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Máté Tejfel

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Theme I

Part I/a



Analysis of
Distributed

Systems
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Basic Definitions

Definition 1 (Bipartite Graph)

Bipartite Graph is a graph of which nodes can be divided into
two disjoint sets such that can not exists edge between two
elements of the same set.

Definition 2 (Petri net)

Petri net is a tuple (N,M0), where

• the underlying graph N = (P,T ,R, v) is a directed,
weighted, bipartite graph consisting of two kinds of nodes,
called places and transitions.
• P is the (finite) set of places,
• T is the (finite) set of transitions, (P ∪T 6= ∅, P ∩T = ∅)
• R ⊆ (P × T ) ∪ (T × P) gives the edges,
• v : R → N gives the weights of the edges.

• M0 : P → N0 is the initial marking (the initial state).
Places may contain a discrete number of marks called
tokens.
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Basic Definitions
(Some Notations)

• The initial marking of a Petri net (containing n places)
can be considered as an n-tuple
M0 = (M0(p1),M0(p2), ..,M0(pn)).

• •p::= R(−1)(p) is the preset of place p (the set of
transitions connected to p)

• p•::= R(p) is the postset of place p (the set of transitions
p is connected to)

• •t::= R(−1)(t) and t•::= R(t) are similarly the preset and
postset of transition t
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Basic Definitions

Definition 3 (Firing rule)

Let N = (P,T ,R, v) be a Petri net with some marking M.

1. A transition t ∈ T is enabled if ∀p ∈ •t: M(p) ≥ v(p, t).

2. During one execution step one of the enabled transitions
will fire.

3. The firing of an enabled transition t produces a new
marking M ′ (the successor marking), where
∀p ∈ P : M ′(p) = M(p) + v(t, p)− v(p, t)
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Basic Definitions

• t is a source transition if •t = ∅,
• t is a sink transition if t• = ∅,
• (p, t) is a self-loop if p ∈ •t ∧ p ∈ t•,

• a Petri net is pure if it has no self-loops,

• a Petri net is ordinary if all of its arc weights are 1’s
(∀r ∈ R : v(r) = 1).



Analysis of
Distributed

Systems
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Graphical representation

Petri Nets have clear graphical representation, where

• places are denoted by cirles,

• transitions are denoted by squeres,

• and marking is denoted by flecks or numbers.



Analysis of
Distributed

Systems
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Examples

Example 1 (Synthesis of water)
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Examples

Example 2 (Vending Machine)
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Examples

Example 3 (Dining Philosophers)
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Finite capacity net

Definition 4
A Petri net (N,M0) is a finite capacity net if each place p has
an associated capacity k(p), the upper bound for marking of p
(M(p)).
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Finite capacity net

Definition 5 (Strict firing rule)

Let N = (P,T ,R, v) be a finite capacity net with some
marking M.

1’. A transition t ∈ T is enabled if ∀p ∈ •t: M(p) ≥ v(p, t)
and ∀p ∈t•: M ′(p) ≤ k(p), where
M ′(p) = M(p) + v(t, p)− v(p, t).

2. During one execution step one of the enabled transitions
will fire.

3. The firing of an enabled transition t produces a new
marking M ′ (the successor marking), where
∀p ∈ P : M ′(p) = M(p) + v(t, p)− v(p, t)
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Finite capacity net

Definition 6 (Weak firing rule)

Let N = (P,T ,R, v) be a finite capacity net with some
marking M.

1. A transition t ∈ T is enabled if ∀p ∈ •t: M(p) ≥ v(p, t).

2. During one execution step one of the enabled transitions
will fire.

3’. The firing of an enabled transition t produces a new
marking M ′′ (the successor marking), where
∀p ∈ P : M ′′(p) = min

(
k(p),M(p) + v(t, p)− v(p, t)

)
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Finite capacity net

Definition 7 (Complementary place transformation)

Let N = (P,T ,R, v) be a finite capacity net with some
marking M.

1. ∀p ∈ P : k(p) <∞ we create a complementary place p′,
where M‘0(p‘) = k(p)−M0(p),

2. ∀t ∈ T :
• if there exists an edge (p, t) ∈ R, we create a new edge

(t, p′) so that v(t, p′) = v(p, t) will hold,
• if there exists an edge (t, p) ∈ R, we create a new edge

(p′, t) so that v(p′, t) = v(t, p) will hold.
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Finite capacity net

Example 4 (Complementary place transformation)
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Finite capacity net

Definition 8 (Enabled firing sequences)

Let N = (P,T ,R, v) be a Petri net with some marking M0.
M0 [t1>M1 signs that t1 is enabled in (N,M0) and the firing of
t1 produces marking M1.
The firing sequence ς = t1, t2, . . . , tn is enabled in (N,M1), if
there exist markings M1,M2, . . . ,Mn, such that
M0 [t1>M1 [t2>M2, . . . ,Mn−1 [tn>Mn.
(Short notation: M0 [ς>Mn.)
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Finite capacity net

Theorem 5 (Finite capacity elimination)

Let (N,M0) be a pure finite capacity net and (N ′,M ′0) the
result of the complementary place transformation applied to
(N,M0). If the strict firing rule is applied to (N,M0) and the
original one (defined in Definition 3) to (N ′,M ′0) the set of the
enabled firing sequences will be the same (the two nets will be
equivalent in this manner).

As a conclusion of the previous theorem we only need consider
infinite capacity nets with original firing rule.



Analysis of
Distributed

Systems
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Agenda

1 Lecture 1 - Definition of Petri nets

2 Lecture 2 - Behavioral properties

3 Lecture 3 - Analysis methods

4 Lecture 4 - Classification of Petri nets

5 Lecture 5 - Coloured Petri nets
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Behavioral properties

Two types of properties can be studied:

• depend on initial marking (marking dependent /
behavioral properties)

• independent of the initial marking (structural properties)

Now we will discuss only the marking dependent properties!
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Reachability/1

Definition 9
A marking Mn is reachable from M0 (in short: M0 [ς>Mn), if
there exists a sequence of firings (ς = t1, t2, .., tn) that
transforms M0 to Mn.

Long version: M0 [t1>M1 [t2>M2..Mn−1 [tn>Mn

Notations:

• L(N,M0) : the set of all possible firing sequence from M0

in a net (N,M0)

• R(N,M0) : the set of all possible markings reachable from
M0 in a net (N,M0)

If N is given: L(M0), R(M0)
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Reachability/2

Generally: R(N,M) = {M ′|∃ς ∈ L(N,M) : M [ς>M ′}

Reachability problem: Mn ∈ R(M0) for a given marking Mn?

Note 1
The reachability problem is decidable.

Note 2
However the equality problem is undecidable.
L(N,M0) = L(N ′,M ′0) for any two Petri nets N and N ′



Analysis of
Distributed

Systems
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Boundedness

Definition 10 (k-bounded Petri nets)

A Petri net is k-bounded, if
∀M ∈ R(N,M0) : ∀p ∈ P : M(p) ≤ k . (k ∈ N )

There is no marking reachable from M0, which has more than
k tokens in one place.

Definition 11 (Safe Petri nets)

A Petri net is safe, if it is 1-bounded.

Places can be used as buffers and registers for storing
intermediate data. Boundedness, safeness means: overflow can
not happen, no matter what firing sequence is taken.
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Liveness/1

Liveness ≈ deadlock free

Notation: #(ς, t) : the number of occurrences of t in ς.

Definition 12 (Liveness)

A transition t in a Petri net N with the initial marking M0 is
said to be:

• L0-live (dead): ∀ς ∈ L(N,M0) : t /∈ ς,
• L1-live (potentially fireable): ∃ς ∈ L(N,M0) : t ∈ ς,
• L2-live: ∀k ∈ N : ∃ς ∈ L(N,M0) : #(ς, t) ≥ k,

• L3-live: ∃ς ∈ L(N,M0) : #(ς, t) =∞,

• L4-live: if t ∈ T is L1-live for ∀M ∈ R(M0) marking.
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Liveness/2

Definition 13 (Lk-live)

A Petri net (N,M0) is Lk -live if ∀t ∈ T : t is Lk -live

Definition 14 (Strict liveness)

Strictly Lk live: Lk live, but not Lk+1-live

Note 3
L4 ⇒ L3 ⇒ L2 ⇒ L1,
¬L0 ⇔ L1
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Reversibility and Home state

Definition 15 (Reversibility)

A (N,M0) Petri net is reversible if ∀M ∈ R(M0) : M0 ∈ R(M).

In a reversible net one can always get back to the initial
marking or state.

Generalization: not just M0, but any reachable marking can be
examined

Definition 16 (Home state)

M‘ is a Home state, if ∀M ∈ R(M0) : M‘ ∈ R(M).
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Coverability

Definition 17 (Coverability)

A marking M in a Petri net (N,M0) is coverable, if
∃M‘ ∈ R(M0) : ∀p ∈ P : M‘(p) ≥ M(p).

Coverability and L1-liveness are closely related!

Note 4 (Liveness and coverability)

Let M be the minimum marking, which enables transition t:

• t is dead (L0-live) ⇔ M is not coverable

• t is L1-live ⇔ M is coverable
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Persistence

Definition 18 (Persistence)

(N,M0) is persistent, if ∀t1, t2 ∈ T :, if both t1 and t2 is
enabled, then firing one of them will not disable the other.

In short: A transition in a persistent net, once it is enabled, will
stay enabled until it fires.
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Synchronic distance

• a metric

• related to a degree of mutual dependence between two
events

• defined between two transitions (1) or two sets of
transitions (2)

Definition 19 (Synchronic distance (1))

In case of (N,M0) : t1, t2 ∈ T
d1,2 := max

ς∈L(N,M),M∈R(M0)
|#(ς, t1)−#(ς, t2)|

Definition 20 (Synchronic distance (2))

In case of (N,M0) : E1,E2 ⊆ T
dE1,E2 := max

ς∈L(N,M),M∈R(M0)
|#(ς,E1)−#(ς,E2)|
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Fairness/1

Definition 21 (Bounded-fair or B-fair)

1. Two transitions t1 and t2 are in a bounded-fair relation if
the maximum number of times that either one can fire
while the other is not firing is bounded
(∃K ∈ N : di ,j < K ).

