Máté Tejfe # Analysis of Distributed Systems Exercises Máté Tejfel September 12, 2013 Máté Tejfe Lecture 1 Lecture 2 Lecture : Lecture 4 Lecture Theme I Part I/a 2 Lecture 2 - Behavioral properties 3 Lecture 3 - Analysis methods 4 Lecture 4 - Classification of Petri nets **6** Lecture 5 - Coloured Petri nets # Agenda Máté Tejfe Lecture 2 Lecture 3 Lecture 4 #### Exercise 1.1 Create a Petri net illustrating a vending machine where first we have to choose between the two possible products (little_choc and big_choc) and then pay for it! Be the price of little_choc 10 and the price of big_choc 20 coins; and let accept the machine precisely 10 coins at a time! #### Exercise 1.2 Extend the previous net to illustrate a machine, which can accept 10 coins or 5 coins at a time! #### Exercise 1.3 Create a Petri net illustrating the following registration process! There are 200 admitted students, who can enroll to the University. The enrolled students can register to Course "A", but the maximum number of the registered students can not be more than 20. Máté Tej Lecture 2 Lecture 3 Lecture #### Exercise 1.4 Extend the previous net to let the enrolled students to register to Course "B" too, where the maximum number is 23! #### Exercise 1.5 Extend the previous net to let the registered students to deregister from any Course! Lecture #### Exercise 1.6 Calculate the enabled firing sequences of the following Petri net! Lecture 2 Lecture 3 Lecture 4 #### Exercise 1.7 Apply the complementary place transformation to the following Petri net! Máté Tejfe Lecture 2 Lecture 2 Lecture Lecture #### Exercise 1.8 Apply the complementary place transformation to the following Petri net! #### Exercise 1.9 Calculate the enabled firing sequences of the following Petri net! (Use the strict firing rule!) Lecture 2 Lecture 3 Lecture 4 #### Exercise 1.10 Calculate the enabled firing sequences of the following Petri net! (Use the strict firing rule!) # Agenda - 1 Lecture 1 Definition of Petri nets - 2 Lecture 2 Behavioral properties - 3 Lecture 3 Analysis methods - 4 Lecture 4 Classification of Petri nets - **5** Lecture 5 Coloured Petri nets Máté Teif Lecture 1 Lecture 4 Lecture # Exercise 2.1 Are M_i and M_j markings reachable from the given M_0 markings? If yes, give the firing sequence too! M_0 - A: {1, 0, 0, 0, 0} - B: {1, 0, 1, 0, 0} $$M_i = \{2, 2, 0, 0, 0\}$$ $M_i = \{2, 0, 0, 2, 1\}$ Lecture 1 Lecture 2 Lanting . #### Exercise 2.2 Calculate the set of all possible markings reachable from $M_0!$ Máté Tejf Lecture . Lecture 2 Lecture 4 Lecture ### Exercise 2.3 Check the following properties of the previously shown (in exercise 2.1, 2.2) Petri nets! - Boundedness - Safety - Liveness Lecture . Lecture 2 Lecture Lectur #### Exercise 2.4 Modify the Petri net seen in Exercise 2.1. You can - add one extra edge - use 3 tokens to create a k=4 bounded (and not k=1,2,3 bounded) Petri net. Máté Tejfe Lecture Lecture 2 Lecture 3 Lecture Exercise 2.5 Find the smallest safe Petri net! Máté Tejfe Lecture Lecture 2 Lecture . Lecture # Exercise 2.6 Construct an L₀ live Petri net. Try to find the simplest one! Máté Teif Lecture Lecture 2 I - -+.... ### Exercise 2.7 Construct a strictly L_1 live Petri net. Try to find the simplest one! Máté Teif Lecture Lecture 2 Lecture 4 Lectur # Exercise 2.8 Construct a strictly L_2 live Petri net. Try to find the simplest one! Máté Teif Lecture Lecture 2 Locturo 1 ----- ## Exercise 2.9 Construct a strictly L_3 live Petri net. Try to find the simplest one! Máté Teil Lecture Lecture 2 1 ----- . . Exercise 2.10 Construct a strictly L_4 live Petri net. Try to find the simplest, non-trivial one! Lecture 2 Lecture 3 Lecture 4 #### Exercise 2.11 The following Petri net models an unbounded mailbox. Extend it so that it will have an upper bound on the mailbox