Máté Tejfe

Analysis of Distributed Systems Solutions to the Exercises

Máté Tejfel

September 19, 2013

Máté Tejfe

Lecture 1

Lecture 2

Lecture :

Lecture 4

Lecture

Theme I

Part I/a

2 Lecture 2 - Behavioral properties

3 Lecture 3 - Analysis methods

4 Lecture 4 - Classification of Petri nets

6 Lecture 5 - Coloured Petri nets

Agenda

Lecture 1

Lecture 2

Lecture 4

Lecture

Exercise 1.1

Solution A.

Lecture 1 Lecture 2

Lecture 2

Lecture

Lecture

Solution B.

Lecture 1

Lecture 2

Lecture

Lecture

Máté Teif

Lecture 1

Lecture 2

Lankina

Exercise 1.3

Lecture 1

Lecture 2

Lecture

Lecture

Lecture 1

Lecture 2

Lecture

Lecture

Exercise 1.6

Every prefix of t_0 , t_4 and t_1 , t_3 , t_0 , t_4 .

Lecture 1

Lecture 2

Lecture 4

Lecture

Exercise 1.9

Every prefix of t_0, t_1, t_2, t_3, t_0 .

Exercise 1.10

Every prefix of $t_1, t_3, t_2, t_0, t_1, t_3$.

Agenda

- 1 Lecture 1 Definition of Petri nets
- 2 Lecture 2 Behavioral properties
- 3 Lecture 3 Analysis methods
- 4 Lecture 4 Classification of Petri nets
- **5** Lecture 5 Coloured Petri nets

Exercise 2.1

From A initial marking:

- M_i : $t_1, t_3, t_1, t_3, t_2, t_1, t_3$
- M_i: not reachable

From *B* initial marking:

- M_i : $t_1, t_3, t_1, t_4, t_2, t_1, t_3, t_1, t_3, t_2, t_1, t_3$
- M_i : $t_1, t_3, t_2, t_1, t_4, t_1, t_3, t_2, t_1, t_1, t_3, t_3, t_1, t_1, t_2, t_2$

Lecture 1

Lecture 2

Lecture 4

Lectur

Exercise 2.2

Reachable markings:

- {1, 0, 1, 0}
- {1, 0, 0, 1}
- {0, 0, 1, 1}
- {1, 1, 0, 0}
- {0, 1, 1, 0}
- {0, 1, 0, 1}
- {0, 0, 0, 2}
- {0, 0, 2, 0}
- {2, 0, 0, 0}

Máté Tejfe

Lecture 1

Lecture 2

Lecture

Lecture

Exercise 2.3

Ex 2.1, A initial marking

- Boundedness : No
- Safety : No
- Liveness : t₄ is dead

Ex 2.1, B initial marking

- Boundedness : No
- Safety : No
- Liveness : L₁

Ex 2.2

- Boundedness : Yes (k=2)
- Safety : No
- Liveness : L₂

Lecture :

Lecture 2

Lecture

Lecture

Exercise 2.4

The $p_2 \Rightarrow t_1$ edge was added.

Máté Tejfe

Lecture

Lecture 2

l actura 3

Lecture 4

Lecture

Máté Tejfe

Lecture

Lecture 2

ecture 3

Lecture 4

Lecture !

Lecture

Lecture 2

Lecture 3

Lecture 4

Lecture

Lecture

Lecture 2

Lecture /

Lecture

 t_3 is L_2 but not L_3

Lecture

Lecture 2

Lecture 4

Lecture

 t_1 is L_3 but not L_4

Lecture

Lecture 2

Lanting

Lecture

Lecture 1

Lecture 2

Lecture

Lecture

Exercise 2.11

Mailbox capacity is 4.

Agenda

- 1 Lecture 1 Definition of Petri nets
- 2 Lecture 2 Behavioral properties
- 3 Lecture 3 Analysis methods
- 4 Lecture 4 Classification of Petri nets
- **5** Lecture 5 Coloured Petri nets

Exercise 3.1

Reversibility: Yes

Home states:

- $\{p_1, p_5\}$
- $\{p_5, p_6\}$
- $\{p_2, p_3\}$
- $\{p_3, p_7\}$

It models mutual exclusion, e.g. an intersection with two traffic lights.

Lecture

Lecture 2

Lecture

Lecture

- *M*₁ : Yes
- *M*₂ : Yes
- *M*₃ : Yes
- M₄ : No
- M₅ : No

Exercise 3.3

Exercise 3.1:

- Not persistent, (t_1, t_2) is the reason.
- Persistent after reversing p_4 all four edges. It is now a counter instead of a mutex!

- Not persistent, the reasons are (t_1, t_4) , (t_1, t_2) .
- Persistent without *t*₁.