2. A Petri net (N,M0) is a bounded-fair net if
∀ti , tj ∈ T : ∃K ∈ N : di ,j < K .

Definition 22 (Unconditionally fair)

3. In case of ∀ς ∈ L(N,M) : ∀M ∈ R(M0) : a ς firing
sequence is unconditionally fair, if ∀tj ∈ T : #(ς, tj ) =∞
or ς is finite.

4. A Petri net (N,M0) is unconditionally fair, if
∀M ∈ R(M0) : ∀ς ∈ L(N,M) : ς is unconditionally fair.
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Fairness/2

Theorem 6
(2) ⇒ (4)

Every B-fair net is an unconditionally-fair net.

Theorem 7
A Petri net is bounded and fulfills (4) ⇒ (2) is fulfilled too.

Every bounded unconditionally-fair net is a B-fair net.
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Fairness/3

Example 1

(4) but not (2) —— (2) and (4)
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1 Lecture 1 - Definition of Petri nets

2 Lecture 2 - Behavioral properties

3 Lecture 3 - Analysis methods
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Reduction rules for analysis

Motivation:

• Analysis of large systems can be tedious

• Reduce to a simple one, while properties are preserved

Theorem 8 (Behavioral preserving)

Let (N,M0) and (N ′,M ′0) be the Petri nets before and after
one of the succeeding six simple transformations.

(N ′,M ′0) is live, safe or bounded ⇔ (N,M0) is live, safe or
bounded
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Fusion of series places

Example 2
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Fusion of series transitions

Example 3
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Fusion of parallel places

Example 4
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Fusion of parallel transitions

Example 5
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Elimination of self-loop places

Example 6
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Elimination of self loop transitions

Example 7
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Coverability/reachability tree

Given (N,M0) Petri net

• from M0 we can reach as many ”new” markings as the
number of the enabled transitions

• from each marking we can again reach more markings

• result: tree representation of the markings

Definition 23
The reachability / coverability tree of an (N,M0) Petri net is a
graph, where the nodes are labeled with markings and the
edges are labeled with firing transitions.

Note 5
The tree will grow inifinitely large if the net is unbounded. A
special ω symbol is introduced as ”inifinity” to keep the tree
finite.
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Construction (reachability tree)

1. The initial marking M0 is the root, and labeled as ”new”

2. While ”new” markings exists, do the following:

2.1 Select a ”new” marking (M).
2.2 If M is on the path from the root to M, than label it as

”old” and start with another ”new” marking.
2.3 If no transitions are enabled at M, then tag it as

”dead-end”.
2.4 While there are enabled transitions at M, do the following

for each enabled ”t” transition:

2.4.1 Fire t, which transforms M marking to M ′ marking.
2.4.2 If ∃M ′′ marking on the path from the root to M, such

that ∀p : M ′(p) ≥ M ′′(p) and M ′ 6= M ′′ then replace
M ′(p) by ω for ∀p : M ′(p) > M ′′(p).

2.4.3 Introduce M ′ as a node, connect it with an edge to M
and label the edge with ”t”. Tag the M ′ as ”new”.
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Coverability tree/1

Example 8
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Coverability tree/2

Example 9
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Coverability/reachability tree

Theorem 9
G is the coverability tree of the (N,M0) Petri net

• the Petri net is bounded ⇔ there is no ω in G .

• the Petri net is safe (1-bounded) ⇔ only 0,1 appears in
the nodes of G .

• t dead (L0-live) ⇔ 6 ∃ edge labeled with t in G.

Theorem 10
M ∈ R(M0)⇒ ∃M ′ in G : M ′ covers M.

Note 6
By merging the identical nodes (markings), we can transform
the coverability tree into a coverability graph.
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About places

Theorem 11
•p= ∅ ⇒ t not live

Theorem 12
p•= ∅ ∧ t live ⇒ p not safe
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About transitions

Theorem 13
t•= ∅ ⇒ p not safe

Theorem 14
t•= ∅ ∧ p safe ⇒ t not live
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Strongly connected Petri nets

Theorem 15
If (N,M0) is live and safe ⇒ ∀x ∈ P ∪ T :x• 6= ∅ 6=• x

Theorem 16
Connected, live and safe Petri nets ⇒ strongly connected.

Note 7
The previous theorem is not reversible!
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Máté Tejfel

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Example for non-reversibility

Example 10

The first net hasn’t got any live initial markings, while the
second hasn’t got any safe and not empty initial markings.
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Máté Tejfel

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Agenda

1 Lecture 1 - Definition of Petri nets

2 Lecture 2 - Behavioral properties

3 Lecture 3 - Analysis methods

4 Lecture 4 - Classification of Petri nets

5 Lecture 5 - Coloured Petri nets



Analysis of
Distributed

Systems
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Introduction, reminder

We define subclasses of Petri nets by adding some restrictions
on their structure.

Reminder:

• we work with ordinary (edge weights are 1) Petri nets.

• •t= {p|(p, t) ∈ F} = the set of t’s input places.

• t•= {p|(t, p) ∈ F} = the set of t’s output places.

• •p= {t|(t, p) ∈ F} = the set of p’s input transitions.

• p•= {t|(p, t) ∈ F} = the set of p’s output transitions.
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Classification, subclasses/1

Definition 24 (State Machine (SM))

∀t ∈ R : | •t | = | t• | = 1

Each transition t has exactly one input place and exactly one
output place.

Definition 25 (Marked Graph (MG))

∀p ∈ P : | •p | = | p• | = 1

Each place p has exactly one input transition and exactly one
output transition.

Note 8 (About MGs)

• conflict free Petri net 6⇒ MG

• MG ⇒ persistent

• Persistent, safe Petri net is transformable to MG
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Classification, subclasses/2

Definition 26 (Free Choice (FC))

∀p ∈ P : | p• | ≤ 1 ∨ •(p•)= p

Equivalent definition:
∀p1, p2 ∈ P : p•1 ∩ p•2 6= ∅ ⇒ |p•1 | = |p•2 | = 1

Every edge from a place is either a unique outgoing edge or a
unique incoming edge to a transition.

Definition 27 (Extended Free Choice (EFC))

∀p1, p2 ∈ P : p•1 ∩ p•2 6= ∅ ⇒ p•1 = p•2

Definition 28 (Asymmetric Choice (AC))

∀p1, p2 ∈ P : p•1 ∩ p•2 6= ∅ ⇒ p•1 ⊆ p•2 ∨ p•2 ⊆ p•1
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Key structures - Overview
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Properties - Overview

SM : no syncronization

MG : no conflict

FC : no confusion

AC : allow asymetric confusion, but disallow symmetric
confusion

Note 9
In case of FC, EFC : ∃p ∈ (•t1 ∩ •t2)⇒6 ∃M marking such that
only t1 or only t2 enabled. Thus we have ”free-choice” about
which transition to fire. An EFC can be converted to it’s FC
equivalent.
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Source, Sink, Siphon, Trap

Definition 29 (Source place (transition))

A place p (transition t) is a source place (source transition) if
•p = ∅ (•t = ∅)

Definition 30 (Sink place (transition))

A place p (transition t) is a sink place (sink transition) if
p• = ∅ (t• = ∅)

Definition 31 (Siphon (deadlock))

S is a set of places, S is siphon if •S⊆ S•

If a siphon place is unmarked, then it remains so.

Definition 32 (Trap)

S is a set of places, S is trap if S• ⊆•S
If a trap place is marked, then it remains so.
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State Machine - Liveness, safeness

Definition 33 (State machine - reminder)

∀t ∈ T : | •t | = | t• | = 1

Theorem 17
A (N,M0) SM is live ⇔ N strongly connected, and M0 has at
least one token.

Theorem 18
A (N,M0) SM is safe ⇔ M0 has at most one token.

Theorem 19
A live (N,M0) SM is safe ⇔ M0 has exactly one token, and N
is strongly connected.
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Marked Graph/1

Definition 34 (Marked graph - reminder)

∀p ∈ P : | •p | = | p• | = 1

Theorem 20
For a MG, the token count in a directed circuit is invariant
under any firing, i.e., ∀M ∈ R(M0) : ∀C : M0(C ) = M(C ),
where C is the set of nodes of the directed circuit.

By the previous theorem:
If a transition t is L0-live (dead) in a strongly connected MG ⇒
there is a tokenless directed circuit, which contains t.

Theorem 21
Strongly connected MG (N,M0) is live ⇔ M0 places at least
one token on each directed circuit in N.
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Marked Graph/2

Theorem 22 (Mini-max)

The maximum number of tokens that an edge can have in a
MG (N, M0) is equal to the minimum number of tokens placed
by M0 on a directed circuit containing this edge.

Theorem 23
A live MG (N,M0) is safe ⇔ every edge (place) belongs to a
directed circuit C with M0(C )=1.

Theorem 24
There exists a live and safe marking in MG (N,M0) ⇔ N is
strongly connected.
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Feedback Arc Set (FAS)/1

Definition 35
A subset of edges E ′ in a directed graph G = (V ,E ) is a
feedback arc set if G ′ = (V ,E − E ′) is acyclic.

Definition 36
FAS is minimal if no proper subset of the FAS is a FAS.

Definition 37
FAS is minimum if no other FAS contains a smaller number of
edges.

Note 10
A FAS is not necessarily unambiguous.
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Feedback Arc Set (FAS)/2

Theorem 25
A subset of marked edges of a live MG’s is a FAS.