capacity (#sent mails - #received mails). Try to minimize the modifications! # Agenda - 1 Lecture 1 Definition of Petri nets - 2 Lecture 2 Behavioral properties - 3 Lecture 3 Analysis methods - 4 Lecture 4 Classification of Petri nets - **5** Lecture 5 Coloured Petri nets Máté Tejfe Lecture 1 Lecture 2 Lecture 3 Lecture #### Exercise 3.1 Is the following Petri net reversible? Has it other home state(s) except the initial marking? What could be modeled with this net? /láté Tejf Lecture 2 Lecture 3 Lecture 4 Lecture ### Exercise 3.2 Are the following markings coverable in this Petri net with the given initial marking? - M_1 : {0, 0, 0, 0, 0} - M_2 : {0, 1, 0, 1, 0} - M_3 : {0, 0, 1, 1, 1} - M_4 : {0, 0, 1, 2, 0} - M_5 : $\{1, 1, 1, 1, 1\}$ Máté Teil Lecture Lecture 3 Lecture 4 Exercise 3.3 Are the Petri nets of Exercise 3.1 and 3.2 persistent? Why? If not, how could you modify the nets to be persistent? Máté Tejf Lecture 2 Lecture 3 Lecture ## Exercise 3.4 Calculate the following synchronic distances in case of each initial marking! - $M_0 = (1, 0, 1, 0, 1, 0) : d_{1,2}, d_{3,2}$ - $M_1 = (1, 1, 0, 0, 1, 0) : d_{1,3}, d_{2,3}$ - $M_2 = (1, 1, 2, 0, 1, 1) : d_{2,3}$ Máté Teif Lecture 1 Lecture 3 Lecture 4 Lecture # Exercise 3.5 This net models a safe and fair protocol for two traffic lights. Apply behavioral preserving reductions to shrink the net! Lecture : Lecture 2 Lecture 3 Lecture Lecture # Exercise 3.6 Apply behavioral preserving reductions to shrink the net! Lecture : Lecture . Lecture 3 Lecture 4 Lecture #### Exercise 3.7 Calculate the coverability tree/graph of the following Petri net! Lecture . _______ Lecture 3 Lecture 4 Lecture #### Exercise 3.8 Calculate the reachability tree/graph of the following Petri net! Máté Teife Lecture : Lecture Lecture 4 #### Exercise 3.9 Construct a safe Petri net, based on the following reachability graph! láté Tejfe Lecture 2 Lecture 3 Lecture # Exercise 3.10 *Is the following Petri net strongly connected?* - 1 Lecture 1 Definition of Petri nets - 2 Lecture 2 Behavioral properties - 3 Lecture 3 Analysis methods - 4 Lecture 4 Classification of Petri nets - **5** Lecture 5 Coloured Petri nets Máté Tejt Lecture ' Lecture 2 Lecture Lecture 4 Lecture #### Exercise 4.1 Categorize the following Petri net. Also check its liveness and safeness properties! Máté Tejfe Lecture 1 Lecture : Lecture : Lecture 4 Lecture # Exercise 4.2 Categorize the following Petri net. Also check its liveness and safeness properties! Lecture 1 Lecture 2 Lecture 4 Lecture ecture 3 ### Exercise 4.3 Categorize the following Petri net. Also check its liveness and safeness properties! Máté Tejt Lecture Lecture 2 Lecture 4 ### Exercise 4.4 Modify the previously seen Petri net (in Exercise 4.3) to be EFC but not FC. Try to minimize the modifications! Máté Tejfe Lecture Lecture 2 Lecture Lecture 4 Lectur ### Exercise 4.5 Modify the previously seen Petri net (in Exercise 4.3) to be AC but not EFC. Try to minimize the modifications! _______ Lecture 2 Lecture 4 Lecture ### Exercise 4.6 Find source, sink places/transition, siphons and traps in the following Petri net! Máté Tej Lecture 1 _____ Lecture Lecture 4 Lecture ### Exercise 4.7 Find as many Feedback Arc Set (FAS) as possible! Which is minimal/minimum? Máté Tejf Lecture 1 Lecture 2 Lecture 4 ### Exercise 4.8 Is the following strongly connected, live MG safe? Why (not)? Hint: think about FAS! Lecture 1 Lecture 2 Lecture 4 . . ## Exercise 4.9 Find an SM-component in the following Petri net! Lecture 1 Lecture 2 Lecture 4 Lecture ### Exercise 4.10 Find an MG-component in the following Petri net! # Agenda - 1 Lecture 1 Definition of Petri nets - 2 Lecture 2 Behavioral properties - 3 Lecture 3 Analysis methods - 4 Lecture 4 Classification of Petri nets - **6** Lecture 5 Coloured Petri nets _____ Lecture 2 Locturo Lecture 5 ### Exercise 5.1 Apply the $\langle x = p, i = 2 \rangle$ binding to the following CP net. Lecture 1 Lecture 2 Lanting Lecture 5 ### Exercise 5.2 Apply the $\langle x = q, i = 3 \rangle$ binding to the following CP net. Mátá Taif Lecture 1 Lecture 2 Lecture Lecture 5 ### Exercise 5.3 Consider the following simple protocol. Use the simulator named CPN Tools to perform some interactive and automatic simulations of the CPN model. ### Exercise 5.4 Consider the previous simple protocol. When an acknowledgement is received by the sender, it updates the counter on NextSend according to the number contained in the acknowledgement. This implies that the counter on NextSend can be decreased when an "old" acknowledgement is received. Use the CPN simulator and interactive simulation to construct a scenario where this situation occurs. Modify the CPN model such that the counter on NextSend will never be decreased. Use simulation to validate the modified model. Máté Tej Lecture 2 Lecture Lecture 5 ### Exercise 5.5 Consider the previous simple protocol. For debugging reasons, extend the model with counters (LostPack, LostAck, Count) and bags(RecPack, RecAck) Use simulation to validate the modified model. Náté Teife Lecture 1 Lecture 2 Lecture 3 Lecture 5 Consider a system where a number of Chinese philosophers are situated around a circular table. In the middle of the table there is a delicious dish of rice, and between each pair of philosophers there is a single chopstick. Each philosopher alternates between thinking and eating. To eat, the philosopher needs two chopsticks, and he is only allowed to use the two which are situated next to him (on his left and right side). It is obvious that this restriction (lack of resources) prevents two neighbours from eating at the same time. ### Exercise 5.6 Make a CPN model of the dining philosophers system with 5 philosophers. It is assumed that each philosopher simultaneously (and indivisibly) picks up his pair of chopsticks. Analogously, he puts them down in a single indivisible action. Make a simulation of the CPN model. Máté Tejf Lecture 2 Lecture 3 Lecture 4 Lecture 5 ### Exercise 5.7 Modify the CPN model, so that each philosopher takes the two chopsticks one at a time (but now in an arbitrary order, which may change from time to time). But, he puts down the two chopsticks simultaneously. Make a simulation of the new CPN model. Does the modification change the overall behaviour of the system (e.g., with respect to deadlocks and fairness between the philosophers)? Máté Tejf Lecture 2 Lecture 3 Lecture 4 Lecture 5 ### Exercise 5.8 We have two philosophers outside the room, each of them has one chopstick in his hand. When a philosopher enters the room, he puts down his chopstick and starts to think. When there is at least two unused chopsticks, a philosopher may start to eat by picking up two chopsticks. When he is finished, either puts down both chopsticks, or he gets food poisoning and rans out of the room, taking one chopstick with him. A small model railway has a circular track with two trains a and b, which move in the same direction. The track is divided into seven different sectors $S = \{s_1, ...s_7\}$. At the start of each sector a signalpost indicates whether a train may proceed or not. To allow a train to enter a sector s_i it is required that this sector and also the next sector are empty. ### Exercise 5.9 Describe the train system by a Petri-net. Each sector s_i may be represented by three places O_{ia} (sector s_i occupied by a), O_{ib} (sector s_i occupied by b) and E_i (sector s_i is empty). Máté Tejl Lecture 1 Lecture 2 Lecture Lecture 5 ### Exercise 5.10 Describe the same system by a colored Petri-net where each sector is described by two places O_i (sector s_i is