Lecture

Lecture 2 Lecture 3

Lecture 4

Lecture

- M_0 : $d_{1,2} = 1$, $d_{3,2} = 1$
- M_1 : $d_{1,3} = 1$, $d_{2,3} = 0$
- M_2 : $d_{2,3}=2$

Lecture 1
Lecture 2
Lecture 3
Lecture 4

Exercise 3.5

Reductions:

- fusion of series places: (yellow1 + yg1 + green1) and (yellow2 + yg2 + green2)
- fusion of series transitions: (ry1 + yellow1green1 + gr1) and (ry2 + yellow2green2 + gr2)
- elimination of self-loop places: (red1) and (red2)
- fusion of series transitions: (ry1yellow1green1gr1 + safe2 + ry2yellow2green2gr2)
- elimination of self loop transitions: (ry1yellow1green1gr1safe2ry2yellow2green2gr2)

Lecture 2

Lecture 4

Lecture

Exercise 3.6

Reductions:

- fusion of series places: (p2 + t2 + p1)
- fusion of series places: (p2t2p1 + t1 + p4)

Note: the (t3 \Rightarrow p2t2p1t1p4) edge is double!

Máté Tejfe

Lecture

Lecture

Lecture 3

Máté Tejf

Lecture 2
Lecture 3

Lecture

Lecture

Máté Tejf

Lecture

Lecture

Lecture 3

Lecture

Máté Tejfe

Lecture 1

Lecture 3

Lecture 4

Lecture

Exercise 3.10

Yes, because it is live and safe (k=1 bounded).

Agenda

- 1 Lecture 1 Definition of Petri nets
- 2 Lecture 2 Behavioral properties
- 3 Lecture 3 Analysis methods
- 4 Lecture 4 Classification of Petri nets
- **5** Lecture 5 Coloured Petri nets

Máté Tejfe

Lecture

Lecture :

Lecture 3

Lecture 4

Lecture

Exercise 4.1

Not AC (p2, p4), not live (t4) and not safe (p3)!

Máté Tejfe

Lecture :

Lecture 2

Lecture 3

Lecture 4

Lecture

Exercise 4.2

MG, live and not safe (p3)!

Máté Tejfe

Lecture

Lecture 2

Lecture

Lecture 4

1 -----

Exercise 4.3

FC, not live and safe!

Máté Tejf

Lecture 1

Lecture

Lecture

Lecture 4

Lecture

Exercise 4.4

Modifications:

- $t5 \Rightarrow p4$ edge reversed
- $\bullet \ p5 \Rightarrow t4 \ edge \ added$

p4, p5 are the interesting ones!

Máté Tejfe

Lecture 1

Lecture

Lecture

Lecture 4

Lecture

Exercise 4.5

Modifications:

ullet t5 \Rightarrow p4 edge reversed

p4, p5 are the interesting ones!

Máté Tejf

Lecture

Lecture

Lecture 4

Lecture

- p1 is a source place
- {p2, p3} is a siphon
- $\{p4, p5\}$ is a trap
- p6 is a sink place

- $\{t2 \Rightarrow p3, t3 \Rightarrow p3\}$ is a minimal FAS
- $\{p1 \Rightarrow t2, t3 \Rightarrow p3\}$ is a minimal FAS
- $\{t2 \Rightarrow p3, p1 \Rightarrow t3\}$ is a minimal FAS
- $\{p1 \Rightarrow t2, t1 \Rightarrow t3\}$ is a minimal FAS
- p3 \Rightarrow t1 is a minimum and also a minimal FAS
- $t1 \Rightarrow p1$ is a minimum and also a minimal FAS
- x set of edges is a FAS if x contains at least one of the previous 6 FAS-es

Máté Tejfe

Lecture :

Lecture 2

Lecture

Lecture 4

Lectur

Exercise 4.8

It is safe, because for every reachable marking, the set of marked edges is a minimal FAS.

Máté Tejf

Lecture 1

Lecture

Lecture 4

Lecture

Máté Tejf

Lecture 1

Lecture

Lecture

Lecture 4

Lecture

Agenda

- 1 Lecture 1 Definition of Petri nets
- 2 Lecture 2 Behavioral properties
- 3 Lecture 3 Analysis methods
- 4 Lecture 4 Classification of Petri nets
- **6** Lecture 5 Coloured Petri nets

Máté Tejt

Lecture 2 Lecture 3

Lecture

Lecture 5

Máté Tejf

Lecture 2

Lecture 2

Lecture 4

Lecture 5

Máté Tejfe

Lecture

Lecture 2

Lecture .

Lactura

Lecture 5

Exercise 5.3
CPN Tools can be dowloaded from http://cpntools.org/

Náté Tejt

Lactura

Lecture :

Lecture

.

Lecture 5

Lecture 2

______.

Lecture 5

Máté Tejf

Lecture 2

Lecture

Lecture 5

Máté Tejf

Lecture :

Lecture :

Lecture 4

Lecture 5

.

Lecture 1

Lecture 2

Lecture .

Lecture

Lecture 5

/láté Tejl

Lecture .