Conversely, if each edge in a FAS of a directed graph is marked,
we have a live MG.

Theorem 26
A strongly connected live MG is safe ⇔ ∀M ∈ R(M0) : the set
of marked edges is a minimal FAS.

Note 11
A minimum FAS does not necessary yield a safe marking.
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Liveness, safeness in FC nets

Theorem 27 (FC’s liveness)

An FC (N,M0) is live ⇔ every siphon in N contains a marked
trap.

Theorem 28 (Live FC’s safeness)

A live FC (N,M0) is safe ⇔ N is covered by strongly-connected
SM components each of which has exactly one token at M0.

Theorem 29
Let (N,M0) be a live and safe FC. Then, N is covered by
strongly-connected MG components. ∃M ∈ R(M0) : ∀(Ni ,Mi )
component is a live and safe MG, where Mi is M restricted to
Ni .
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SM/MG component

Definition 38 (SM-component (MG-component))

An SM-component (MG-component) N1 of a net N is defined
as a subnet generated by places (transitions) in N1 having the
following two properties:

• ∀t(p) ∈ N1 has at most one incoming edge and at most
one outgoing edge

• a subnet generated by places (transitions) is the net
consisting of these places (transitions), all of their input
and output transitions (places), and their connecting
edges.

Note 12
A live and safe FC can be viewed as an interconnection of live
and safe SMs (MGs).
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Liveness, safeness in AC nets

Theorem 30 (AC’s liveness)

An AC (N,M0) is live ⇒ every siphon in N contains a marked
trap.

Theorem 31 (AC’s liveness (2))

An AC (N,M0) is live ⇔ place-live.

Definition 39 (Place-liveness)

∀Mi ∈ R(M0),∀p ∈ N : ∃M ∈ R(Mi ) : M(p) > 0.
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1 Lecture 1 - Definition of Petri nets

2 Lecture 2 - Behavioral properties

3 Lecture 3 - Analysis methods

4 Lecture 4 - Classification of Petri nets

5 Lecture 5 - Coloured Petri nets
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Introduction to CP-nets

An ordinary Petri net (PT-net) has no types and no modules:

• Only one kind of tokens and the net is flat.

With Coloured Petri Nets (CP-nets) it is possible to use data
types and complex data manipulation:

• Each token has attached a data value called the token
colour.

• The token colours can be investigated and modified by the
occurring transitions.
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Coloured Petri Nets
Declarations:

• Types, functions, operations and variables.

Each place has the following inscriptions:

• Name (for identification).

• Colour set (specifying the type of tokens which may reside
on the place).

• Initial marking (multi-set of token colours).

Each transition has the following inscriptions:

• Name (for identification).

• Guard (boolean expression containing some of the
variables).

Each arc has the following inscriptions:

• Arc expression (containing some of the variables). When
the arc expression is evaluated it yields a multi-set of
token colours.
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Enabling and occurrence

A binding assigns a colour (i.e., a value) to each variable of a
transition.
A binding element is a pair (t, b) where t is a transition while b
is a binding for the variables of t.
Example: (T 2, < x = p, i = 2 >).

A binding element is enabled if and only if:

• There are enough tokens (of the correct colours on each
input-place).

• The guard evaluates to true.

When a binding element is enabled it may occur:

• A multi-set of tokens is removed from each input-place.

• A multi-set of tokens is added to each output-place.

A binding element may occur concurrently to other binding
elements ⇔ each binding element can get its ”own share”.
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Enabled binding
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Not enabled binding
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Concurrency
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Conflict
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Formal definition of CP-nets

Definition 40 (Coloured Petri Net)

is a tuple CPN = (Σ,P,T ,A,N,C ,G ,E , I ) satisfying the
following requirements:

(a) Σ is a finite set of non-empty types, called colour sets.

(b) P is a finite set of places.

(c) T is a finite set of transitions.

(d) A is a finite set of arcs such that:
P ∩ T = P ∩ A = T ∩ A = ∅

(e) N is a node function. (N :: A→ P × T ∪ T × P)

(f) C is a colour function. (C :: P → Σ)
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Formal definition of CP-nets/2

(g) G is a guard function. It is defined from T into expressions
such that:
∀t ∈ T : [Type(G (t)) = Bool ∧ Type(Var(G (t))) ⊆ Σ]

(h) E is an arch expression function. It is defined from A into
expressions such that: ∀a ∈ A :
[Type(E (a)) = C (p(a))MS ∧ Type(Var(E (a))) ⊆ Σ]
where p(a) is the place of N(a).

(i) I is an initialization function. It is defined from P into
closed expressions such that:
∀p ∈ P : [Type(I (p)) = C (p)MS ]

Note 13

MS means multi-set.
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Formal definition of behaviour

Definition 41 (Step)

A step is a multi-set of binding elements.

Definition 42 (Enabled step)

A step Y is enabled in a marking M ⇔ the following property
is satisfied:

∀p ∈ P :
∑

(t,b)∈Y

E (p, t)〈b〉 ≤ M(p)

Definition 43
When a step Y is enabled in a marking M1 it may occur by
changing to marking M2:

∀p ∈ P : M2(p) =
(M1(p)−

∑
(t,b)∈Y

E (p, t)〈b〉) +
∑

(t,b)∈Y

E (t, p)〈b〉
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Formal definition of behaviour/2

Definition 44 (Directly reachable)

M2 is directly reachable from M1 by the step Y :
M1 [Y>M2

Definition 45 (Occurrence sequence)

is a sequence of markings and steps:
M1 [Y1>M2 [Y2>M2..Mn [Yn>Mn+1

Definition 46 (Reachable)

Mn+1 is reachable from M1:
∀i ∈ [1..n] : ∃Yi : Mi [Yi>Mi+1



Analysis of
Distributed

Systems
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2 Lecture 7 - Petri Boxes

3 Lecture 8 - Operator Boxes I.
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Introduction to Labelled Petri nets

We assume a set Lab of actions to be given.

Definition 47 (relabelling)

ρ is a relabelling relation: ρ ⊆ (mult(Lab))× Lab such that
(∅, α) ∈ ρ if and only if ρ = {(∅, α)}

Special relabellings:

• constant: ρα = {(∅, α)} where α ∈ Lab

• transformational:
ρLab′ = {({α}, α)|α ∈ Lab′} : Lab′ ⊆ Lab

• identity: ρid = {({α}, α)|α ∈ Lab}
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Labelled Petri net

Definition 48 (Labelled Petri net)

Σ = (S ,T ,W , λ,M), where S is a set of places, T is a set of
transitions, W describes the edges, λ is a labelling function and
M gives the marking.

S ∩ T = ∅,
W : ((S × T ) ∪ (T × S))→ N0,
∀s ∈ S : λ(s) ∈ {e, i , x},
∀t ∈ T : λ(t) is a relabelling,
M : S × N0
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Definition 49 (Action counter - Bag function)

µ : A −→ N0. MF (A) = {µ|µ : A→ N0 }. The bag function
gives the number of occurrence for an element (of the bag).

Example 11

If µ is the {aabccc} bag, then µ(a) = 2, µ(b) = 1, µ(c) = 3.

Definition 50 (Pair definer function)
∧ : A→ A : a 6= â, bijection, ∧ =∧(−1), defines pairs over A.

Note 14
Notation: A is given as a set of actions and ∧ is given as pair
definer function over A.
µ̂(a) ::= µ(â).
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Semantics

Σh(a) = Σµ(a) ∗ h(a),
∪(µ1, µ2) = max ◦(µ1, µ2),
∩(µ1, µ2) = min ◦(µ1, µ2),
µ1 + µ2 = + ◦ (µ1, µ2),
µ1 − µ2 = difference or 0,
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Notations

Σ = (S ,T ,W , λ,M). Given s ∈ S . If
λ(s) = {e}, then s is an entry place,
λ(s) = {x}, then s is an exit place,
λ(s) = {i}, then s is an internal place.

•Σ= {s ∈ S |λ(s) = {e}} entry places
Σ•= {s ∈ S |λ(s) = {x}} exit places
Σ̈= {s ∈ S |λ(i) = {i}} internal places
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Máté Tejfel

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Example - A labelled Petri Net

Σ0 = (S0,T0,W0, λ0,M0)
S0 = {s0, s1, s2, s3}
T0 = {t0, t1, t2}
W0 = ((TS∪ST )×{1})∪(((S×T )\ST ∪(T×S)\TS)×{0})
λ0 = {(s0, e), (s1, i), (s2, x), (s3, e), (t0, α), (t1, β), (t2, α)}
M0 = {(s0, 1), (s1, 0), (s2, 0), (s3, 1)}
where

TS = {(t0, s1), (t1, s2), (t2, s3)} and
ST = {(s0, t0), (s1, t1), (s3, t2)}
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Previous example again
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Step sequence

Definition 51 (Step)

Σ = (S ,T ,W , λ,M) A finite multiset of transitions
U ∈ mult(t), called a step is enabled by Σ
if ∀s ∈ S : M(s) ≥ Σt∈U(U(t) ∗W (s, t))

Note 15
Notation: M [U> or Σ [U>

This means that every place has enough marking to perform
every transition in a simultaneous way.
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Step execution

Definition 52 (Step execution - semantics)

∀s ∈ S : M ′(s) = M(s) + Σt∈UU(t) ∗ (W (t, s)−W (s, t))

Note 16
Notation: M [U>M ′ or Σ [U>Θ, where

Θ = (S ,T ,W , λ,M ′)



Analysis of
Distributed

Systems
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Definition 53 (Step sequence)

of Σ is a possibly empty sequence of step, ρ = U1...Uk , such
that ∃Σ1...Σk satisfying Σ = Σ0 and ∀ ∈ [1..k] : Σi−1 [Ui>Σi .