occupied) and E_i (sector s_i is empty). Máté Tejfe Lecture 6 Lecture ' Lecture _ecture 9 Theme II Part I/b - 1 Lecture 6 Labelled Petri nets - 2 Lecture 7 Petri Boxes - 3 Lecture 8 Operator Boxes I. - 4 Lecture 9 Operator Boxes II. Lecture 6 Lecture Lecture Lecture ### Exercise 1.1 Formalize the following labelled Petri net. Máté Tejfe Lecture 6 Lecture Lecture l ecture ! ### Exercise 1.2 Examine the behavioral properties (boundedness, safety) of the following Petri net. Lecture 6 Lecture Lecture Lecture : ### Exercise 1.3 Construct the coverability graph of the following Petri net. Máté Tejfe Lecture 6 Lecture Lecture Lecture ### Exercise 1.4 Try to apply the following step sequence: $\{ \{rr\}, \{br\}, \{rr\}, \{bb\} \}$ What will be the outcome? Máté Tejfe #### Lecture 6 Lecture ' Lecture Lecture ### Exercise 1.5 Try to apply the following step sequence: $\{ \{rr, br\}, \{rr, bb\}, \{bb\} \}$ What will be the outcome? Lecture ### Exercise 1.6 Draw a Petri net based on the following: $$\begin{split} &\Sigma_0 = (S_0, T_0, W_0, \lambda_0, M_0) \\ &S_0 = \{p_0, p_1, p_2, p_3, p_4\} \\ &T_0 = \{t_0, t_1, t_2, t_3\} \\ &W_0 = ((TS \cup ST) \times \{1\}) \cup (((S \times T) \setminus ST \cup (T \times S) \setminus TS) \times \{0\}) \\ &\lambda_0 = \{(p_0, i), (p_1, i), (p_2, i), (p_3, i), (p_4, i), (t_0, write), (t_1, send), \\ &(t_2, receive), (t_3, read)\} \\ &M_0 = \{(p_0, 1), (p_4, 1)\} \\ &\text{where} \end{split}$$ $$TS = \{(t_0, p_1), (t_1, p_0), (t_1, p_2), (t_2, p_3), (t_3, p_4)\}$$ and $ST = \{(p_0, t_0), (p_1, t_1), (p_2, t_2), (p_3, t_3), (p_4, t_2)\}$ ### Exercise 1.7 Examine the behavioral properties (boundedness, safety) of the previous Petri net. ### Exercise 1.8 Construct the coverability graph of the previous Petri net. ### Exercise 1.9 Try to apply the following step sequence on the previous Petri net: {{write}, {send}, {write}, {receive}, {send}, {read}, {receive}, {write}} What will be the outcome? ### Exercise 1.10 Try to apply the following step sequence on the previous Petri net: {{write}, {send}, {write, receive}, {send}, {write, read, receive}} What will be the outcome? - 1 Lecture 6 Labelled Petri nets - 2 Lecture 7 Petri Boxes - 3 Lecture 8 Operator Boxes I. - 4 Lecture 9 Operator Boxes II. Lecture ### Exercise 2.1 Please create a T-restricted, ex-restricted and ex-directed labelled Petri net. ### Exercise 2.2 Consider the following labelled Petri net. Is the net ex-directed and ex-exclusive? Please give the transitions which are independent of transition t_0 . Lecture (Lecture 7 Lecture Lecture ! ### Exercise 2.3 Consider the following labelled Petri net. Please give the ex-asymmetric transitions of the net. Máté Teif Lecture (Lecture 7 Lecture _ecture ### Exercise 2.4 Please create a dinamic box. ### Exercise 2.5 Please create a static box which is not ex-exclusive. ### Exercise 2.6 Consider the following labelled Petri net. Is the net a static box? Lecture 6 Lecture 7 Lecture Lecture 9 ### Exercise 2.7 Consider the following labelled Petri net. Is the net a dinamic box? ### Exercise 2.8 Is the previous net ex-exclusive? Lecture (Lecture 7 Lecture Lecture ### Exercise 2.9 Consider the following labelled Petri net. Is the net an exit box? ### Exercise 2.10 Which transitions are independent in the previous net? Is the net ex-exclusive? # Agenda - 1 Lecture 6 Labelled Petri nets - 2 Lecture 7 Petri Boxes - 3 Lecture 8 Operator Boxes I. - 4 Lecture 9 Operator Boxes II. Máté Tejfe Lecture 6 Lecture Lecture 8 Lecture ### Exercise 3.1 Consider the following Petri box. Is the step sequence $\rho = (\{t_0, t_3\}); (\{t_4\} : \{t_1\}^+); (\{t_3\}, \{t_1\}^-)$ enabled from the initial complex marking $\mathcal{M} = ((1, 1, 0, 0, 0, 0), \emptyset)$? Lecture Lecture 8 ecture ## Exercise 3.2 Consider the Petri box in Example 3.1. Is the complex marking $\mathcal{M}' = ((0,0,0,0,1,1),\{t_5\})$ reachable from the initial marking? #### Exercise 3.3 Consider the Petri box in Example 3.1. Calculate the complex markings directly reachable from marking $\mathcal{M}'' = ((1,0,0,0,0,0),\{t_5\}).