
1

Overview of Stored Functions

• A function is a named PL/SQL block that
returns a value.

• A function can be stored in the
database, as a database object, for
repeated execution.

• A function can be called as part of an
expression.

2

Syntax for Creating Functions

CREATE [OR REPLACE] FUNCTION function_name

(argument1 [mode1] datatype1,

argument2 [mode2] datatype2,

. . .

RETURN datatype

IS|AS

PL/SQL Block;

3

Creating a Stored Function

Using SQL*Plus
1. Enter the text of the CREATE

FUNCTION statement into the Sql
Worksheet of SqlDeveloper.

2. From SqlDeveloper, run the script to
compile the source code into p-code
and store both in the database.

3. Invoke the function from an Oracle
Server environment to determine
whether it executes without error.

4

Creating a Stored Function

Using SQL*Plus: Example

SQL> CREATE OR REPLACE FUNCTION get_sal

2 (v_id IN emp.empno%TYPE)

3 RETURN NUMBER

4 IS

5 v_salary emp.sal%TYPE :=0;

6 BEGIN

7 SELECT sal

8 INTO v_salary

9 FROM emp

10 WHERE empno = v_id;

11 RETURN (v_salary);

12 END get_sal;

13 /

5

Executing Functions

• Invoke a function as part of a PL/SQL
expression.

• Create a host variable to hold the
returned value.

• Execute the function. The host variable
will be populated by the RETURN value.

6

Executing Functions in

SQL*Plus: Example
Calling environment GET_SAL function

v_id7934

RETURN v_salary

SQL> START get_salary.sql

Procedure created.

SQL> VARIABLE g_salary number

SQL> EXECUTE :g_salary := get_sal(7934)

PL/SQL procedure successfully completed.

SQL> PRINT g_salary

G_SALARY

1300

7

Advantages of User-Defined

Functions in SQL Expressions

• Extend SQL where activities are too
complex, too awkward, or unavailable
with SQL

• Query efficiency: functions used in the
WHERE clause can filter data

• Manipulate character strings

• Provide parallel query execution

8

Locations to Call User-Defined

Functions

• Select list of a SELECT command

• Condition of the WHERE and HAVING
clauses

• CONNECT BY, START WITH, ORDER BY,
and GROUP BY clauses

• VALUES clauses of the INSERT
command

• SET clause of the UPDATE command

9

Calling Functions from SQL

Expressions: Restrictions
• A user-defined function must be a

stored function.

• A user-defined function must be a ROW
function, not a GROUP function.

• A user-defined function only takes IN
parameters, not OUT, or IN OUT.

• Datatypes must be CHAR, DATE, or
NUMBER, not PL/SQL types such as
BOOLEAN, RECORD, or TABLE.

• Return type must be an Oracle Server
internal type.

10

Calling Functions from SQL

Expressions: Restrictions

• INSERT, UPDATE, or DELETE
commands are not allowed.

• Calls to subprograms that break the
above restriction are not allowed.

11

Removing a Server-Side

Function

Using SQL*Plus

• Syntax

• Example

SQL> DROP FUNCTION get_salary;

Function dropped.

DROP FUNCTION function_name

12

Procedure or Function?

Procedure

(DECLARE)

BEGIN

EXCEPTION

END;

IN argument

OUT argument

IN OUT argument

Calling
Environment

Calling
Environment

Function

(DECLARE)

BEGIN

EXCEPTION

END;

IN argument

13

Comparing Procedures and

Functions

Procedure

Execute as a PL/SQL
statement

No RETURN datatype

Can return one or
more values

Function

Invoke as part of an
expression

Must contain a RETURN
datatype

Must return a value

14

Benefits of Stored

Procedures and Functions

• Improved performance

• Improved maintenance

• Improved data security and integrity