Note 17
Notation:

• Σ [ρ>Σk

• Σk is derivable from Σ

• and its marking MΣk
, reachable from MΣ
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Properties

Definition 54 (T-restricted)

Σ = (S ,T ,W , λ,M) labelled Petri net is T-restricted, if
∀t ∈ T : •t 6= ∅ ∧ t• 6= ∅,
namely there is not any transition which has empty preset or
postset.
(In what follows, every analysed net is supposed to satisfy this
property.)

Definition 55 (ex-restricted)

Σ = (S ,T ,W , λ,M) labelled Petri net is ex-restricted, if
•Σ 6= ∅ ∧ Σ• 6= ∅,
namely there exists at least one entry and one exit place.
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Properties

Definition 56 (e-directed)

Σ = (S ,T ,W , λ,M) labelled Petri net is e-directed, if
∀s ∈ •Σ: ∀t ∈ T : W (t, s) = 0,
namely entry places have not incoming arcs.

Definition 57 (x-directed)

Σ = (S ,T ,W , λ,M) labelled Petri net is x-directed, if
∀s ∈ Σ•: ∀t ∈ T : W (s, t) = 0,
namely exit places have not outgoing arcs.

Definition 58 (ex-directed)

A labelled Petri net is ex-directed, if e-directed and x-directed.
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Definition 59
Let Σ = (S ,T ,W , λ,M) be a labelled Petri net.

∀s ∈ S : M•Σ(s) =

{
1 if s ∈•Σ
0 otherwise

∀s ∈ S : MΣ•(s) =

{
1 if s ∈Σ•

0 otherwise

Definition 60 (ex-exclusive)

Σ = (S ,T ,W , λ,M0) labelled Petri net is ex-exclusive, if for
every marking M reachable from M0, M•Σ or MΣ• :
M ∩M•Σ = ∅ or M ∩MΣ• = ∅.
Namely it is not possible to mark simultaneously an entry and
an exit place.
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Definition 61 (ex-asymmetric)

Let be Σ = (S ,T ,W , λ,M) a labelled Petri net. A t ∈ T
transition is ex-asymmetric, if (•t ∩ •Σ6= ∅) ∧ (•t ∩ Σ• 6= ∅)
or (t• ∩ •Σ 6= ∅) ∧ (t• ∩ Σ• 6= ∅).

Note 18
Let be Σ = (S ,T ,W , λ,M) a labelled Petri net. If there exists
a t ∈ T transition which is ex-asymmetric, then Σ is
ex-restricted but it is not ex-directed. And if t is executable,
then Σ is not ex-exclusive.
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Definition 62 (independence relation)

indΣ = {(t, u) ∈ T × T |( •t ∪ t•) ∩ ( •u ∪ u•) = ∅}

Note 19
If Σ = (S ,T ,W , λ,M) is safe (1-bounded), then any two
transitions occurring in the same step are independent.

Definition 63 (Notations)

Let be Σ = (S ,T ,W , λ,M). We can use the following
notations.
bΣc = (S ,T ,W , λ, ∅)
Σ = (S ,T ,W , λ,M•Σ)

Σ = (S ,T ,W , λ,MΣ•)



Analysis of
Distributed

Systems
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Definition 64 (Petri box)

Σ labelled Petri net is a Petri box, if it is ex-restricted,
ex-directed and T-restricted.

Definition 65 (plain box)

Σ = (S ,T ,W , λ,M) Petri box is a plain box if for every t ∈ T
transition λ(t) is a constant relabelling.

Definition 66 (clean marking)

M marking is clean if it is neither a proper super-multiset of
M•Σ nor of MΣ• . Namely, if M•Σ ⊆ M, then M•Σ = M and if
MΣ• ⊆ M, then MΣ• = M.
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Definition 67 (static box)

Σ = (S ,T ,W , λ,M) plain Petri box is a static box if MΣ = ∅
and every marking reachable from M•Σ and MΣ• is safe and
clean.

Definition 68 (dinamic box)

Σ = (S ,T ,W , λ,M) plain Petri box is a dinamic box if it is
marked (MΣ 6= ∅) and every marking reachable from M•Σ, MΣ•

and M is safe and clean.

Note 20
If Σ and Θ are Petri boxes, Σ is a static box and Θ is derivable
from Σ, then Θ is a dinamic box. (Accordingly Σ is a dinamic
box too.)
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Definition 69 (entry box)

Σ = (S ,T ,W , λ,M) dinamic Petri box is entry box if
M = M•Σ.

Definition 70 (exit box)

Σ = (S ,T ,W , λ,M) dinamic Petri box is exit box if M = MΣ• .

Definition 71 (Notations)

Box s is the set of static boxes,
Boxd is the set of dinamic boxes,
Boxe is the set of entry boxes,
Boxx is the set of exit boxes.
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Theorem 32
Let Σ = (S ,T ,W , λ,M) be a dinamic Petri box and U be a
step enabled by Σ.

• If Θ = (S2,T2,W2, λ2,M2) is a Petri box, derivable from
Σ, then Θ is a dinamic box.

• U is a set of mutually independent transitions. Namely
U × U ⊆ indΣ ∪ idT , where idX = {(x , x)|x ∈ X}.

• Every arcs connected to transitions in U are unitary,
namely W (U × S) ∪W (S × U) ⊆ {0, 1}.
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Proof.

• If Θ is derivable from Σ, then Θ is marked since Σ is
marked and T − restricted (namely there is not sink
transition in Σ). Every marking reachable from M•Θ, MΘ•

and M2 is safe and clean since they are reachable from
M•Σ, MΣ• or M (M2 is reachable from M, M•Θ = M•Σ)
and MΘ• = MΣ• .

• Every marking reachable from M is safe, that is
∀t ∈ U : ∀s ∈ (•t ∪ t•) : M(s) ≤ 1. This means if there
are two transitions in U, which are not independent, then
U can not be enabled.

• The proof follows from the proof of the previous item.
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Definition 72 (operator box)

Ω = (S ,T ,W , λ,M) Petri box is an operator box if for every
t ∈ T transition λ(t) is a transformational relabelling.

Definition 73 (complex marking)

Let be Ω an operator box. A complex marking of Ω is a pair
M = (M,Q), where M is a normal marking of Ω and Q is a
final multiset of activated transitions of Ω.

Note 21
A normal marking M of an operator box can be represented as
a complex marking (M, ∅).

Note 22
Complex markings are useful for operator boxes, since a
transition of an operator box can represent complex program
part (even infinite loop) so their execution can take measurable
time.
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Definition 74 (step – using complex markings)

Let be M = (M,Q) a complex marking. A step U is enabled
in M if it is enabled in M. Notation: M[U>.

Definition 75 (complete step execution)

Let be U an enabled step in M = (M,Q) complex marking.
The complete execution of U produces the complex marking
M′ = (M ′,Q), where

∀s ∈ S : M ′(s) = M(s) +
∑
t∈U

U(t) ∗ (W (t, s)−W (s, t)).

Notation: M[U>M′
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Definition 76 (step activization)

Let be U an enabled step in M = (M,Q) complex marking.
The complete execution of U produces the complex marking
M′ = (M ′,Q + U), where

∀s ∈ S : M ′(s) = M(s)−
∑
t∈U

U(t) ∗W (s, t).

Notation: M[U+>M′

Definition 77 (step completion)

Let be U ⊆ Q an activated step in M = (M,Q) complex
marking. The completion of U produces the complex marking
M′ = (M ′,Q − U), where

∀s ∈ S : M ′(s) = M(s) +
∑
t∈U

U(t) ∗W (t, s).

Notation: M[U−>M′



Analysis of
Distributed

Systems
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Definition 78 (direct reachability)

M′ = (M ′,Q ′) complex marking is directly reachable from
M = (M,Q), if there exists finite multisets of transitions U, V
and Y such that Y ⊆ Q, Q ′ = Q + V − Y , ∀s ∈ S :
M(s) ≥

∑
t∈U+V

(U(t) + V (t)) ∗W (s, t) and

M ′(s) = M(s) +
∑

t∈U+Y

(U(t) + Y (t)) ∗W (t, s)

−
∑

t∈U+V

(U(t) + V (t)) ∗W (s, t)

Notation: M[U : V + : Y−>M′
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Definition 79 (properties – using complex markings)

M = (M,Q) complex marking is safe, k-bounded and clean, if
correspondingly M is safe, k-bounded and clean.

Definition 80 (Ω-tuple)

Let be Ω = (S ,T ,W , λ,M) an operator box. Σ : T → Box
function is an Ω-tuple.

Definition 81 (notations)

Let be Ω = (S ,T ,W , λ,M) an operator box and Σ an Ω-tuple.
∀v ∈ T : let Σv denote Σ(v).
If T is finite we can assume their exists a fixed ordering
T = {v1, ..., vn}. In this case we can use notation
Σ = {Σv1 , ...,Σvn} or Σ = {Σ1, ...,Σn}.
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Máté Tejfel

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Note 23
Let be Ω = (S ,T ,W , λ,M) an operator box with complex
marking M = (M,Q). The operation defined by Ω applicable
for a Σ Ω-tuple if for every v ∈ T : Σv is marked if and only if
v ∈ Q.

Definition 82 (interface change – Ω-tuple)

Let be Ω = (S ,T ,W , λ,M) an operator box and Σ an Ω-tuple.
Interface change of Σ according to Ω executes an interface
change for every Σv from Σ according to the λ(v) relabelling
of the corresponding v ∈ T transition.

Definition 83 (notation)

Let be ρα = {(∅, α)} a constant relabelling. We can use the
following notation: ρα = α
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Definition 84 (interface change – plain box)

Let be Σv = (S ,T ,W , λ,M) a plain box and λv a
transformational relabelling. Interface change of Σv according
to relabelling λv results the plain box Σ′v = (S ,T ′,W ′, λ′,M),
where ∀s ∈ S : λ′(s) = λ(s) and T ′,W ′ and ∀t ′ ∈ T ′, λ(t ′)
are created in the following way.
For all set of transitions U ∈ P(T ) : if the bag
Uλ =

(
+

t∈U
{λ(t)}

)
is in the domain of λv a new t ′ is created

to T ′ (as a composition of transitions from set U) in the
following way.