$ #### Analysis of Distributed Systems Máté Tejfe Lecture (Lecture ' Lecture 8 _ecture ! #### Exercise 3.4 Consider the following Petri box. Is the step sequence $\rho = (\{t_2\}); (\{t_3\} : \{t_0\}^+); (\{t_1,t_4\}^+)$ enabled from the initial complex marking $\mathcal{M} = ((1,0,0,0,0),\emptyset)$? # Exercise 3.5 Consider the Petri box in Example 3.4. Is the step sequence $\rho = (\{t_2\}); (\{t_0\} : \{t_3\}^+); (\{t_1\}^+ : \{t_3\}^-)$ enabled from the initial marking? # Exercise 3.6 Consider the following Petri box. Is the step sequence $\rho = (\{t_0\}); (\{t_3\} : \{t_1\}^+); (\{t_2\}^+ : \{t_1\}^-)$ enabled from the initial complex marking $\mathcal{M} = ((1,1,0,0,0,0),\emptyset)$? # Exercise 3.7 Consider the Petri box in Example 3.6. Is the complex marking $\mathcal{M}' = ((0,0,0,0,0),\{t_1,t_2\})$ reachable from the initial marking? # Exercise 3.8 Consider the following Petri box (Σ) and the transformational relabelling $\rho = \{(\{\alpha\}, \gamma), (\{\alpha, \alpha\}, \alpha), (\{\alpha, \beta\}, \beta)\}$. Calculate the interface change of Σ according to relabelling ρ . láté Tejfe Lecture 6 Lecture 8 ecture ## Exercise 3.9 Consider the Petri box in Example 3.8 and the transformational relabelling $\rho = \{(\{\beta\}, \alpha), (\{\alpha\}, \beta)\}$. Calculate the interface change of Σ according to relabelling ρ . #### Exercise 3.10 Consider the following Petri box (Σ) and the transformational relabelling $\rho = \{(\{\alpha\}, \gamma), (\{\gamma, \beta\}, \alpha), (\{\beta, \beta\}, \beta)\}$. Calculate the interface change of Σ according to relabelling ρ . - 1 Lecture 6 Labelled Petri nets - 2 Lecture 7 Petri Boxes - 3 Lecture 8 Operator Boxes I. - 4 Lecture 9 Operator Boxes II. # Exercise 4.1 Consider the following operator box Ω and the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2\}$. Calculate the transition refinement of Σ according to Ω . ______ Lecture 9 #### Exercise 4.2 Consider the following operator box Ω and the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2\}$. Calculate the transition refinement of Σ according to Ω . Lecture 9 ## Exercise 4.3 Consider the following operator box Ω and the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2\}$. Calculate the transition refinement of Σ according to Ω . # Exercise 4.4 Consider the following operator box Ω and the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2, \Sigma_3\}$. Calculate the transition refinement of Σ according to Ω . Lecture ' Lecture 8 Lecture 9 #### Exercise 4.5 Consider the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2, \Sigma_3\}$ in Example 4.4 and the following operator box Ω . Calculate the transition refinement of Σ according to Ω . #### Analysis of Distributed Systems Máté Tejfe Lecture 6 Lecture 7 Lecture 8 Lecture 9 #### Exercise 4.6 Consider the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2, \Sigma_3\}$ in Example 4.4. Can you give an operator box Ω according to which the transition refinement of Σ will be the following? #### Exercise 4.7 Consider the following operator box Ω and the Ω -tuple $\Sigma = {\Sigma_1, \Sigma_2, \Sigma_3}$. Calculate the transition refinement of Σ according to Ω . áté Tejfe Lecture 6 Lecture 7 Lecture 9 #### Exercise 4.8 Consider the following operator box Ω , the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2\}$ and the relabellings $\rho_1 = \{(\{\alpha, \delta\}, \beta)\}$, $\rho_2 = \{(\{\alpha, \alpha\}, \delta)\}$. Calculate the net refinement of Σ according to Ω . Máté Tej Lecture 6 Lecture 1 Lecture 9 # Exercise 4.9 Consider the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2\}$ and the operator box Ω from the Example 4.8 with relabellings $\rho_1 = \{(\{\alpha\}, \alpha), (\{\alpha, \delta\}, \delta)\}, \ \rho_2 = \{(\{\alpha\}, \delta)\}.