Relational Algebra and SQL

Basic Operations Algebra of Bags

What is an "Algebra"

Mathematical system consisting of:

- Operands --- variables or values from which new values can be constructed.
- Operators --- symbols denoting procedures that construct new values from given values.

What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
Operators are designed to do the most common things that we need to do with relations in a database.
- The result is an algebra that can be used as a query language for relations.

Core Relational Algebra

\checkmark Union, intersection, and difference.

- Usual set operations, but both operands must have the same relation schema.
Selection: picking certain rows.
\checkmark Projection: picking certain columns.
\checkmark Products and joins: compositions of relations.
\checkmark Renaming of relations and attributes.

Union, intersection, difference

- RUS

SELECT ... UNION SELECT ...;
(Duplicate elimination -> UNION ALL: multiset, UNION: set)
$-R \cap S$
SELECT ... INTERSECT SELECT ...;
-R-S
SELECT ... MINUS SELECT ...;
(Some DBMS uses EXCEPT)

Selection

$\rightarrow \mathrm{R} 1:=\sigma_{C}(\mathrm{R} 2)$

- C is a condition (as in "if" statements) that refers to attributes of R2.
- R1 is all those tuples of R2 that satisfy C.

SELECT * FROM R2 WHERE C;

Example: Selection

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

JoeMenu := $\sigma_{\text {bar="Joe's's }}$ (Sells):

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75

Projection

$R 1:=\pi_{L}(R 2)$

- L is a list of attributes from the schema of R2.
- R1 is constructed by looking at each tuple of R2, extracting the attributes on list L, in the order specified, and creating from those components a tuple for R1.
- Eliminate duplicate tuples, if any.
- SELECT DISTINCT L FROM R2;

Example: Projection

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

Prices := $\Pi_{\text {beer,price }}$ (Sells):

beer	price
Bud	2.50
Miller	2.75
Miller	3.00

Extended Projection

Using the same π_{L} operator, we allow the list L to contain arbitrary expressions involving attributes:

1. Arithmetic on attributes, e.g., $A+B->C$.
2. Duplicate occurrences of the same attribute.

SELECT A+B AS C FROM R; (AS -> optional)

Example: Extended Projection

$$
R=\left(\begin{array}{|l|l|}
\hline A & B \\
\hline 1 & 2 \\
3 & 4 \\
\hline
\end{array}\right.
$$

SELECT A+B C, A A1, A A2 FROM R;

Product

-R3 : = R1 X R2

- Pair each tuple t1 of R1 with each tuple t2 of R2.
- Concatenation t1t2 is a tuple of R3.
- Schema of R3 is the attributes of R1 and then R2, in order.
- But beware attribute A of the same name in R1 and R2: use R1. A and R2.A.

SELECT * FROM R1, R2; or SELECT * FROM R1 CROSS JOIN R2;

Example: R3 := R1 X R2

R1(A,	B)	R3(A,	R1.B,	R2.B,	C
	1	2		1	2	5	6
	3	4		1	2	7	8
				1	2	9	10
R2(B,	C)		3	4	5	6
	5	6		3	4	7	8
	7	8		3	4	9	10
	9	10					

SELECT A, R1.B, R2.B, C FROM R1, R2;

Theta-Join

R3 := R1 \bowtie_{c} R2

- Take the product R1 X R2.
- Then apply σ_{C} to the result.
- As for σ, C can be any boolean-valued condition.
- Historic versions of this operator allowed only A θ B, where θ is $=,<$, etc.; hence the name "theta-join."

SELECT * FROM R1 JOIN R2 ON (C);

Example: Theta Join

Sells(| bar, | beer, | price |
| :--- | :--- | :--- |
| Joe's | Bud | 2.50 |
| Joe's | Miller | 2.75 |
| Sue's | Bud | 2.50 |
| Sue's | Coors | 3.00 |

Bars(name,	addr
Joe's	Maple St.	
Sue's	River Rd.	