Lecture 2

1 -----

Lecture 5

Máté Tejfe

Lecture 1

Lecture 2

Lecture 5

Máté Tejfe

Lecture 6

Lecture 1

Lecture 8

_ecture 9

Theme II

Part I/b

Lecture ^{*}

Lecture (

Lecture

- 1 Lecture 6 Labelled Petri nets
- 2 Lecture 7 Petri Boxes
- 3 Lecture 8 Operator Boxes I.
- 4 Lecture 9 Operator Boxes II.

Máté Tejfe

Lecture 6

Lecture

Lecture

Exercise 1.1

$$\begin{split} &\Sigma_0 = (S_0, T_0, W_0, \lambda_0, M_0) \\ &S_0 = \{p_0, p_1\} \\ &T_0 = \{t_0, t_1, t_2\} \\ &W_0 = ((TS \cup ST) \times \{1\}) \cup (((S \times T) \setminus ST \cup (T \times S) \setminus TS) \times \{0\}) \\ &\lambda_0 = \{(p_0, i), (p_1, i), (t_0, rr), (t_1, br), (t_2, bb)\} \\ &M_0 = \{(p_0, 2), (p_1, 1)\} \\ &\textit{where} \\ &TS = \{(t_1, p_0), (t_0, p_1)\} \textit{ and } \\ &ST = \{(p_0, t_0), (p_0, t_1), (p_1, t_1), (p_1, t_2)\} \end{split}$$

Exercise 1.2

The Petri net is 2-bounded, therefore not safe.

Máté Teife

Lecture 6

Lecture

Lecture

Lecture '

Máté Tei

Lecture 6

Lecture

Lecture

Exercise 1.4

Only the first three step is applicable. Two markings left on p1.

Exercise 1.5

It is applicable. No markings left at the end.

Lecture :

Lecture

_ecture !

Máté Tejfe

Lecture 6

Lecture

Lecture 8

Exercise 1.7

The Petri net is unbounded, therefore not safe, but live.

Máté Teif

Lecture 6

Lecture '

Lecture

Lecture :

Lecture

Exercise 1.9

$$M_0 = \{(p_1, 1), (p_4, 1)\}$$

Exercise 1.10

The last step is not enabled. It would require to have tokens simultaneously on p4 and p5.

Agenda

- 1 Lecture 6 Labelled Petri nets
- 2 Lecture 7 Petri Boxes
- 3 Lecture 8 Operator Boxes I.
- 4 Lecture 9 Operator Boxes II.

Lecture 8

Lecture

Lecture

Locturo

Exercise 2.2

The net is ex-directed but not ex-exclusive. Marking (0,0,0,0,1,1) is reachable (applying step sequence $\{t_0\},\{t_5\}$). The following transitions are independent of transition t_0 : t_3,t_6 .

Exercise 2.3

The ex-asymmetric transitions of the net are the following: t_0 : t_1 .

Máté Tejfe

Lecture 6

Lecture 7

Lecture 8

_ecture §

_ecture

Exercise 2.5

Exercise 2.6

The net is a Petri box, but the marking (0, 1, 1, 1) (which is not clean) is reachable from $M_{\bullet \Sigma}$, namely, it is not a static box.

Exercise 2.7

The net is a Petri box, but the marking (0,0,0,2) (which is not safe) is reachable from $M_{\bullet \Sigma}$, namely, it is not a dynamic box.

Exercise 2.8

Marking (0,1,0,1) is reachable from the initial marking (applying step $\{t_1\}$), so the net is not ex-exclusive.

Exercise 2.9

The net is an entry box, since it is a Petri box, and every marking reachable from $M_{\bullet \Sigma}$ and $M_{\Sigma^{\bullet}}$ is safe and clean.

Exercise 2.10

Transitions t_1 , t_2 are independent. Marking (0,1,0,0,1) is reachable from the initial marking (applying step sequence $\{t_0\}, \{t_2\}$), so the net is not ex-exclusive.

Agenda

- 1 Lecture 6 Labelled Petri nets
- 2 Lecture 7 Petri Boxes
- 3 Lecture 8 Operator Boxes I.
- 4 Lecture 9 Operator Boxes II.

Lecture 6

Lecture 7

Lectur

Exercise 3.1

Yes. The following execution is enabled.

$$\begin{array}{ll} (\{p_0,p_1\},\emptyset) & [\{t_0,t_3\}> & (\{p_2,p_3\},\emptyset) & [\{t_4\}:\{t_1\}^+> \\ (\{p_1\},\{t_1\}) & [\{t_3\}:\{t_1\}^-> & (\{p_0,p_3\},\emptyset). \end{array}$$

Exercise 3.2

Yes. The following execution is enabled.

$$(\{p_0, p_1\}, \emptyset)$$
 $[\{t_0, t_3\} > (\{p_2, p_3\}, \emptyset)$ $[\{t_2\} : \{t_5\}^+ > (\{p_4, p_5\}, \{t_5\}).$

Exercise 3.3

The following complex markings are directly reachable from $\mathcal{M}''=(\{p_0\},\{t_5\}).$

$$(\{p_0,p_5\},\emptyset);\;(\{p_2,p_5\},\emptyset);\;(\{p_2\},\{t_5\});\;(\{p_5\},\{t_0\});(\emptyset,\{t_0,t_5\})$$

Lecture 7

Lecture

No. Execution

 $(\{p_0\},\emptyset)$ $[\{t_2\}>$ $(\{p_2,p_3\},\emptyset)$ $[\{t_3\}:\{t_0\}^+>$ $(\{p_5\},\{t_0\})$ is enabled. However t_1 is not enabled in $(\{p_5\},\{t_0\})$.

