
1

SQL Statements in PL/SQL

• Extract a row of data from the database
by using the SELECT command. Only a
single set of values can be returned.

• Make changes to rows in the database
by using DML commands.

• Control a transaction with the COMMIT,
ROLLBACK, or SAVEPOINT command.

• Determine DML outcome with implicit
cursors.

2

SELECT Statements in PL/SQL

Retrieve data from the database with
SELECT.

Syntax
SELECT select_list

INTO {variable_name[, variable_name]...

| record_name}

FROM table

WHERE condition;

3

SELECT Statements in PL/SQL

The INTO clause is required.

Example
DECLARE

v_deptno NUMBER(2);

v_loc VARCHAR2(15);

BEGIN

SELECT deptno, loc

INTO v_deptno, v_loc

FROM dept

WHERE dname = 'SALES';
...

END;

4

Retrieving Data in PL/SQL
Retrieve the order date and the ship date
for the specified order.

Example

DECLARE

v_orderdate ord.orderdate%TYPE;

v_shipdate ord.shipdate%TYPE;

BEGIN

SELECT orderdate, shipdate

INTO v_orderdate, v_shipdate

FROM ord

WHERE id = 620;

...

END;

5

Retrieving Data in PL/SQL

Return the sum of the salaries for all
employees in the specified department.

Example

DECLARE

v_sum_sal emp.sal%TYPE;

v_deptno NUMBER NOT NULL := 10;

BEGIN

SELECT SUM(sal) -- group function

INTO v_sum_sal

FROM emp

WHERE deptno = v_deptno;

END;

6

INSERT

UPDATE

DELETE

Manipulating Data Using PL/SQL

Make changes to database tables by
using DML commands:

• INSERT

• UPDATE

• DELETE

7

Inserting Data

Add new employee information to the emp
table.

Example

BEGIN
INSERT INTO emp(empno, ename, job, deptno)
VALUES(empno_sequence.NEXTVAL, 'HARDING',

'CLERK', 10);
END;

8

Updating Data

Increase the salary of all employees in the
emp table who are Analysts.

Example

DECLARE

v_sal_increase emp.sal%TYPE := 2000;

BEGIN

UPDATE emp

SET sal = sal + v_sal_increase

WHERE job = 'ANALYST';

END;

9

Deleting Data

Delete rows that belong to department 10
from the emp table.

Example

DECLARE

v_deptno emp.deptno%TYPE := 10;

BEGIN

DELETE FROM emp

WHERE deptno = v_deptno;

END;

10

Naming Conventions

• Use a naming convention to avoid
ambiguity in the WHERE clause.

• Database columns and identifiers
should have distinct names.

• Syntax errors can arise because PL/SQL
checks the database first for a column
in the table.

11

Naming Conventions
DECLARE

orderdate ord.orderdate%TYPE;

shipdate ord.shipdate%TYPE;

ordid ord.ordid%TYPE := 601;

BEGIN

SELECT orderdate, shipdate

INTO orderdate, shipdate

FROM ord

WHERE ordid = ordid;

END;

SQL> /

DECLARE

*

ERROR at line 1:

ORA-01422: exact fetch returns more than requested

number of rows

ORA-06512: at line 6

12

COMMIT and ROLLBACK

Statements

• Initiate a transaction with the first DML
command to follow a COMMIT or
ROLLBACK.

• Use COMMIT and ROLLBACK SQL
statements to terminate a transaction
explicitly.

13

SQL Cursor

• A cursor is a private SQL work area.

• There are two types of cursors:

– Implicit cursors

– Explicit cursors

• The Oracle Server uses implicit cursors
to parse and execute your SQL
statements.

• Explicit cursors are explicitly declared
by the programmer.

14

SQL Cursor Attributes

Using SQL cursor attributes, you can test
the outcome of your SQL statements.

SQL%ROWCOUNT Number of rows affected by the
most recent SQL statement (an
integer value)

SQL%FOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQL%NOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQL%ISOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

15

SQL Cursor Attributes

Delete rows that have the specified order
number from the ITEM table. Print the
number of rows deleted.

Example

VARIABLE rows_deleted VARCHAR2(30)
DECLARE
v_ordid NUMBER := 605;

BEGIN
DELETE FROM item
WHERE ordid = v_ordid;
:rows_deleted := (SQL%ROWCOUNT ||

' rows deleted.');
END;
/
PRINT rows_deleted