• λ′(t ′) = {(∅, λv (Uλ))}
• ∀s ∈ S : W ′(s, t ′) = +

t∈U
W (s, t)

• ∀s ∈ S : W ′(t ′, s) = +
t∈U

W (t, s)
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Máté Tejfel

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Example
Consider the following plain box and the transformational
relabelling ρ =

{
({α}, γ), ({α, α}, α), ({α, β}, β)

}
.
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Máté Tejfel

Lecture 6

Lecture 7

Lecture 8

Lecture 9

According to definition 84 we can create the following table.

sets of transitions bags of labels ρ transition in the result
∅ ∅ – –
{t0} {α} γ t0
{t1} {β} – –
{t2} {α} γ t1
{t0, t1} {α, β} β t2
{t0, t2} {α, α} α t3
{t1, t2} {α, β} β t4
{t1, t2} {α, α, β} – –

It shows that the plain box created by the interface change will
contain 5 various transitions, illustrating five various
compositions of the sets of transitions where the domain of
function ρ contains the corresponding bag of labels.
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The result of the interface change is the following plain box.
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Agenda

1 Lecture 6 - Labelled Petri nets

2 Lecture 7 - Petri Boxes

3 Lecture 8 - Operator Boxes I.

4 Lecture 9 - Operator Boxes II.
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Definition 85 (transition refinement)

Let be Ω = (S ,T ,W , λ,M) an operator box and Σ an Ω-tuple.
Let be Σ = {Σ1,Σ2, . . . ,Σn} and

Σ1 = (S1,T1,W1, λ1,M1),
. . . ,
Σn = (Sn,Tn,Wn, λn,Mn) correspondingly.

Transition refinement of Σ according to Ω creates the plain box
ΣΩ = (SΣΩ

,TΣΩ
,WΣΩ

, λΣΩ
,MΣΩ

) by composing
Σ1,Σ2, . . . ,Σn in the following way.

• TΣΩ
= ∪

i∈[1,n]
Ti

• ∀t ∈ TΣΩ
: λΣΩ

(t) = λi (t) if t ∈ Ti

• Σ̈Ω = ∪
i∈[1,n]

Σ̈i
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• ∀s ∈ Σ̈Ω :
• λΣΩ

(s) = i ,
• MΣΩ

(s) = Mi (s) if s ∈ Si

• ∀t ∈ TΣΩ
:

• WΣΩ(t, s) =

{
Wi (t, s) if t ∈ Ti and s ∈ Si

0 if t ∈ Tj and s ∈ Si , j 6= i

• WΣΩ(s, t) =

{
Wi (s, t) if t ∈ Ti and s ∈ Si

0 if t ∈ Tj and s ∈ Si , j 6= i

• SΣΩ
= Σ̈Ω ∪ Snew

ΣΩ

• Snew
ΣΩ

and ∀s ∈ Snew
ΣΩ

: λΣΩ
(s),MΣΩ

(s) and the connected
arcs are created by applying the following method
according to every pj ∈ S.
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Let be p a place from S. Transition refinement of Σ according
to p creates new places Σnew

p (with corresponding marking,
relabelling and connected arcs) in the following way.
Let us suppose •p= {vi1 , . . . , vik} and p•= {vj1 , . . . , vjm}

Σnew
p =

{
comp({si1 , . . . , sik , sj1 , . . . , sjm}) |

si1 ∈Σ(vi1)•, . . . , sik ∈Σ(vik )•,
sj1 ∈•Σ(vj1), . . . , sjm ∈•Σ(vjm )

}
, where

comp({si1 , . . . , sik , sj1 , . . . , sjm}) is a new place with properties

• λΣΩ
(comp({si1 , . . . , sik , sj1 , . . . , sjm})) = λ(p)

• MΣΩ
(comp({si1 , . . . , sik , sj1 , . . . , sjm}))

=
( k∑

f =1

M(sif )
)

+
( m∑

g=1
M(sjg )

)
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• ∀t ∈ TΣΩ
:

let be l ∈ [1, n] where t ∈ Tl

• WΣΩ
(comp({si1 , . . . , sik , sj1 , . . . , sjm}), t)

=
( k∑

f =1

χ(if = l) ∗Wl (sif , t)
)

+
( m∑

g=1
χ(jg = l) ∗Wl (sjg , t)

)
• WΣΩ

(t, comp({si1 , . . . , sik , sj1 , . . . , sjm}))

=
( k∑

f =1

χ(if = l) ∗Wl (t, sif )
)

+
( m∑

g=1
χ(jg = l) ∗Wl (t, sjg )

)
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Example

Consider the following operator box Ω and the Ω-tuple
Σ = {Σ1,Σ2,Σ3}.
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According to definition 85 if we calculate the transition
refinement of Σ according to Ω first we can copy all the
transitions and internal places of Σ1,Σ2 and Σ3 into the new
plain box (with the corresponding relabellings and markings).
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Then the described composition method have to be applied
according to every place of Ω.

P0 preset corresponding plain box exit places
– – –

postset corresponding plain box entry places
v1 Σ1 s11
v2 Σ2 s21, s22

The new composed places are s11 21 and s11 22.
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P1 preset corresponding plain box exit places
v1 Σ1 s12
v2 Σ2 s23

postset corresponding plain box entry places
v3 Σ3 s31

The new composed place is s12 23 31.
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P2 preset corresponding plain box exit places
v3 Σ3 s32, s33

postset corresponding plain box entry places
– – –

The

new composed places are s32 and s33. (In this case we
practicaly just copy the two old places into the new plain box.)
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Definition 86 (net refinement)

Let be Ω = (S ,T ,W , λ,M) an operator box and
Σ = {Σ1,Σ2, . . . ,Σn} an Ω-tuple. The net refinement of Σ
according to Ω in the first step calculates the interface change
of Σ according to Ω. And then it calculates the transition
refinement of Ω-tuple Σ′ = {Σ′1,Σ′2, . . . ,Σ′n} according to Ω,
where Σ′1,Σ

′
2, . . . ,Σ

′
n are the results of the first step.

Note 24
Operator boxes can be defined for describing the construction
of well-know program structures (sequence, branch, loop,
parallel structure) and transformations (renaming,
synchronization). This makes it possible to calculate the petri
net representation of a complex program by defining the
representation of the basic elements (for example the actions)
and applying the corresponding operator boxes for the program
constructs.
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1 Lecture 10 - Labelled Transition Systems

2 Lecture 11 - Communicating Sequential Processes

3 Lecture 12 - Axiomatic Semantics of CSP

4 Lecture 13 - Denotational Semantics of CSP

5 Lecture 14 - Communication in CSP

6 Literature
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Labelled Transition Systems

Definition 87 (Labelled Transition System)

A Labelled Transition System is a triple (C ,A,→), where

• C is a set of configurations (states),

• A is a set of actions, and

• → is a transition relation (→ ⊆ C × A× C )

Notations

• c
a→ c ′ : < c , a, c ′ >∈→

• ∀a ∈ A :
a→ = {(c , c ′)| < c , a, c ′ >∈→}

• c → c ′ : ∃a ∈ A : c
a→ c ′

• c
a→ : ∃c ′ ∈ C : c

a→ c ′

• c 6→: 6 ∃c ′ ∈ C : c → c ′

• →∗ ⊆ C × A∗ × C is the transitive closure of →
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Labelled Transition Systems

An example.
A is an arbitrary set.
Definition of C is inductive:

• nil ∈ C ,

• ap ∈ C , if a ∈ A, p ∈ C ,

• p + q ∈ C , if p, q ∈ C ,

• C is the smallest set satisfying the previous 3 rules.

Definition of → is also inductive:

• ap
a→ p, where a ∈ A, p ∈ C ,

• p
a→ p′

p+q
a→ p′

, where a ∈ A, p, q, p′ ∈ C ,

• p
a→ p′

q+p
a→ p′

, where a ∈ A, p, q, p′ ∈ C ,

• → is the smallest set satisfying the previous 3 rules.
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Labelled Transition Systems

Semantics

• Operational semantics
• consider the meaning of program steps
• useful for implementation

• Denotational semantics
• consider the program as a whole
• from parts to complete (useful for program synthesis)

• Axiomatic semantics
• basic properties of the program
• useful for verification
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LTS operational semantics

Consider the process with its environment.

• (p, e) ∈ C × C

• p||e : p
a→ p′, e

a→ e′

p||e a→ p′||e′

Definition 88
The process p corresponds to an environment e (p sat e),

if and only if ∀p′, e ′ ∈ C : p||e a→ p′||e′ and p′||e′ 6→
e′=nil .

(In every case the environment is reduceable into nil .)