Exercise 3.5

Yes. The following execution is enabled.

$$(\{p_0\},\emptyset)$$
 $[\{t_2\}>$ $(\{p_2,p_3\},\emptyset)$ $[\{t_0\}:\{t_3\}^+>$ $(\{p_4\},\{t_3\})$ $[\{t_1\}^+:\{t_3\}^->$ $(\{p_5\},\{t_1\}).$

Exercise 3.6

Yes. The following execution is enabled. $(\{p_0, p_1\}, \emptyset)$ $[\{t_0\} > (\{p_2, p_3\}, \emptyset)$ $[\{t_3\} : \{t_1\}^+ > (\{p_4\}, \{t_1\})$ $[\{t_2\}^+ : \{t_1\}^- > (\{p_2\}, \{t_2\}).$

Exercise 3.7

Yes. The following execution is enabled. $(\{p_0, p_1\}, \emptyset)$ $[\{t_0\} > (\{p_2, p_3\}, \emptyset)$ $[\{t_3\} : \{t_1\}^+ > (\{p_4\}, \{t_1\})$ $[\{t_2\}^+ > (\emptyset, \{t_1, t_2\}).$

Lecture 6

Lecture i

Lecture 8

_ecture s

Lecture (

Lecture 8

_ecture !

Lecture 6

Lecture '

Lecture 8

_ecture !

- 1 Lecture 6 Labelled Petri nets
- 2 Lecture 7 Petri Boxes
- 3 Lecture 8 Operator Boxes I.
- 4 Lecture 9 Operator Boxes II.

Lecture 6

Lecture

Lecture 9

Lecture 6

Lecture 7

Lecture

Lecture 9

Lecture 6

Lecture '

Lecture a

Lecture 9

láté Tejf

Lecture (

Lecture 7

Lecture 9

Analysis of Distributed Systems

láté Tejfe

Lecture (

Lecture '

Lectur

Lecture 9

1áté Tejfe

Lecture (

Lecture

Lecture 9

Lecture t

Lecture

Lecture 8

Lecture 9

Lecture 6

Lecture

Lectur

Lecture 9

Máté Teif

Lecture 6

Lecture '

Lecture 9

Analysis of Distributed Systems

Máté Tejfel

Lecture 10 Labelled Transition Systems

Lecture 1

Lecture 1

Lecture 13

Lecture 14

Theme III

Part II

- 1 Lecture 10 Labelled Transition Systems
- 2 Lecture 11 Communicating Sequential Processes
- 3 Lecture 12 Axiomatic Semantics of CSP
- 4 Lecture 13 Denotational Semantics of CSP
- **5** Lecture 14 Communication in CSP

Lecture 10 -Labelled Transition Systems

Lecture 1

Lecture 13

Exercise 1.1

$$p = a(bnil + cnil)$$

Exercise 1.2

$$p = a(bnil + cq), q = dp$$

Exercise 1.3

$$\begin{array}{l} \textit{a(bnil} + \textit{c(dnil} + \textit{bdnil)}) \mid\mid \textit{acbnil} \\ \stackrel{\textit{a}}{\rightarrow} \; \textit{bnil} + \textit{c(dnil} + \textit{bdnil}) \mid\mid \textit{cbnil} \\ \stackrel{\textit{c}}{\rightarrow} \; \textit{dnil} + \textit{bdnil} \mid\mid \textit{bnil} \\ \stackrel{\textit{b}}{\rightarrow} \; \textit{dnil} \mid\mid \textit{nil} \\ \not \rightarrow \end{array}$$

Consequently the process corresponds to the environment.

Lecture 10 -Labelled Transition Systems

Exercise 1.4

```
- abdnil + a(dnil + cnil) || a(bnil + cnil)
   \stackrel{a}{\rightarrow} dnil + cnil || bnil + cnil
   \stackrel{c}{\rightarrow} nil || nil
   \rightarrow
```

-
$$abdnil + a(dnil + cnil) || a(bnil + cnil)$$

 $\stackrel{a}{\rightarrow} bdnil || bnil + cnil$
 $\stackrel{b}{\rightarrow} dnil || nil$
 $\stackrel{}{\rightarrow}$

Consequently the process corresponds to the environment.

Lecture 1

Exercise 1.5

- $abnil + adnil \mid\mid abnil + adnil \xrightarrow{a} dnil \mid\mid dnil$
 - $\stackrel{d}{\rightarrow}$ nil || nil $\stackrel{/}{\rightarrow}$

Consequently the process does not correspond to the environment.

