cross a square. So the time for computing Dgne from
scratch and loading the balls will be expensive. Therefore it is recommended to hold permanently
the data structures Dgyr for the at most 8 neighboring full squares of the active square. More than
the 8 neighbors are not necessary since we assume the squares very large so it will go by a lot of
time for moving across the active square.

We have a tradeoff between the dimension of the mesh and the number of balls of a square. The
question is how is the optimum size of the mesh? Let m be the number of balls, s the distance of
two consecutive moves of the visitor, d the dimension of the mesh (d x d mesh), and ¢ s be the size
of the scene. Let TEN be the time for a query of Deys and let TGOAR® be the time for a query of
Dcoarse (for BuiLDanalogue). For a walk of the visitor of length & - s, we get a total runtime Ty,,p

of
m k m
Trmove(k,m,d, c) = kTSS\II;;{Y (ﬁ) + c/_d (Tgﬁigw(ﬁ) + Tgt?é\r?\/sE (dz)) :

For the following example, we assume the runtime for Dgoarse and Dewg to be equal to Tquery =
g - mlog(m) and Tywp = p - log(m), and the balls are randomly distributed over the scene. Then
we get for Thnove

m d/m m .
Tone(h . d,) = b (2108) + % (p o) + aloga (@)

The minimum of 7},,,,. depending on d is the solution the following equation for d

k(2ch+mpln(%) —qln(d®)d* + 2mp—2qd?)

0=- @ cln(2)

If we solve this equation for, e.g., m = 10° balls, k¥ = 1,000 steps of the visitor, ¢ = 1,000 (area of
the scene), and p = ¢ = 1 (constants for runtime), then we will get a minimum of T}y for d = 543.
Important is the question where T}, 0y attains its minimum. If it does at the extreme points need
not this two level structure. As we can see in some examples, the minimum depends strongly on
constants p and gq.

If a visitor walks more than twice through the entire scene, then our permanent process of
computing and removing the fine grained level data structure will be more time consuming than
computing the data structure for all objects of the scene once. But we have in mind that our
scene has a large spatial extension, so we can save memory for the manager since he has a coarse
data structure for the entire scene. A further advantage is that the data structure of the rendering
machine for computing the t-environment V;(z) will have an O(m/d?) input size instead of O(m).
For our strict real time requirements, this constant factor is important for data structures with
O(log(n)) QUERY-time (e.g., trees) since computing of the rendering machine is more critical as for
the manager machine as we discussed above.

6. Ongoing Work

At the next step we will test search data structures in practice and compare them with other
standard data structures. In a further step, we will implement the two level access for the manager
and give an evaluation.

A Network Based Approach for Realtime Walkthrough of Massive Models 10

Acknowledgements

We would like to thank Friedhelm Meyer auf der Heide, Willy-Bernhard Strothmann, and Rolf

Wanka for helpfull comments and suggestions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Christoph Burnikel, Jochen Kénemann, Kurt Mehlhorn, Stefan Niher, and Stefan Schirra. Geo-
metric computation in LEDA. In Proceedings of the 11th Annual Symposium on Computational
Geometry (SCG 95), pages C18-C19, 1995.

James H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms. Communica-
tions of the ACM, 19(10):547 — 554, October 1976.

S. Coorg and S. Teller. Real-Time Occlusion Culling for Models with Large Occluders. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics 1997, pages 83 —
90, April 1997.

Matthias Fischer, Tamdas Lukovszki, and Martin Ziegler. Geometric Searching in Walkthrough
Animations with Weak Spanners in Real Time. In Proceedings of the Sizth Annual European
Symposium on Algorithms, 1998.

Matthias Fischer, Friedhelm Meyer auf der Heide, and Willy-Bernhard Strothmann. Dynamic
Data Structures for Realtime Management of Large Geometric Scenes. In Proceedings of the
Fifth Annual European Symposium on Algorithms, pages 157-170, 1997.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:
Principles and Practice. Addison Wesley, 1995.

Thomas A. Funkhouser and Carlo H. Sequin. Adaptive Display Algorithm for Interactive Frame
Rates During Visualisation of Complex Virtual Environments. In James T. Kajiya, editor,
Proceedings of the SIGGRAPH ’93, volume 27, pages 247 — 254, 1993.

Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller. Management of Large Amounts
of Data in Interactive Building Walkthroughs. In Proceedings of the SIGGRAPH ’91, pages 11
- 20, 1992.

P. S. Heckbert and M. Garland. Multiresolution Rendering Modeling for Fast Rendering. Pro-
ceedings of the Graphics Interface ’94, pages 43-50, May 1994.

Jonathan Mark Sewell. Managing Complex Models for Computer Graphics. PhD thesis, Uni-
versity of Cambridge, Queens’ College, March 1996.

Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose, and John Snyder. Hierar-
chical Image Caching for Accelerated Walkthroughs of Complex Environments. In Proceedings
of the SIGGRAPH ’96, pages 75 — 82, August 1996.

Seth J. Teller and Carlo H. Sequin. Visibility Preprocessing For Interactive Walkthroughs. In
Proceedings of the SIGGRAPH ’90, pages 61 — 69, 1991.