$ Calculate the net refinement of Σ according to Ω . Lecture 9 #### Exercise 4.10 Consider the following operator box Ω with relabellings $\rho_1 = \big\{(\{\alpha\}, \alpha), (\{\alpha, \beta\}, \beta)\big\}$, $\rho_2 = \big\{(\{\alpha, \beta\}, \delta)\big\}$, $\rho_3 = \big\{(\{\alpha\}, \delta)\big\}$ and the Ω -tuple $\Sigma = \{\Sigma_1, \Sigma_2, \Sigma_3\}$. Calculate the net refinement of Σ according to Ω . #### Analysis of Distributed Systems Máté Tejfel Lecture 10 Labelled Transition Systems Lecture 1 Lecture : Lecture 13 Lecture 14 Theme III Part II # Agenda - 1 Lecture 10 Labelled Transition Systems - 2 Lecture 11 Communicating Sequential Processes - 3 Lecture 12 Axiomatic Semantics of CSP - 4 Lecture 13 Denotational Semantics of CSP - **5** Lecture 14 Communication in CSP Máté Tejf Lecture 10 -Labelled Transition Systems Lecture 1 Lecture 1 #### Exercise 1.1 . . Lecture 1. Lecture 14 #### Exercise 1.2 _ecture 1 Lecture 1 ecture 13 Lecture 14 #### Exercise 1.3 Does the process p = a(bnil + c(dnil + bdnil)) correspond to the environment e = acbnil or not? # Exercise 1.4 Does the process p = abdnil + a(dnil + cnil) correspond to the environment e = a(bnil + cnil) or not? # Exercise 1.5 Does the process p = abnil + adnil correspond to the environment e = abnil + adnil or not? #### Exercise 1.6 Calculate 5 environments to which the process p = abnil + adnil corresponds! Máté Tejf Lecture 10 -Labelled Transition Systems Lecture 1 Lecture 13 #### Exercise 1.7 Calculate the function $\tau(a(bnil + c(dnil + bdnil))!$ ## Exercise 1.8 Calculate the function $\tau'(a(bnil + c(dnil + bdnil))!$ # Exercise 1.9 Prove the following equivalence $(abnil + a(cnil + dnil)) equ_a (a(bnil + cnil) + adnil)!$ #### Exercise 1.10 Prove the following equivalence (a((bcnil + dnil) + d(cnil + nil))) $equ_a(ab(cnil + nil) + a(d(nil + cnil)))!$ Lecture 1 Lecture ' - 1 Lecture 10 Labelled Transition Systems - 2 Lecture 11 Communicating Sequential Processes - 3 Lecture 12 Axiomatic Semantics of CSP - 4 Lecture 13 Denotational Semantics of CSP - **6** Lecture 14 Communication in CSP Máté Tejf Lecture 10 Labelled Transition Systems Lecture 11 Lecture . LCCCUIC I. Lecture 14 #### Exercise 2.1 Máté Tejf Lecture 10 -Labelled Transition Systems Lecture 11 Lecture 14 #### Exercise 2.2 Lecture 13 Lecture 14 # Exercise 2.3 Lecture 1. Lecture 14 #### Exercise 2.4 #### Analysis of Distributed Systems Máté Tejfe Lecture 10 Labelled Transition Systems Lecture 11 Lecture 1 Lecture 1 Lecture 14 # Exercise 2.5 #### Analysis of Distributed Systems Máté Tejfe Lecture 10 Labelled Transition Systems Lecture 11 Lecture 14 # Exercise 2.6 # Exercise 2.7 Create a CSP, which simulates the same as the following LTS process! $$a(bnil + cnil) + bdnil$$ # Exercise 2.8 Create a CSP, which simulates the same as the following LTS process! $$(a(bnil + cnil) + dnil) + b(cnil + cdnil)$$ Lecture 1 Lecture 1. Lecture 1 ## Exercise 2.9 Create a Petri net, which simulates the same as the following CSP process! $$P \parallel Q$$, where $$P=a ightarrow b ightarrow d ightarrow P$$ and $lpha P=\{a,b,d\}$, $$Q = b \rightarrow c \rightarrow Q$$ and $\alpha Q = \{b, c\}$. # Exercise 2.10 Create an LTS process, which simulates the same as the following CSP process! $P \parallel Q$, where $$P = a \rightarrow b \rightarrow d \rightarrow STOP \text{ and } \alpha P = \{a, b, d\},$$ $$\mathit{Q} = \mathit{c} \rightarrow \mathit{b} \rightarrow \mathit{STOP}$$ and $\alpha \mathit{Q} = \{\mathit{b}, \mathit{c}\}.