BarInfo := Sells $\bowtie_{\text {Sells.bar }=\text { Bars.name }}$ Bars

BarInfo(| bar, | beer, | price, | name, | addr |
| :--- | :--- | :--- | :--- | :--- |
| Joe's | Bud | 2.50 | Joe's | Maple St. |
| Joe's | Miller | 2.75 | Joe's | Maple St. |
| Sue's | Bud | 2.50 | Sue's | River Rd. |
| Sue's | Coors | 3.00 | Sue's | River Rd. |

Natural Join

\checkmark A useful join variant (natural join) connects two relations by:

- Equating attributes of the same name, and
- Projecting out one copy of each pair of equated attributes.
\rightarrow Denoted R3 := R1 \bowtie R2.

SELECT * FROM R1 NATURAL JOIN R2;

Example: Natural Join

Sells(| bar, | beer, | price |
| :--- | :--- | :--- |
| Joe's | Bud | 2.50 |
| Joe's | Miller | 2.75 |
| Sue's | Bud | 2.50 |
| Sue's | Coors | 3.00 |

BarInfo := Sells \bowtie Bars
Note: Bars.name has become Bars.bar to make the natural join "work."

BarInfo(

bar,	beer,	price,	addr
Joe's	Bud	2.50	Maple St.
Joe's	Milller	2.75	Maple St.
Sue's	Bud	2.50	River Rd.
Sue's	Coors	3.00	River Rd.

Renaming

\rightarrow The ρ operator gives a new schema to a relation.
$\left\langle R 1:=\rho_{\mathrm{R} 1(\mathrm{~A} 1, \ldots, \mathrm{An})}(\mathrm{R} 2)\right.$ makes R1 be a relation with attributes $\mathrm{A} 1, \ldots, \mathrm{~A} n$ and the same tuples as R2.
Simplified notation: R1(A1, $\ldots, \mathrm{A} n):=\mathrm{R} 2$.
SELECT X1 A1, X2 A2, ... Xn An FROM R2; CREATE TABLE R1 AS SELECT X1 A1, X2 A2, ... Xn An FROM R2;

Example: Renaming

Bars(| name, | addr |
| :--- | :--- |
| Joe's | Maple St. |
| Sue's | River Rd. |

R(bar, addr) := Bars
$R\left(\begin{array}{|l|l|}\hline \text { bar, } & \text { addr } \\ \hline \text { Joe's } & \text { Maple St. } \\ \text { Sue's } & \text { River Rd. } \\ \hline\end{array}\right.$

Building Complex Expressions

Combine operators with parentheses and precedence rules.
Three notations, just as in arithmetic:

1. Sequences of assignment statements.
2. Expressions with several operators.
3. Expression trees.

Sequences of Assignments

Create temporary relation names.
Renaming can be implied by giving relations a list of attributes.

Example: R3 := R1 \bowtie_{C} R2 can be written:

$$
\begin{array}{ll}
\text { R4 }:=\text { R1 X R2 } & \text { (CREATE TABLE R4 } \ldots) \\
\text { R3 }:=\sigma_{c} \text { (R4) } & \text { (SELECT } \ldots \text {... FROM R4 } \ldots \text {) }
\end{array}
$$

Expressions in a Single Assignment

Example: the theta-join R3 := R1 \bowtie_{C} R2 can be written: R3 := σ_{c} (R1 X R2)
Precedence of relational operators:

1. $[\sigma, \pi, \rho]$ (highest).
2. $[\mathrm{X}, \bowtie]$.
3. \cap.
4. $[\cup,-]$

Expression Trees

- Leaves are operands --- either variables standing for relations or particular, constant relations.
\bullet Interior nodes are operators, applied to their child or children.

Example: Tree for a Query

\checkmark Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

As a Tree:

Example: Self-Join

-Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.
Strategy: by renaming, define a copy of Sells, called S(bar, beer1, price). The natural join of Sells and S consists of quadruples (bar, beer, beer1, price) such that the bar sells both beers at this price.