Definition 89 (Equivalence in operational semantics)

Two processes p and q are equivalent according to the
operational semantics (p equo q), if and only if
∀e ∈ C : p sat e ⇔ q sat e
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LTS denotational semantics

Definition 90
τ : P → P(A∗)

- τ(nil) = ε

- ∀a ∈ A, p ∈ P : τ(ap) = aτ(p),
where aT = {at|t ∈ T} (T ⊆ A∗)

every sequence which can be produced by ’p’ with an
additional ’a’ in the beginning

- ∀p, q ∈ P : τ(p + q) = τ(p) ∪ τ(q)

Definition 91 (Equivalence in denotational semantics)

Two processes p and q are equivalent according to the
denotational semantics (p equd q), if and only if τ(p) = τ(q)
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Relationship between different
semantics

Theorem 33
The operational and the denotational semantics of LTS are not
equivalent, ∃p, q ∈ P : (p equo q) 6⇔ (p equd q)

Proof.
∃p, q ∈ P : (p equd q) 6⇒ (p equo q) :

(a(p + q) equd ap + aq), but ¬(a(p + q) equo ap + aq),
(where a ∈ A, p, q ∈ P)

(a(p + q) equd ap + aq):

- τ(a(p + q)) = aτ(p + q) = a(τ(p)∪ τ(q)) = aτ(p)∪ aτ(q)

- τ(ap + aq) = τ(ap) ∪ τ(aq) = aτ(p) ∪ aτ(q)
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Relationship between different
semantics

¬(a(p + q) equo ap + aq) :

- let p = ap1, and q = bq1 (where p1, q1 ∈ P, b ∈ A, and
a 6= b),

- let e = aanil ,

- a(p + q) sat e : (a(ap1 + bq1) || aanil)
a→

(ap1 + bq1 || anil)
a→ (p1 || nil)

- ¬(ap + aq sat e) : aap1 + abq1 || aanil
a→ bq1 || anil 6→
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Relationship between different
semantics

∃p, q ∈ P : (p equo q) 6⇒ (p equd q) :

- p equo (p + nil)

- p 6= nil ⇒ ¬(p equd (p + nil)) :

– τ(p + nil) = τ(p) ∪ τ(nil) = τ(p) ∪ ε

�
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LTS denotational semantics
(alternative version)

Definition 92
τ ′ : P → P(A∗)

- τ ′(nil) = ε

- ∀a ∈ A, p ∈ P : τ ′(ap) = aτ ′(p) ∪ ε,
- ∀p, q ∈ P : τ ′(p + q) = τ ′(p) ∪ τ ′(q)

Note 25
τ ′(p) is prefix closed.
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LTS denotational semantics
(alternative version)

Definition 93 (Equivalence in denotational semantics
(alternative version))

Two processes p and q are equivalent according to the modified
denotational semantics (p equ’d q), if and only if τ ′(p) = τ ′(q)

Theorem 34
∀p, q ∈ P : (p equo q)⇒ (p equ’d q) :
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LTS axiomatic semantics

A1 p + (q + r) = (p + q) + r

A2 p + q = q + p

A3 p + p = p

A4 p + nil = p

A5 a(p + q) = ap + aq

Definition 94 (Equivalence in axiomatic semantics)

Two processes p and q are equivalent according to the
axiomatic semantics (p equa q), if and only if p is
transformable to q using axioms A1-A5.
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Relationship between different
semantics

Theorem 35
∀p, q ∈ P : (p equa q)⇔ (p equ’d q) :

Definition 95 (Weak equivalence in axiomatic semantics)

Two processes p and q are weak equivalent according to the
axiomatic semantics (p equ wa q), if and only if p is
transformable to q using axioms A1-A4.

Theorem 36
∀p, q ∈ P : (p equ wa q)⇒ (p equo q) :

Note 26
∀a, b, c ∈ A : abnil + acnil equo (abnil + acnil) + a(bnil + cnil),
but ¬(abnil + acnil equ wa (abnil + acnil) + a(bnil + cnil))
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1 Lecture 10 - Labelled Transition Systems

2 Lecture 11 - Communicating Sequential Processes

3 Lecture 12 - Axiomatic Semantics of CSP

4 Lecture 13 - Denotational Semantics of CSP

5 Lecture 14 - Communication in CSP
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Syntax of CSP

Definition 96 (Syntax of CSP)

Let Com be the set of the communication events.
Let Id be the set of process identifiers.
The set of CSP processes
PROC = {p | p ∈ Rec ∧ FV (p) = ∅}, where
FV (expr) is the set of free variables of expr ,
Rec is the minimal set satisfying the following:

• STOP ∈ Rec (deadlock or endpoint),

• DIV ∈ Rec (divergence),

• a→ P ∈ Rec (prefix), where
• a ∈ Com and
• P ∈ Rec,
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Syntax of CSP

• (x1 → P1|x2 → P2| . . . |xn → Pn) ∈ Rec (choice) ,where
• n ∈ N ,
• x1, x2, . . . , xn ∈ Com,
• x1 6= x2 6= · · · 6= xn (x1, x2, . . . , xn are distinct events) and
• P1,P2, . . . ,Pn ∈ Rec,

• P u Q (nondeterministic or), where
• P,Q ∈ Rec

• P�Q (general choice), where
• P,Q ∈ Rec

• P||Q (concurrency), where
• P,Q ∈ Rec
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Syntax of CSP

• rec X .P (recursion), where
• X ∈ Id
• P ∈ Rec

• X ∈ Rec (variable), where
• X ∈ Id

• f (P) ∈ Rec (renaming), where
• f : αP → Com
• P ∈ Rec

• P \ C ∈ Rec (concealment), where
• C ⊆ Com
• P ∈ Rec
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Alphabet of a CSP process

αP is the alphabet of process P

• the process is equiped with the physical capabilities to
engage in these events.

Note 27

• STOPA is the process which is equipped with the physical
capabilities to engage in the events of A, but it never
exercises those capabilities,

• STOPA 6= STOPB if A 6= B,

• α(a→ P) = αP, (a ∈ αP),
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Alphabet of a CSP process

• α(a1 → P1|a2 → P2| . . . |an → Pn) = αP1 = · · · = αPn,
({a1, a2, . . . , an} ⊆ αP1),

• α(P||Q) = αP ∪ αQ,

• α(f (P)) = f (αP) (where f : αP → A),

• α(P u Q) = αP = αQ,

• α(P�Q) = αP = αQ,

• α(P \ C ) = (αP) \ C .
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Menu

Note 28

• The choice is not an operator on processes, the following
are incorrect:
• (P|Q)
• (x → P|x → Q),
• (x → P|y → Q|R),
• ((x → P|y → Q)|z → R))

Definition 97 (Menu)

x : B → P(x), where B ⊆ COM and ∀x ∈ B : P(x) ∈ PROC is
a generalization of choice. First it offers a choice of any event
e in B, and then behaves like P(e).
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Menu

Note 29

• x : B → P(x) = y : B → P(y)

• x : {} → P = STOPαP

• x : {a} → P = a→ P

• x : B → P(x) = (a1 → P1|a2 → P2| . . . |an → Pn),
if B = {a1, a2, . . . , an}
and P(a1) = P1, P(a2) = P2, . . . , P(an) = Pn
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Recursion

P = recX .F (X ) ∼ P = F (P)

Example

• CLOCK = tick → CLOCK , αCLOCK = {tick}

CLOCK

= tick → CLOCK

= tick → tick → CLOCK

= tick → tick → tick → CLOCK

= . . .
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Recursion

X = F (X ), αX = A is well defined if the equation has a
unique solution with alphabet A.
µX : A.F (X ) denotes this solution.

Note 30

• µX : A.F (X ) = µY : A.F (Y )

• CLOCK = µX : {tick}.tick → X
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Examples

• P = (up → up → right → STOP
|right → right → up → up → left → STOP),

αP = {up, right, left, down}
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Examples

• VMS = coin→ choc → VMS , αVMS = {coin, choc}
• RUNA = x : A→ RUNA, αRUNA = A

• P = LEVEL0

LEVEL0 = (around → LEVEL0|up → LEVEL1)
LEVELi = (up → LEVELi+1|down→ LEVELi−1), where
i ∈ N

αP = {around , up, down}
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Examples

Mutual recursion.

TV = (setBBC → BBC | setMTV → MTV )
BBC = (watchingBBC → BBC | turnoff → TV | setMTV →
MTV )
MTV = (watchingMTV → MTV | turnoff → TV | setBBC →
BBC )

αTV = {setBBC , setMTV ,watchingBBC ,watchingMTV , turnoff }
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1 Lecture 10 - Labelled Transition Systems
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Axiomatic semantics (menu and
recursion)

Definition 98 (Guarded process)

A process P is guarded if it begins with a prefix.

Ax.1. Let be Pr1 = x : A→ P(x) and Pr2 = y : B → Q(y)
Pr1 = Pr2 if, and only if αPr1 = αPr2, A = B and
∀x ∈ A : P(x) = Q(x).

Ax.2. If F (X ) is a guarded expression containing the process
name X , and A is the alphabet of X , then X = F (X ) has
a unique solution with alphabet A.
(X = F (X ) ⇐⇒ X = µY : A.F (Y ))
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Application of Ax.1.

• STOP 6= (a→ P)
STOP = (x : {} → P) 6= (x : {a} → P) = (a→ P)

• (a→ P) 6= (b → Q), if a 6= b
(a→ P) = (x : {a} → P) 6= (x : {b} → Q) = (b → Q)
({a} 6= {b})

• (a→ P|b → Q) = (b → Q|a→ P)
Let be R(a) = P and R(b) = Q
(a→ P|b → Q) = (x : {a, b} → R(x)) = (b → Q|a→ P)

• (a→ P) = (a→ Q) ⇐⇒ P = Q
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Application of Ax.2.

• µX : A.F (X ) = F (µX : A.F (X )), (if F (X ) is guarded),

• Let be VM1 = coin→ VM2 and VM2 = choc → VM1

VM1 = VMS
VM1 = coin→ VM2 = coin→ choc → VM1

VM1 = µX : {coin, choc}.coin→ choc → X = VMS

• µX .coin→ (choc → X | toffee → X )
= µX .coin→ (toffee → X | choc → X )

((choc → X | toffee → X ) = (toffee → X | choc → X ))
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Axiomatic semantics (concurrency)

Ax.3. P||Q = Q||P.

Ax.4. P||(Q||R) = (P||Q)||R.

Ax.5. P||STOPαP = STOPαP .

Ax.6. P||RUNαP = P.

Ax.7. (c → P) || (c → Q) = (c → (P||Q)).