$ _ecture 1 - 1 Lecture 10 Labelled Transition Systems - 2 Lecture 11 Communicating Sequential Processes - 3 Lecture 12 Axiomatic Semantics of CSP - 4 Lecture 13 Denotational Semantics of CSP - **6** Lecture 14 Communication in CSP Lecture 1. _ecture 1 #### Exercise 3.1 Let be $P = a \rightarrow b \rightarrow P$, $\alpha P = \{a, b\}$. Let be $Q = c \rightarrow b \rightarrow Q$, $\alpha Q = \{b, c\}$. Calculate $P \mid\mid Q \mid$ ## Exercise 3.2 Let be $P = b \rightarrow a \rightarrow P$, $\alpha P = \{a, b\}$. Let be $Q = b \rightarrow c \rightarrow Q$, $\alpha Q = \{b, c\}$. Calculate $P \parallel Q !$ ## Exercise 3.3 Let be $P = a \rightarrow b \rightarrow P$, $\alpha P = \{a, b\}$. Let be $Q = b \rightarrow c \rightarrow Q$, $\alpha Q = \{b, c\}$. Calculate $P \mid\mid Q \mid$ láté Tejf Lecture 10 -Labelled Transition Systems Lecture 1 Lecture 12 Lecture 13 Lecture 1 # Exercise 3.4 Let be $P = (a \rightarrow b \rightarrow P \mid b \rightarrow c \rightarrow P)$, $\alpha P = \{a, b, c\}$. Let be $Q = a \rightarrow (c \rightarrow Q \mid b \rightarrow Q)$, $\alpha Q = \{a, b, c\}$. Calculate $P \mid\mid Q \mid$ # Exercise 3.5 Let be $P=x \rightarrow y \rightarrow z \rightarrow y \rightarrow P$, $\alpha P=\{x,y,z\}$. Let be $Q=y \rightarrow w \rightarrow y \rightarrow Q$, $\alpha Q=\{y,w\}$. Calculate $P \mid\mid Q \mid$ # Exercise 3.6 Let be $P = (a \rightarrow b \rightarrow P \mid b \rightarrow c \rightarrow P)$, $\alpha P = \{a, b, c\}$. Let be $Q = a \rightarrow (c \rightarrow Q \sqcap b \rightarrow Q)$, $\alpha Q = \{a, b, c\}$. Calculate $P \mid\mid Q \mid$ # Exercise 3.7 Let be $P = (a \rightarrow b \rightarrow P \mid d \rightarrow b \rightarrow c \rightarrow P)$, $\alpha P = \{a, b, c, d\}$. Calculate $P \setminus \{b\}$! #### Analysis of Distributed Systems Lecture 12 #### Exercise 3.8 Let be $P = (a \rightarrow b \rightarrow c \rightarrow P) \square (a \rightarrow c \rightarrow d \rightarrow P)$, $\alpha P = \{a, b, c, d\}.$ $Q = a \rightarrow (b \rightarrow (c \rightarrow Q \square b \rightarrow Q) \mid c \rightarrow (d \rightarrow Q \square a \rightarrow Q)),$ $\alpha Q = \{a, b, c, d\}$ Calculate $P \parallel Q !$ # Exercise 3.9 Let be $P = a \rightarrow b \rightarrow c \rightarrow d \rightarrow P$, $\alpha P = \{a, b, c, d\}$. Let be $Q = e \rightarrow a \rightarrow e \rightarrow c \rightarrow Q$, $\alpha Q = \{a, c, e\}$. Calculate $P \parallel Q !$ # Exercise 3.10 Let be $$P = (x \to y \to (z \to P \square w \to P)) \square (x \to z \to w \to P),$$ $\alpha P = \{x, y, z, w\},$ $$Q = x \to (y \to (z \to Q \square y \to Q) \mid z \to (w \to Q \square x \to Q)),$$ $\alpha Q = \{x, y, z, w\}$ Calculate $P \parallel Q !$ Lecture 1 - 1 Lecture 10 Labelled Transition Systems - 2 Lecture 11 Communicating Sequential Processes - 3 Lecture 12 Axiomatic Semantics of CSP - 4 Lecture 13 Denotational Semantics of CSP - **6** Lecture 14 Communication in CSP ``` Analysis of Distributed Systems ``` # Exercise 4.1 Let be $R(a) = b \rightarrow c \rightarrow STOP$, $R(b) = d \rightarrow STOP$, and $W = x : \{a, b\} \rightarrow R(x).$ Calculate traces(W)! # Exercise 4.2 Let be $P = b \rightarrow c \rightarrow STOP$. $Q = d \rightarrow c \rightarrow STOP$. Calculate traces($P \sqcap Q$)! # Exercise 4.3 Let be $R = d \rightarrow c \rightarrow STOP$. $W = b \rightarrow d \rightarrow c \rightarrow STOP$. Calculate traces $(R \square W)$.! # Exercise 4.4 Use the notations of the previous two exercises. Suppose $\alpha(P \sqcap Q) = \alpha(R \square W)$ Calculate traces($(P \sqcap Q) \parallel (R \square W)$)! Лáté Tejf Lecture 10 Labelled Transition Systems Lecture 1 Lecture 1. Lecture 13 Lecture 14 ## Exercise 4.5 Let be $VMS = coin \rightarrow choc \rightarrow VMS$. Prove, that $traces(VMS) = \bigcup_{n \geq 0} \{s \mid s \leq coin, choc > n\}$! #### Exercise 4.6 Let be $P = a \rightarrow (b \rightarrow STOP \mid c \rightarrow STOP)$. Prove, that P sat $((tr \downarrow a) \geq (tr \downarrow c))$! # Exercise 4.7 Let be $$P = b \rightarrow c \rightarrow STOP$$, $\alpha P = \{b, c\}$, $Q = a \rightarrow b \rightarrow STOP$, $\alpha Q = \{a, b\}$. Prove, that $(P \parallel Q)$ sat $((tr \downarrow a) \leq (tr \downarrow b))!