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SQL Statements in PL/SQL

• Extract a row of data from the database 
by using the SELECT command. Only a 
single set of values can be returned.

• Make changes to rows in the database 
by using DML commands.

• Control a transaction with the COMMIT,  
ROLLBACK, or SAVEPOINT command.

• Determine DML outcome with implicit 
cursors.
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SELECT Statements in PL/SQL

Retrieve data from the database with 
SELECT.

Syntax
SELECT select_list

INTO {variable_name[, variable_name]...

| record_name}

FROM table

WHERE condition;
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SELECT Statements in PL/SQL

The INTO clause is required.

Example
DECLARE

v_deptno NUMBER(2);

v_loc VARCHAR2(15);

BEGIN

SELECT deptno, loc

INTO v_deptno, v_loc

FROM dept

WHERE dname = 'SALES';   
...

END;
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Retrieving Data in PL/SQL
Retrieve the order date and the ship date 
for the specified order.

Example

DECLARE

v_orderdate   ord.orderdate%TYPE;

v_shipdate    ord.shipdate%TYPE;  

BEGIN

SELECT   orderdate, shipdate

INTO     v_orderdate, v_shipdate

FROM     ord

WHERE    id = 620;

...

END;
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Retrieving Data in PL/SQL

Return the sum of the salaries for all 
employees in the specified department.

Example

DECLARE    

v_sum_sal   emp.sal%TYPE; 

v_deptno NUMBER NOT NULL := 10;           

BEGIN

SELECT SUM(sal)  -- group function

INTO v_sum_sal

FROM emp

WHERE deptno = v_deptno;

END;
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INSERT

UPDATE

DELETE

Manipulating Data Using PL/SQL

Make changes to database tables by 
using DML commands:

• INSERT

• UPDATE

• DELETE
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Inserting Data

Add new employee information to the emp 
table.

Example

BEGIN
INSERT INTO emp(empno, ename, job, deptno)
VALUES(empno_sequence.NEXTVAL, 'HARDING', 

'CLERK', 10);
END;
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Updating Data

Increase the salary of all employees in the 
emp table who are Analysts.

Example

DECLARE

v_sal_increase   emp.sal%TYPE := 2000;   

BEGIN

UPDATE emp

SET sal = sal + v_sal_increase

WHERE job = 'ANALYST';

END;
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Deleting Data

Delete rows that belong to department 10 
from the emp table.

Example

DECLARE

v_deptno   emp.deptno%TYPE := 10;               

BEGIN

DELETE FROM   emp

WHERE         deptno = v_deptno;

END;



10

Naming Conventions

• Use a naming convention to avoid 
ambiguity in the WHERE clause.

• Database columns and identifiers
should have distinct names.

• Syntax errors can arise because PL/SQL 
checks the database first for a column 
in the table.
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Naming Conventions
DECLARE

orderdate ord.orderdate%TYPE;

shipdate ord.shipdate%TYPE;

ordid ord.ordid%TYPE := 601;

BEGIN

SELECT orderdate, shipdate

INTO   orderdate, shipdate

FROM   ord

WHERE  ordid = ordid;        

END;

SQL> /

DECLARE

*

ERROR at line 1:

ORA-01422: exact fetch returns more than requested

number of rows

ORA-06512: at line 6
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COMMIT and ROLLBACK 

Statements

• Initiate a transaction with the first DML 
command to follow a COMMIT or 
ROLLBACK.

• Use COMMIT and ROLLBACK SQL 
statements to terminate a transaction 
explicitly.
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SQL Cursor

• A cursor is a private SQL work area.

• There are two types of cursors:

– Implicit cursors

– Explicit cursors

• The Oracle Server uses implicit cursors 
to parse and execute your SQL 
statements.

• Explicit cursors are explicitly declared 
by the programmer.
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SQL Cursor Attributes

Using SQL cursor attributes, you can test 
the outcome of your SQL statements.  

SQL%ROWCOUNT Number of rows affected by the 
most recent SQL statement (an 
integer value)

SQL%FOUND Boolean attribute that evaluates to 
TRUE if the most recent SQL 
statement affects one or more rows

SQL%NOTFOUND Boolean attribute that evaluates to 
TRUE if the most recent SQL
statement does not affect any rows

SQL%ISOPEN Always evaluates to FALSE because 
PL/SQL closes implicit cursors
immediately after they are executed
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SQL Cursor Attributes

Delete rows that have the specified order 
number from the ITEM table. Print the 
number of rows deleted.

Example

VARIABLE rows_deleted VARCHAR2(30)
DECLARE
v_ordid  NUMBER := 605;

BEGIN
DELETE FROM  item
WHERE        ordid = v_ordid;
:rows_deleted := (SQL%ROWCOUNT ||

' rows deleted.');
END;
/
PRINT rows_deleted