Ax.8. (c → P) || (d → Q) = STOP,

if c 6= d and c , d ∈ (αP ∩ αQ).
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Axiomatic semantics (concurrency)

Ax.9. (a→ P) || (c → Q) = a→ (P || (c → Q)),

if a ∈ (αP \ αQ) and c ∈ (αP ∩ αQ).

Ax.10. (c → P) || (b → Q) = b → ((c → P) || Q),

if c ∈ (αP ∩ αQ) and b ∈ (αQ \ αP).

Ax.11. (a→ P) || (b → Q)
=
(
b → ((a→ P) || Q) | a→ (P || (b → Q))

)
,

if a ∈ (αP \ αQ) and b ∈ (αQ \ αP).

Ax.12. (x : A→ P(x)) || (y : B → Q(y))
= z : (A ∩ B)→

(
P(z) || Q(z)

)
,

if αP = αQ.
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Axiomatic semantics (concurrency)

Ax.13. Let be P = x : A→ R(x) and Q = y : B → T (y)
(A ⊆ αP, B ⊆ αQ)

P || Q = z : C → (P ′(z) || Q ′(z)), where

C = (A ∩ B) ∪ (A \ αQ) ∪ (B \ αP)

P ′(z) =

{
R(z) if z ∈ A
P otherwise

Q ′(z) =

{
T (z) if z ∈ B
Q otherwise
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Examples
• P = (a→ b → P | b → P), (αP = {a, b, c})

Q = (a→ (b → Q | c → Q)), (αQ = {a, b, c})

P || Q = a→
(
b → P ||(b → Q | c → Q)

)
= a→ b → (P || Q)
= µX : {a, b, c}.a→ b → X

• NOISYVM
= coin→ clink → choc → clunk → NOISYVM,

(αNOISYVM = {coin, choc, clink , clunk, toffee})

CUST
= coin→ (toffee → CUST | curse → choc → CUST ),

(αCUST = {coin, choc, curse, toffee})

NOISYVM || CUST
= µX : {coin, choc, clink , clunk, toffee, curse}.coin→

( clink → curse → choc → clunk → X
| curse → clink → choc → clunk → X )
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Examples

• P = up → down→ P, (αP = {up, down})
Q = (left → right → Q | right → left → Q),

(αQ = {left, right})

P || Q = R12, where
R12 = (up → R22 | left → R11 | right → R13)
R22 = (down→ R12 | left → R21 | right → R23)
R11 = (up → R21 | right → R12)
R21 = (down→ R11 | right → R22)
R13 = (up → R23 | left → R12)
R23 = (down→ R13 | left → R22)
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Examples

• P = a→ c → P, (αP = {a, c})
Q = c → b → Q, (αQ = {b, c})
P || Q = (a→ c → P) || (c → b → Q)

= a→ (c → P || c → b → Q)
= a→ c → (P || b → Q)

P || b → Q = (a→ c → P) || (b → Q)
=
(
a→ (c → P || b → Q) | b → (a→ c → P || Q)

)
=
(
a→ b → ((c → P) || Q) | b → (P || Q)

)
=
(
a→ b → (c → P || c → b → Q)
| b → (a→ c → (P || b → Q))

)
=
(
a→ b → c → (P || b → Q)
| b → a→ c → (P || b → Q)

)
= µX : {a, b, c}.(a→ b → c → X | b → a→ c → X )

P || Q = a→ c →
(
µX : {a, b, c}.(a→ b → c → X

| b → a→ c → X )
)
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Axiomatic semantics (renaming)

Let be f (A) = {f (x) | x ∈ A},
where A ⊆ Com and f : Com→ Com. Let be f −1 is the

inverse of f .

Ax.14. f (STOPA) = STOPf (A).

Ax.15. f (x : B → P(x)) = y : (f (B))→ P(f −1(y)).

Ax.16. f (P||Q) = f (P)||f (Q).

Ax.17. f (µX : A.F (X )) = µY : f (A).F (f −1(Y )).

Ax.18. f (g(P)) = f ◦ g(P),
where f ◦ g is the composition of f and g .
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Axiomatic semantics
(nondeterministic or)

Ax.19. P u P = P.

Ax.20. P u Q = Q u P.

Ax.21. (P u Q) u R = P u (Q u R).

Ax.22. x → (P u Q) = (x → P) u (x → Q)

Ax.23. x : B → (P(x) u Q(x))
= (x : B → P(x)) u (x : B → Q(x)).

Ax.24. P || (Q u R) = (P||Q) u (P||R).

Ax.25. (P u Q) || R = (P||R) u (Q||R).

Ax.26. f (P u Q) = f (P) u f (Q).
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Axiomatic semantics
(general choice)

Ax.27. P � P = P.

Ax.28. P � Q = Q � P.

Ax.29. (P � Q) � R = P � (Q � R).

Ax.30. P � STOP = P.

Ax.31. (x : A→ P(x)) � (y : B → Q(y))
= z : (A ∪ B)→ R(z),

where R(z) =


P(z) if z ∈ A \ B
Q(z) if z ∈ B \ A
P(z) u Q(z) if z ∈ A ∩ B

Ax.32. P � (Q u R) = (P � Q) u (P � R).

Ax.33. P u (Q � R) = (P u Q) � (P u R).
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Axiomatic semantics
(concealment)

Ax.34. P \ {} = P.

Ax.35. (P \ B) \ C = P \ (B ∪ C ).

Ax.36. (P u Q) \ C = (P \ C ) u (Q \ C ).

Ax.37. (STOPA) \ C = STOPA\C .

Ax.38. (x → P) \ C =

{
x → (P \ C ) if x 6∈ C
(P \ C ) if x ∈ C

Ax.39. (P||Q) \ C = (P \ C ) || (Q \ C ),
if αP ∩ αQ ∩ C = {}.

Ax.40. f (P \ C ) = f (P) \ f (C ).
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Axiomatic semantics
(concealment)

Ax.41. (x : B → P(x)) \ C = x : B → (P(x) \ C ),
if B ∩ C = {}.

Ax.42. (x : B → P(x)) \ C = u
x :B

(P(x) \ C ),

if B ⊆ C , and B is finite and not empty.

Ax.42. (x : B → P(x)) \ C

= Q u
(

Q �
(
x : (B \ C )→ (P(x) \ C )

))
,

where Q = u
x :B∩C

(P(x) \ C ),

if C ∩ B is finite and not empty.

Note 31
There is no general axiom for (P || Q) \C and for (P � Q) \C .
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Traces

Definition 99 (Trace of a process)

A trace t of a process P is a finite sequence of events in which
the process has engaged up to some moment in time.
(t ∈ (αP)∗)

Auxiliary functions.
Let be s, t and u traces. (s, t, u ∈ Com∗)

• s∧t – concatenation of s and t.
• tn – n times concatenation of t.

• t0 =<>,
• tn+1 = t∧tn

• t ↑ A – restriction to A (A ⊆ Com).
• <>↑ A =<>,
• (s∧t) ↑ A = (s ↑ A)∧(t ↑ A),

• < x >↑ A =

{
< x > if x ∈ A
<> ifx 6∈ A
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Traces

• t0 – head of t,
• (< x >∧ s)0 = x .

• t ′ – tail of t,
• (< x >∧ s)′ = s.

• s ≤ t – prefix,
• s ≤ t =

(
∃u : (s∧u) = t

)
.

• s in t – infix,
• s in t =

(
∃u, v : (u∧s∧v) = t

)
.

• #t – length of t.

• t ↓ x – the number of occurencies of x in t,
• t ↓ x = #(t ↑ {x}).
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Denotational semantics of
processes

Definition 100 (Equivalence in denotational semantics.)

Two CSP process P and Q are equivalent according to the
denotational semantics, if traces(P) = traces(Q) (they have
the same traces), where the formal definition of function traces
is the following.

Definition 101 (Traces of a process)
1. traces(STOP) =<>,

2. traces(x : B → P(x))
= {t | t =<> ∨

(
t0 ∈ B ∧ t ′ ∈ traces(P(t0))

)
},

3. If F (X ) is guarded, then
traces(µX : A.F (X )) = ∪

n≥0
traces(F n(STOPA)),

where
• F 0(X ) = X ,
• F n+1(X ) = F (F n(X ),
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Denotational semantics of
processes

4. traces(P || Q)
= {t | (t ↑ αP) ∈ traces(P) ∧ (t ↑ αQ) ∈ traces(Q)

∧ t ∈ (αP ∪ αQ)∗},
• If αP = αQ, then traces(P || Q) = traces(P)∩ traces(Q),

5. traces(f (P)) = {f ∗(s) | s ∈ traces(P)},

where f ∈ αP → Com,
f ∗ ∈ (αP)∗ → Com∗,
f ∗(<>) =<>,
f ∗(< x >) =< f (x) >,
f ∗(s∧t) = f ∗(s)∧f ∗(t),
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Denotational semantics of
processes

6. traces(P u Q) = traces(P) ∪ traces(Q),

7. traces(P � Q) = traces(P) ∪ traces(Q),

8. traces(P \ C ) = {t ↑ (αP \ C ) | t ∈ traces(P)},
if ∀s ∈ traces(P) : ¬diverges(P/s,C ),

where diverges(P,C )
=
(
∀n ∈ N : (∃t ∈ traces(P)∩C ∗ : #t > n)

)
,

and P/s is a process which behaves the same as P
behaves from the time after it has engaged in all the
actions recorded in s, if s is not a trace of P,
(P / s) is not defined,
traces(P/s) = {t | s∧t ∈ traces(P)}, if s ∈ traces(P).
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Examples of traces

Note 32
Forall CSP process P:

• <>∈ traces(P)

• s∧t ∈ traces(P)⇒ s ∈ traces(P)

• traces(P) ⊆ (αP)∗

• P uQ and P � Q cannot be distinguished by their traces.