Locturo 1

Exercise 1.6

nil, a(bnil + dnil), anil + cnil, a(bnil + dnil + cnil), ...

Exercise 1.7

$$\tau(\textit{a(bnil} + \textit{c(dnil} + \textit{bdnil)}) = \{\textit{ab}, \; \textit{acd}, \; \textit{acbd}\}$$

Exercise 1.8

$$\tau'(a(bnil+c(dnil+bdnil)) = \{\epsilon, a, ab, ac, acd, acb, acbd\}$$

$$abnil + a(cnil + dnil)$$

$$\stackrel{A5}{=} a(bnil + (cnil + dnil))$$

$$\stackrel{A1}{=} a((bnil + cnil) + dnil)$$

$$\stackrel{A5}{=}$$
 $a(bnil + cnil) + adnil$

Lecture 13

. . .

$$a((bcnil + dnil) + d(cnil + nil))$$

$$\stackrel{A4}{=} a((bcnil + dnil) + dcnil)$$

$$\stackrel{A5}{=} a(bcnil + dnil) + adcnil$$

$$\stackrel{A5}{=} (abcnil + adnil) + adcnil$$

$$\stackrel{A1}{=} abcnil + (adnil + adcnil)$$

$$\stackrel{A4}{=} ab(cnil + nil) + (adnil + adcnil)$$

$$\stackrel{A5}{=} ab(cnil + nil) + a(dnil + dcnil)$$

$$\stackrel{A5}{=} ab(cnil + nil) + a(d(nil + cnil))$$

Lecture 1

- 1 Lecture 10 Labelled Transition Systems
- 2 Lecture 11 Communicating Sequential Processes
- 3 Lecture 12 Axiomatic Semantics of CSP
- 4 Lecture 13 Denotational Semantics of CSP
- **5** Lecture 14 Communication in CSP

Lecture 10 Labelled Transition Systems

Lecture 11

Lecture 13

Lecture 14

Exercise 2.1

$$CSP = 10 \rightarrow CS10$$
, $CS10 = (5 \rightarrow CS15 \mid little_choc \rightarrow CS)$ $CS15 = big_choc \rightarrow CS$, where $\alpha CSP = \{5, 10, little_choc, big_choc\}$

$$M = (a \rightarrow M_1 \mid b \rightarrow M_2 \mid c \rightarrow M_3)$$

$$M_1 = (b \rightarrow M_2 \mid c \rightarrow M_3 \mid d \rightarrow M)$$

$$M_2 = c \rightarrow M_3$$

$$M_3 = d \rightarrow M$$
where $\alpha M = \{a, b, c, d\}$

Analysis of Distributed Systems

/láté Te

Lecture 10 -Labelled Transition Systems

Lecture 11

Lecture 1.

. . .

Exercise 2.3

 $P = AD_0$, $AD_0 = prod1 \rightarrow BD_1$,

 $BD_i = (prod2 \rightarrow AD_i \mid cons1 \rightarrow BC_{i-1})$, where $i \in \mathbb{N}$, $BC_i = (cons2 \rightarrow BD_i \mid prod2 \rightarrow AC_i)$, where $i \in \mathbb{N}_{\not\vdash}$,

 $AC_i = (cons2 \rightarrow AD_i \mid prod1 \rightarrow AC_{i+1})$, where $i \in \mathbb{N}_{\not\vdash}$, $AD_i = (prod1 \rightarrow AD_{i+1} \mid cons1 \rightarrow AC_{i-1})$, where $i \in \mathbb{N}$, $BD_0 = prod2 \rightarrow AD_0$.

 $\alpha P = \{ prod1, prod2, cons1, cons2 \}$

Exercise 2.4

 $P = null \rightarrow A_0$,

 $A_i = (a \rightarrow A_{i+1} \mid null \rightarrow B_{i,0}),$ where $i \in \mathbb{N}_0,$

 $B_{i,j} = (b \rightarrow B_{i-1,j+1} \mid null \rightarrow C_{j,0}),$ where $i \in \mathbb{N}, j \in \mathbb{N}_0, (i > 0),$ $B_{0,i} = null \rightarrow C_i),$ where $j \in \mathbb{N}_0,$

 $\mathcal{L}_{0,j} = null \to \mathcal{L}_{j}$), where $j \in \mathbb{N}_{0}$, $\mathcal{L}_{j} = (c \to \mathcal{L}_{j-1} \mid null \to STOP)$, where $j \in \mathbb{N}$, (j > 0), $\mathcal{L}_{0} = null \to STOP$.