$ Let be $$P = b \rightarrow c \rightarrow STOP$$, $\alpha P = \{b, c\}$, $Q = a \rightarrow b \rightarrow STOP$, $\alpha Q = \{a, b\}$. Prove, that $(P \sqcap Q)$ sat $((tr \downarrow a) + (tr \downarrow c) \leq 1)!$ Máté Tejf Lecture 10 Labelled Transition Systems Locture 1 Lecture 13 Lecture 1 ## Exercise 4.9 Let be $P = a \rightarrow (b \rightarrow c \rightarrow P \mid c \rightarrow d \rightarrow P)$. Prove, that P sat $((tr \downarrow a) < 1 + (tr \downarrow b) + (tr \downarrow d))$! Let be $$P=a \rightarrow b \rightarrow P$$, $(\alpha P=\{a,b\})$, and $Q=b \rightarrow c \rightarrow Q$, $(\alpha Q=\{b,c\})$. Prove, that $P||Q$ sat $(0 \leq ((tr \downarrow a) - (tr \downarrow c)) \leq 2)!$ Lecture 14 - 1 Lecture 10 Labelled Transition Systems - 2 Lecture 11 Communicating Sequential Processes - 3 Lecture 12 Axiomatic Semantics of CSP - 4 Lecture 13 Denotational Semantics of CSP - **5** Lecture 14 Communication in CSP Lecture 10 -Labelled Transition Systems Lecture 11 Lecture 13 Lecture 14 # Exercise 5.1 $$P = c1?x \rightarrow c2!(x+5) \rightarrow STOP$$ $Q = c2?x \rightarrow c3!(2*x) \rightarrow STOP$ $P||Q = ?$ $$P = c1?x \rightarrow c2!(x+5) \rightarrow STOP$$ $Q = c2?x \rightarrow c3!(2*x) \rightarrow STOP$ $(P||Q) \setminus \{c2\} = ?$ Lecture 13 Lecture 14 # Exercise 5.3 $$P = in?x \rightarrow c1!x \rightarrow c2?y \rightarrow out!y \rightarrow P$$ $Q_i = c1?x \rightarrow c2!(x*i) \rightarrow Q_i$, where $i \in \mathbb{Z}$ $P||Q_{10} = ?$ $$P = in?x \rightarrow c1!x \rightarrow c2?y \rightarrow out!y \rightarrow P$$ $Q_i = c1?x \rightarrow c2!(x*i) \rightarrow Q_i$, where $i \in \mathbb{Z}$ $(P||Q_5) \setminus \{c1, c2\} = ?$ Lecture 13 Lecture 14 # Exercise 5.5 $$P = in1?x \rightarrow c1!x \rightarrow c2?y \rightarrow out!y \rightarrow P$$ $$Q = in2?x \rightarrow c1?y \rightarrow c2!(x + y) \rightarrow Q$$ $$P||Q = ?$$ $$P = in1?x \rightarrow c1!x \rightarrow out!x \rightarrow c2?y \rightarrow out!y \rightarrow P$$ $$Q = c1?x \rightarrow in2?y \rightarrow c2!(x * y) \rightarrow Q$$ $$P||Q = ?$$ Máté Tejt Lecture 10 Labelled Transition Systems . . . Lastina 1 Lecture 14 #### Exercise 5.7 P = $$(in?x \rightarrow out!(x, x + 10) \rightarrow P)$$ $(P \gg Q)$ sat $(out \leq fv*(in))$,where $fv(z) = z^2 + 10z + 5$ $Q = ?$ $$P = (in?x \rightarrow out!(x, 2*x+5) \rightarrow P)$$ $$R = (in?z \rightarrow out!(z_1*z_2+7) \rightarrow R)$$ $$((P \gg Q) \gg R) \text{ sat } (out \leq fv^*(in))$$ $$\text{,where } fv(w) = 2w^3 + 5w^2 + 3w + 7$$ $$Q = ?$$ Máté Tejf Lecture 10 -Labelled Transition Systems Lecture 1 Lecture 1. Lecture 1. Lecture 14 #### Exercise 5.9 $$\begin{array}{ll} P &=& (\textit{in}?x \rightarrow \textit{out}!(x,1,1) \rightarrow \textit{P}) \\ R &=& (\textit{in}?z \rightarrow \textit{out}!z_2 \rightarrow \textit{R}) \\ (P \gg \textit{Q} \gg \textit{Q} \gg \textit{Q} \gg \textit{Q} \gg \textit{R}) \; \textit{sat} \; \left(\textit{out} \leq \textit{fv}^*(\textit{in})\right) \\ &\text{,where} \; \textit{fv}(w) = \sum\limits_{i=0}^{4} w^i \\ \textit{Q} &=& ? \end{array}$$ $$\begin{array}{ll} P &=& (\textit{in}?x \rightarrow \textit{out}!(x,1,1) \rightarrow \textit{P}) \\ R &=& (\textit{in}?z \rightarrow \textit{out}!z_2 \rightarrow \textit{R}) \\ (P \gg \textit{Q}_1 \gg \textit{Q}_2 \gg \textit{Q}_3 \gg \textit{Q}_4 \gg \textit{R}) \; \textit{sat} \; \left(\textit{out} \leq \textit{fv}^*(\textit{in})\right) \\ \textit{,where} \; \textit{fv}(w) &=& \sum\limits_{i=0}^4 \frac{w^i}{i!} \\ \textit{Q}_i &=&? \end{array}$$