Examples

• traces(a→ P) = {<>} ∪ {< a >∧ t | t ∈ traces(P)}.
• traces(coin→ choc → STOP)

= {<>,< coin >,< choc >}.
• traces(a→ P | b → Q)

= {<>} ∪ {< a >∧ t | t ∈ traces(P)}
∪ {< b >∧ t | t ∈ traces(Q)}.
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Examples of traces

• traces(RUNA) = A∗,
• RUNA = µX : A.(y : A→ X ),

namely here (F (X ) = y : A→ X )
• According to the 3. item of definition of function traces it

is enough to see:
∀n ∈ N : traces(F n(STOPA)) = {s | s ∈ A∗ ∧#s ≤ n}.

Using induction:

n=0 traces(F 0(STOPA)) = traces(STOPA) = {<>} =
{s | s ∈ A∗ ∧#s ≤ 0},

n=k+1 traces(F k+1(STOPA))
= traces(F (F k(STOPA)))
= traces(y : A→ F k(STOPA))
= {t | t =<> ∨

(
t0 ∈ A ∧ t′ ∈ traces(F k(STOPA))

)
}

=
{
t | t =<> ∨

(
t0 ∈ A ∧ t′ ∈ {s | s ∈ A∗ ∧#s ≤ k}

)}
= {t | t =<> ∨

(
t0 ∈ A ∧ t′ ∈ A∗ ∧#t′ ≤ k

)
}

= {t | t ∈ A ∧#t ≤ k + 1}



Analysis of
Distributed

Systems
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Specifications

Definition 102 (Specification)

A specification S of a process P is a requirement for the traces
of P. (S : (αP)∗ → {TRUE ,FALSE}.)

Definition 103 (Satisfaction)

P satisfies S, (P sat S) if ∀tr ∈ traces(P) : S(tr).

Note 33
Let be S a specification. If there exists any process which
satisfies S, then S(<>) has to hold, so STOP satisfies S.
Namely we can specify only safety properties. (We can not
specify progress properties.)
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Properties of satisfaction

1. P sat TRUE ,

2. (∀n ∈ N : P sat Sn) =⇒ P sat (∀n ∈ N : Sn),

3. (P sat S ∧ S ⇒ T ) =⇒ P sat T ,

4. (∀x ∈ B : (P(x) sat Sx )
=⇒ (x : B → P(x)) sat ((tr =<>) ∨ (tr0 ∈

B ∧ Str0(tr ′))),

5. F (X ) is guarded
∧(STOPA sat S)
∧∀X ∈ PROC , αX = A : ((X sat S)⇒ (F (X ) sat S))

=⇒ µX : A.F (X ) sat S ,
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Properties of satisfaction

6. (P sat S) ∧ (Q sat T )
=⇒ P || Q sat (S(tr ↑ αP) ∧ T (tr ↑ αP)),

7. P sat S =⇒ f (P) sat S(f −1(tr)),

8. (P sat S) ∧ (Q sat T )
=⇒ P u Q sat (S ∨ T ),

9. (P sat S) ∧ (Q sat T )
=⇒ P � Q sat (S ∨ T ).
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Examples

• STOP sat (tr =<>),

• P sat S
=⇒ (c → d → P

sat (tr ≤ < c , d >)∨ (< c , d > ≤ tr ∧ S((tr ′)′)),

• P sat S ∧ Q sat T
=⇒ (c → P | d → Q)

sat (tr = <>
∨(tr0 = c ∧ S(tr ′))
∨(tr0 = d ∧ T (tr ′)),
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Examples

• Let be VMS = µX : {coin, choc}.coin→ choc → X
(F (X ) = coin→ choc → X ), and

VMSSPEC = (0 ≤ ((tr ↓ coin)− (tr ↓ choc)) ≤ 1)

VMS sat VMSSPEC ,
because

1. (tr =<>)⇒ VMSSPEC
⇒ STOP sat (tr =<>) =⇒ STOP sat VMSSPEC

2. Suppose X sat (0 ≤ ((tr ↓ coin)− (tr ↓ choc)) ≤ 1)
⇒ F (X ) sat

(
(tr ≤ < coin, choc >)
∨ ((< coin, choc > ≤ tr)
∧ (0 ≤ ((tr ′′ ↓ coin)−(tr ′′ ↓ choc)) ≤ 1)

)
2.a (<>↓ coin)− (<>↓ choc) = 0,

(< coin >↓ coin)− (< coin >↓ choc) = 1,
(< coin, choc >↓ coin)− (< coin, choc >↓ choc) = 0

⇒ ∀t ≤ < coin, choc >: (0 ≤ ((t ↓ coin)− (t ↓ choc)) ≤ 1)
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2.b Suppose for trace u VMSSPEC (u) holds.
(< coin, choc >∧ u ↓ coin)− (< coin, choc >∧ u ↓ choc)
= ((u ↓ coin) + 1)− ((u ↓ choc) + 1)
= ((u ↓ coin)− (u ↓ choc))

⇒ VMSSPEC (< coin, choc >∧ u) holds.

• (2.a) ∧ (2.b)⇒ F (X ) sat VMSSPEC .

• (1.) ∧ (2.) ⇒ VMS sat VMSSPEC .
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Using channels.

• Special actions: c .v

• c is the name of the channel,
• v is the value of the message.

• channel(c .v) = c

• message(c .v) = v

• αc(P) = {v | c.v ∈ αP}
• potential messages on channel c .
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• Sending a value v on channel c :
• c!v → P = c .v → P

• Receving a value from channel c into variable x :
• c?x → P(x) = y : {y | channel(y) = c} → P(message(y))

Example 12

COPY = µX .(in?y → out!y → X )
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Definition 104 (Communication rules)

1. (c!v → P || c?x → Q(x)) = c .v → (P || Q(v))

2. (c!v → P || c?x → Q(x)) \ C = (P || Q(v)) \ C ,
where C = {y | channel(y) = c}

Example 13

INPUT = µX .(in!42→ X )

INPUT ||COPY = µX .(in.42→ out!42→ X )

(INPUT ||COPY ) \ {y | channel(y) = in}
= µX .(out!42→ X )
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• Simulating a variable
VAR = in?x → VARx

VARx = (in?y → VARy

| out!x → VARx )

• Simulating a dataflow multiplexer

MUX = (in1?x → out!x → MUX
| in2?x → out!x → MUX )

• Simulating a dataflow branch

FORK = in?x →(out1!x → FORK
| out2!x → FORK )



Analysis of
Distributed

Systems
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• Simulating a buffer

BUFFER = P<>

P<> = (empty → P<>
| in?x → P<x>)

P<x>∧xs = (out!x → Pxs

| in?y → P<x>∧xs∧<y>)

• Simulating a stack

STACK = P<>

P<> = (empty → P<>
| in?x → P<x>)

P<x>∧xs = (out!x → Pxs

| in?y → P<y>∧<x>∧xs)
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Notations

• tr ↓ c = message∗(tr ↑ αc)

• Simplification: c1 ≤ c2 in place of tr ↓ c1 ≤ tr ↓ c2

• c1

n
≤ c2 = (c1 ≤ c2 ∧ #c2 ≤ #c1 + n)

• c1

0
≤ c2 ⇐⇒ c1 = c2

• (c1

n
≤ c2) ∧ (c2

m
≤ c3) ⇒ (c1

m+n
≤ c3)

• (c1 ≤ c2)⇒ ∃n ∈ N0 : c1

n
≤ c2
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• MUX sat

(∃r ∈ Com∗ : out
1
≤ r ∧ r ∈ interleaves(in1, in2))

• FORK sat

(∃r ∈ Com∗ : r
1
≤ in ∧ r ∈ interleaves(out1, out2))

• BUFFER sat out ≤ in
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P � Q is the pipes of P and Q

• α(P � Q) = αin(P) ∪ αout(Q)

• αout(P) = αin(Q)
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Definition 105 (Communication rules of Pipes)

1. P � (Q � R) = (P � Q)� R

2. (out!v → P)� (in?x → Q(x)) = (P � Q(v))

3. (out!v → P)� (out!w → Q(x))
= out!w → ((out!v → P)� Q(v))

4. (in?y → P(y))� (in?x → Q(x))
= in?y → (P(y)� (in?x → Q(x)))
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5. (in?x → P(x))� (out!w → Q)
= in?x → (P � (out!w → Q))
| out!w → ((in?x → P(x))� Q)

6. (in?x → P(x))� R � (out!w → Q)
= in?x → (P � R � (out!w → Q))
| out!w → ((in?x → P(x))� R � Q)

7. If R is a chain of pipes all starting with sending data to
channel out:
R � (out!w → Q) = out!w → (R � Q)

8. If R is a chain of pipes all starting with waiting data from
channel in:
(in?x → P(x))� R = in?x → (P(x)� R)
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• P = (in?x → out!x2 → P)

(P � P) sat
(
out

2
≤ power four∗(in)

)
,where power four(y) = y 4

• P = (in?x → out!(x , x + 4)→ P)
Q = (in?y → out!(y1 ∗ y2)→ Q)

(P � Q) sat
(
out

2
≤ fv∗(in)

)
,where fv(z) = z2 + 4z
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Máté Tejfel

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Literature

Literature

(1) Murata, Tadao. ”Petri nets: Properties, analysis and
applications.” Proceedings of the IEEE 77.4 (1989):
541-580.

(2) Best, Eike, Raymond Devillers, and Maciej Koutny. ”Petri
net algebra.” Springer-Verlag New York Incorporated,
2001.

(3) Hoare, Charles Antony Richard. ”Communicating
sequential processes.”, Prentice Hall International, 1985.

(4) Jensen, Kurt, Kristensen, Lars Michael and Wells, Lisa.
”Coloured Petri Nets and CPN Tools for modelling and
validation of concurrent systems”. Int. J. Softw. Tools
Technol. Transf. (2007): 213-254-


	Part I/a
	Part I/b
	Part II