and $\alpha P = \{null, a, b, c\}$

Lecture 1

Lecture 14

Exercise 2.5

 $\begin{array}{l} P \mid\mid Q \text{, where} \\ P = b1 \rightarrow \textit{ meetB} \rightarrow \textit{meetE} \rightarrow e1 \rightarrow P \text{,} \\ \alpha P = \{b1, \textit{meetB}, \textit{meetE}, e1\}, \\ Q = b2 \rightarrow \textit{meetB} \rightarrow \textit{meetE} \rightarrow e2 \rightarrow Q, \\ \alpha Q = \{b2, \textit{meetB}, \textit{meetE}, e2\}, \end{array}$

$$\begin{array}{l} (P \mid\mid Q) \mid\mid R \text{, where} \\ P = b3 \rightarrow \mod 2 \rightarrow \mod 3 \rightarrow P, \\ \alpha P = \{b3, meet2, meet3\}, \\ Q = b1 \rightarrow \mod 1B \rightarrow \mod 2 \rightarrow \mod 1E \rightarrow \mod 3 \rightarrow Q, \\ \alpha Q = \{b1, meet_1B, meet_1E, meet2, meet3\}, \\ R = b2 \rightarrow \mod 1B \rightarrow \mod 2 \rightarrow \mod 1E, \\ \alpha R = \{b2, meet_1B, meet_1E, meet2\}. \end{array}$$

Lecture 12

Lecture 13

Lecture 14

Exercise 2.7

$$P = (a \rightarrow (b \rightarrow STOP \mid c \rightarrow STOP) \mid b \rightarrow d \rightarrow STOP),$$

 $\alpha P = \{a, b, c, d\}$

$$P = (a \rightarrow (b \rightarrow STOP \mid c \rightarrow STOP) \mid d \rightarrow STOP \mid b \rightarrow (c \rightarrow STOP \sqcap c \rightarrow d \rightarrow STOP)), \alpha P = \{a, b, c, d\}$$

Máté Tejt

Lecture 10 Labelled Transition Systems

Lecture 11

Lecture 1

_ecture 14

Exercise 2.9

Exercise 2.10 acbdnil + cabdnil

Agenda

- 1 Lecture 10 Labelled Transition Systems
- 2 Lecture 11 Communicating Sequential Processes
- 3 Lecture 12 Axiomatic Semantics of CSP
- 4 Lecture 13 Denotational Semantics of CSP
- **6** Lecture 14 Communication in CSP

Lecture 12

Lecture 13

Exercise 3.1

$$P \parallel Q = (a \rightarrow c \rightarrow b \rightarrow (P \parallel Q) \mid c \rightarrow a \rightarrow b \rightarrow (P \parallel Q))$$

Exercise 3.2

$$P \mid\mid Q = b \rightarrow (a \rightarrow c \rightarrow (P \mid\mid Q) \mid c \rightarrow a \rightarrow (P \mid\mid Q))$$

$$P \mid\mid Q = a \rightarrow R$$
, where $R = b \rightarrow (a \rightarrow c \rightarrow R \mid c \rightarrow a \rightarrow R)$

Lecture 12

Lecture 13

Lecture 14

Exercise 3.4

$$P \mid\mid Q = a \rightarrow b \rightarrow (P \mid\mid Q)$$

Exercise 3.5

$$P \mid\mid Q = x \rightarrow y \rightarrow (w \rightarrow z \rightarrow y \rightarrow (P \mid\mid Q) \\ \mid z \rightarrow w \rightarrow y \rightarrow (P \mid\mid Q))$$

Exercise 3.6

$$P \mid\mid Q = (a \rightarrow STOP) \sqcap (a \rightarrow b \rightarrow (P \mid\mid Q))$$

$$P \setminus \{b\} = (a \rightarrow P \mid d \rightarrow c \rightarrow P)$$
, where $\alpha P = \{a, c, d\}$

Lecture :

Exercise 3.8

$$P \mid\mid Q = (a \rightarrow b \rightarrow c \rightarrow (P \mid\mid Q)) \sqcap (a \rightarrow c \rightarrow d \rightarrow (P \mid\mid Q))$$

Exercise 3.9

$$P \mid\mid Q = e \rightarrow R$$
, where $R = a \rightarrow (b \rightarrow e \rightarrow W \mid e \rightarrow b \rightarrow W)$, where $W = c \rightarrow (d \rightarrow e \rightarrow R \mid e \rightarrow d \rightarrow R)$

$$P \parallel Q = (x \rightarrow y \rightarrow z \rightarrow (P \parallel Q)) \sqcap (x \rightarrow z \rightarrow w \rightarrow (P \parallel Q))$$

Lecture 1

- 1 Lecture 10 Labelled Transition Systems
- 2 Lecture 11 Communicating Sequential Processes
- 3 Lecture 12 Axiomatic Semantics of CSP
- 4 Lecture 13 Denotational Semantics of CSP
- **5** Lecture 14 Communication in CSP

Lecture 10 Labelled Transition Systems

Lecture 1

Lecture 13

Lecture 1

Exercise 4.1

- 1. $traces(R(a)) = \{ <>, < b >, < b, c > \}$
- 2. $traces(R(b)) = \{ <>, < d > \}$
- $\Rightarrow traces(W)$ = {<>, < a >, < a, b >, < a, b, c >, < b >, < b, d >}

- 1. $traces(P) = \{ <>, < b >, < b, c > \}$
- 2. $traces(Q) = \{ <>, < d >, < d, c > \}$
- $\Rightarrow traces(P \sqcap Q)$ $= \{ <>, < b>, < b, c>, < d>, < d, c> \}$

.