The Tree

Schemas for Results

-Union, intersection, and difference: the schemas of the two operands must be the same, so use that schema for the result.
Selection: schema of the result is the same as the schema of the operand.
Projection: list of attributes tells us the schema.

Schemas for Results --- (2)

- Product: schema is the attributes of both relations.
- Use R.A, etc., to distinguish two attributes named A.
Theta-join: same as product.
Natural join: union of the attributes of the two relations.
\checkmark Renaming: the operator tells the schema.

Relational Algebra on Bags

- A bag (or multiset) is like a set, but an element may appear more than once.
Example: $\{1,2,1,3\}$ is a bag.
- Example: $\{1,2,3\}$ is also a bag that happens to be a set.

Why Bags?

-SQL, the most important query language for relational databases, is actually a bag language.
Some operations, like projection, are more efficient on bags than sets.

Operations on Bags

SSelection applies to each tuple, so its effect on bags is like its effect on sets.

- Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

Example: Bag Selection

$$
R\left(\begin{array}{|l|l|}
\hline A_{1} & B \\
\hline 1 & 2 \\
5 & 6 \\
1 & 2 \\
\hline
\end{array}\right.
$$

$$
\sigma_{A+B<5}(\mathrm{R})=\begin{array}{|l|l|}
\hline \mathrm{A} & \mathrm{~B} \\
\hline 1 & 2 \\
1 & 2 \\
\hline
\end{array}
$$

SELECT * FROM R WHERE A+B < 5;

Example: Bag Projection

$$
\mathrm{R}\left(\begin{array}{|l|l|}
\hline \mathrm{A}_{1} & \mathrm{~B} \\
\hline 1 & 2 \\
\hline 5 & 6 \\
1 & 2 \\
\hline
\end{array}\right.
$$

$$
\mathrm{T}_{A}(\mathrm{R})=\begin{array}{|l|}
\hline \mathrm{A} \\
\hline 1 \\
5 \\
1 \\
\hline
\end{array}
$$

SELECT A FROM R;

Example: Bag Product

R $X S=$

A	R.B	S.B	C
1	2	3	4
1	2	7	8
5	6	3	4
5	6	7	8
1	2	3	4
1	2	7	8

Example: Bag Theta-Join

$R\left(\begin{array}{|l|l|}\hline A_{1} & B \\ \hline 1 & 2 \\ 5 & 6 \\ 1 & 2 \\ \hline\end{array}\right.$

$R \bigotimes_{\text {R.B<S.B }} S=$

A	R.B	S.B	C
1	2	3	4
1	2	7	8
5	6	7	8
1	2	3	4
1	2	7	8

Bag Union

\checkmark An element appears in the union of two bags the sum of the number of times it appears in each bag.

- Example: $\{1,2,1\} \cup\{1,1,2,3,1\}=$ \{1,1,1,1,1,2,2,3\}

SELECT ... UNION ALL SELECT ...;

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- Example: $\{1,2,1,1\} \cap\{1,2,1,3\}=$ \{1,1,2\}.

SELECT ... INTERSECT ALL SELECT (Oracle doesn't support !)

Bag Difference

- An element appears in the difference $A-B$ of bags as many times as it appears in A, minus the number of times it appears in B.
- But never less than 0 times.
- Example: $\{1,2,1,1\}-\{1,2,3\}=\{1,1\}$. SELECT ... EXCEPT ALL SELECT ...;
ORACLE doesn't support !)

Beware: Bag Laws != Set Laws

-Some, but not all algebraic laws that hold for sets also hold for bags.
Example: the commutative law for union $(R \cup S=S \cup R)$ does hold for bags.

- Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

Example: A Law That Fails

Set union is idempotent, meaning that $S \cup S=S$.
\rightarrow However, for bags, if x appears n times in S, then it appears $2 n$ times in $S \cup S$.
\rightarrow Thus $S \cup S$!= S in general.

- e.g., $\{1\} \cup\{1\}=\{1,1\}!=\{1\}$.