Lecture 13

Lecture 1

Exercise 4.3

- 1. $traces(R) = \{ <>, < d >, < d, c > \}$
- 2. $traces(W) = \{ <>, < b >, < b, d >, < b, d, c > \}$
- $\Rightarrow traces(R \square W)$ $= \{ \langle >, < d >, < d, c >, < b >, < b, d >, < b, d, c > \}$

Exercise 4.4

• $traces((P \sqcap Q) || (R \square W))$ = $traces(P \sqcap Q) \cap traces(R \square W)$ = $\{<>, < b>, < d>, < d, c>\}$ Labelled Transition Systems

Lecture 1

Lecture 13

Locturo 1

Exercise 4.5

- Here $F(X) = coin \rightarrow choc \rightarrow X$.
- According to the 3. item of definition of function traces it is enough to see:

 $\forall n \in \mathbb{N} : traces(F^n(STOP)) = \{s \mid s \leq < coin, choc > ^n\}.$ Using induction:

```
 \begin{array}{l} \mathsf{n=0} \;\; traces(F^0(STOP)) = traces(STOP) = \{<>\} \\ &= \{s \mid s \leq < coin, choc >^0\}, \\ \mathsf{n=k+1} \;\; traces(F^{k+1}(STOP_A)) \\ &= traces(F(F^k(STOP_A))) \\ &= traces(coin \to choc \to F^k(STOP)) \\ &= \{<>, < coin >\} \\ &\quad \cup \{< coin, choc >^{\wedge} t \mid t \in traces(F^k(STOP)))\} \\ &= \{<>, < coin >\} \\ &\quad \cup \{< coin, choc >^{\wedge} t \mid t \leq < coin, choc >^{n} )\} \\ &= \{t \mid t \leq < coin, choc >^{n+1}\} \end{array}
```

Lecture 13

Lecture 1

Exercise 4.6

- $traces(P) = \{ <>, < a >, < a, b >, < a, c > \},$
- $\forall t \in traces(P) : (t \downarrow a) \geq (t \downarrow c)$,
- \Rightarrow P sat $((tr \downarrow a) \geq (tr \downarrow c))$.

Exercise 4.7

- $P \mid\mid Q = a \rightarrow b \rightarrow c \rightarrow STOP$,
- $traces(P || Q) = \{<>, < a>, < a, b>, < a, b, c>\},$
- $\forall t \in traces(P \mid\mid Q) : ((t \downarrow a) \leq (t \downarrow b)),$
- \Rightarrow $(P \mid\mid Q)$ sat $((tr \downarrow a) \leq (tr \downarrow b))$.

- $traces(P \sqcap Q) = \{<>, < b>, < b, c>, < a>, < a, b>\},$
- $\forall t \in traces(P \sqcap Q) : ((t \downarrow a) + (t \downarrow c) \leq 1)$,
- \Rightarrow $(P \sqcap Q)$ sat $((tr \downarrow a) + (tr \downarrow c) \leq 1)$.

```
Analysis of
Distributed
Systems
```

áté Tej

Lecture 10 Labelled Transition Systems

Lecture 1

Lecture :

Lecture 13

Lecture 14

Exercise 4.9

Let be $MySpec = ((tr \downarrow a) \leq 1 + (tr \downarrow b) + (tr \downarrow d)).$

- 1. $(tr = <>) \Rightarrow MySpec$
- \Rightarrow STOP sat $(tr = <>) \Longrightarrow$ STOP sat MySpec
 - 2. Suppose X sat MySpec

$$traces(F(X)) = \{ <>, < a >, < a, b >, < a, c > \}$$

 $\cup \{ < a, b, c >^{\land} t \mid t \in traces(X) \}$

- $\cup \{\langle a, c, d \rangle^{\wedge} \mid t \in traces(X)\}$
- 2.a $(<>\downarrow a) = 0, (<>\downarrow b) + (<>\downarrow d) = 0,$
 - $(\langle a \rangle \downarrow a) = 1, (\langle a \rangle \downarrow b) + (\langle a \rangle \downarrow d) = 0,$
 - $(\langle a, b > \downarrow a \rangle = 1, (\langle a, b > \downarrow b) + (\langle a, b > \downarrow d) = 1, (\langle a, c > \downarrow a \rangle = 1, (\langle a, c > \downarrow b) + (\langle a, c > \downarrow d) = 0.$
- $(\langle a, c \rangle \downarrow a) = 1, (\langle a, c \rangle \downarrow b) + ($
 - $(\langle a, b, c \rangle^{\wedge} t \downarrow b) = (t \downarrow b) + 1,$ $(\langle a, b, c \rangle^{\wedge} t \downarrow d) = (t \downarrow d),$
 - so $((\langle a,b,c\rangle^{\wedge}t\downarrow a)=((\langle a,b,c\rangle^{\wedge}t\downarrow a))$

$$\leq 1 + (\langle a, b, c \rangle^{\wedge} t \downarrow b) + (\langle a, b, c \rangle^{\wedge} t \downarrow d))$$

equivalent with $((t \downarrow a) \le 1 + (t \downarrow b) + (t \downarrow d))$ (which will hold because of the assumption).

Lecture 13

Lecture 1

Lecture 14

2.c $(\langle a,c,d \rangle^{\wedge} t\downarrow a) = (t\downarrow a)+1$, $(\langle a,c,d \rangle^{\wedge} t\downarrow b) = (t\downarrow b)$, $(\langle a,c,d \rangle^{\wedge} t\downarrow d) = (t\downarrow d)+1$, so $((\langle a,c,d \rangle^{\wedge} t\downarrow a)$ $\leq 1+(\langle a,c,d \rangle^{\wedge} t\downarrow b)+(\langle a,c,d \rangle^{\wedge} t\downarrow d))$ equivalent with $((t\downarrow a)\leq 1+(t\downarrow b)+(t\downarrow d))$ (which will hold because of the assumption).

- $(2.a) \land (2.b) \land (2.c) \Rightarrow F(X)$ sat MySpec.
- $(1.) \land (2.) \Rightarrow P$ sat MySpec.

. .

. .

Lecture 13

Lecture 1

1.
$$P$$
 sat $(0 \leq ((tr \downarrow a) - (tr \downarrow b)) \leq 1)$

2.
$$Q$$
 sat $(0 \le ((tr \downarrow b) - (tr \downarrow c)) \le 1)$

$$\Rightarrow P \mid\mid Q$$

$$sat \left((0 \leq (((tr \uparrow \alpha P) \downarrow a) - ((tr \uparrow \alpha P) \downarrow b)) \leq 1) \right)$$

$$\land (0 \leq (((tr \uparrow \alpha Q) \downarrow b) - ((tr \uparrow \alpha Q) \downarrow c)) \leq 1)$$

$$\Rightarrow P \parallel Q$$

$$sat \left((0 \leq ((tr \downarrow a) - (tr \downarrow b)) \leq 1 \right)$$

$$\land (0 \leq ((tr \downarrow b) - (tr \downarrow c)) \leq 1) \right)$$

$$\Rightarrow$$
 $P \mid\mid Q \ sat \ (0 \leq ((tr \downarrow a) - (tr \downarrow c)) \leq 2)$

Lactura 1

Lecture 14

Agenda

- 1 Lecture 10 Labelled Transition Systems
- 2 Lecture 11 Communicating Sequential Processes
- 3 Lecture 12 Axiomatic Semantics of CSP
- 4 Lecture 13 Denotational Semantics of CSP
- **5** Lecture 14 Communication in CSP

láté Tejf

Lecture 10 Labelled Transition Systems

Lecture 1

Lecture 1

Lecture 1

Lecture 14

Exercise 5.1

$$P||Q = c1?x \to c2.(x+5) \to c3!(2*x+10) \to STOP$$

Exercise 5.2

$$(P||Q) \setminus \{c2\} = c1?x \to c3!(2*x+10) \to STOP$$

Exercise 5.3

$$P||Q_{10} = in?x \to c1.x \to c2.(10*x) \to out!(10*x) \to (P||Q_{10})$$

Exercise 5.4

$$(P||Q_5)\setminus\{c1,c2\}=in?x\rightarrow out!(5*x)\rightarrow ((P||Q_5)\setminus\{c1,c2\})$$

$$(P||Q) = (in1?x \rightarrow in2?y \rightarrow c1.x \rightarrow c2.(x+y) \rightarrow out!(x+y) \rightarrow (P||Q) |in2?y \rightarrow in1?x \rightarrow c1.x \rightarrow c2.(x+y) \rightarrow out!(x+y) \rightarrow (P||Q))$$

Lecture 12

Lecture 13

Lecture 14

Exercise 5.6

$$\begin{aligned} (P||Q) &= \\ & \textit{in1?x} \rightarrow \textit{c1.x} \\ &\rightarrow (\textit{in2?y} \rightarrow \textit{out!x} \rightarrow \textit{c2.(x*y)} \rightarrow \textit{out!(x*y)} \rightarrow (P||Q) \\ &\mid \textit{out!x} \rightarrow \textit{in2?y} \rightarrow \textit{c2.(x*y)} \rightarrow \textit{out!(x*y)} \rightarrow (P||Q)) \end{aligned}$$

Exercise 5.7

$$Q = (in?y \rightarrow out!(y_1 * y_2 + 5) \rightarrow Q)$$

Exercise 5.8

$$Q = (in?y \rightarrow out!(y_1, (y_1 * y_2 + 3)) \rightarrow Q)$$

Exercise 5.9

$$Q = (in?y \to out!(y_1, (y_2 + (y_1 * y_3)), (y_1 * y_3)) \to Q)$$

$$Q_i = (in?y \rightarrow out!(y_1, (y_2 + \frac{y_1}{i} * y_3), \frac{y_1}{i} * y_3) \rightarrow Q_i)$$