
1

Transactions

Controlling Concurrent Behavior

2

Why Transactions?

Database systems are normally being
accessed by many users or processes at
the same time.

Both queries and modifications.

Unlike operating systems, which
support interaction of processes, a
DMBS needs to keep processes from
troublesome interactions.

3

Example: Bad Interaction

You and your domestic partner each
take $100 from different ATM’s at about
the same time.

The DBMS better make sure one account
deduction doesn’t get lost.

Compare: An OS allows two people to
edit a document at the same time. If
both write, one’s changes get lost.

4

Transactions

Transaction = process involving
database queries and/or modification.

Normally with some strong properties
regarding concurrency.

Formed in SQL from single statements
or explicit programmer control.

5

ACID Transactions

ACID transactions are:

Atomic : Whole transaction or none is done.

Consistent : Database constraints preserved.

Isolated : It appears to the user as if only one
process executes at a time.

Durable : Effects of a process survive a crash.

Optional: weaker forms of transactions are
often supported as well.

6

COMMIT

The SQL statement COMMIT causes a
transaction to complete.

It’s database modifications are now
permanent in the database.

7

ROLLBACK

The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.

No effects on the database.

Failures like division by 0 or a
constraint violation can also cause
rollback, even if the programmer does
not request it.

8

Example: Interacting Processes

Assume the usual Sells(bar,beer,price)
relation, and suppose that Joe’s Bar sells
only Bud for $2.50 and Miller for $3.00.

Sally is querying Sells for the highest and
lowest price Joe charges.

Joe decides to stop selling Bud and Miller,
but to sell only Heineken at $3.50.

9

Sally’s Program

Sally executes the following two SQL
statements called (min) and (max) to
help us remember what they do.

(max) SELECT MAX(price) FROM Sells

WHERE bar = ’Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells

WHERE bar = ’Joe’’s Bar’;

10

Joe’s Program

At about the same time, Joe executes the
following steps: (del) and (ins).

(del) DELETE FROM Sells

WHERE bar = ’Joe’’s Bar’;

(ins) INSERT INTO Sells

VALUES(’Joe’’s Bar’, ’Heineken’, 3.50);

11

Interleaving of Statements

Although (max) must come before
(min), and (del) must come before
(ins), there are no other constraints on
the order of these statements, unless
we group Sally’s and/or Joe’s
statements into transactions.

12

Example: Strange Interleaving

Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe’s Prices:

Statement:

Result:

Sally sees MAX < MIN!

{2.50,3.00}

(del) (ins)

{3.50}

(min)

3.50

{2.50,3.00}

(max)

3.00

13

Fixing the Problem by Using
Transactions

If we group Sally’s statements
(max)(min) into one transaction, then
she cannot see this inconsistency.

She sees Joe’s prices at some fixed
time.

Either before or after he changes prices, or
in the middle, but the MAX and MIN are
computed from the same prices.

14

Another Problem: Rollback

Suppose Joe executes (del)(ins), not as
a transaction, but after executing these
statements, thinks better of it and
issues a ROLLBACK statement.

If Sally executes her statements after
(ins) but before the rollback, she sees a
value, 3.50, that never existed in the
database.

15

Solution

If Joe executes (del)(ins) as a
transaction, its effect cannot be seen by
others until the transaction executes
COMMIT.

If the transaction executes ROLLBACK
instead, then its effects can never be
seen.

16

Isolation Levels

SQL defines four isolation levels =
choices about what interactions are
allowed by transactions that execute at
about the same time.

Only one level (“serializable”) = ACID
transactions.

Each DBMS implements transactions in
its own way.

17

Choosing the Isolation Level

Within a transaction, we can say:

SET TRANSACTION ISOLATION LEVEL X

where X =

1. SERIALIZABLE

2. REPEATABLE READ

3. READ COMMITTED

4. READ UNCOMMITTED
/* Oracle allows only 1 and 3 and some similar to 2. */

18

Serializable Transactions

If Sally = (max)(min) and Joe =
(del)(ins) are each transactions, and
Sally runs with isolation level
SERIALIZABLE, then she will see the
database either before or after Joe
runs, but not in the middle.

19

Isolation Level Is Personal Choice

Your choice, e.g., run serializable,
affects only how you see the database,
not how others see it.

Example: If Joe Runs serializable, but
Sally doesn’t, then Sally might see no
prices for Joe’s Bar.

i.e., it looks to Sally as if she ran in the
middle of Joe’s transaction.

20

Read-Commited Transactions

If Sally runs with isolation level READ
COMMITTED, then she can see only
committed data, but not necessarily the
same data each time.

Example: Under READ COMMITTED, the
interleaving (max)(del)(ins)(min) is
allowed, as long as Joe commits.

Sally sees MAX < MIN.

21

Repeatable-Read Transactions

Requirement is like read-committed,
plus: if data is read again, then
everything seen the first time will be
seen the second time.

But the second and subsequent reads may
see more tuples as well.

22

Example: Repeatable Read

Suppose Sally runs under REPEATABLE
READ, and the order of execution is
(max)(del)(ins)(min).

(max) sees prices 2.50 and 3.00.

(min) can see 3.50, but must also see 2.50
and 3.00, because they were seen on the
earlier read by (max).

23

Read Uncommitted

A transaction running under READ
UNCOMMITTED can see data in the
database, even if it was written by a
transaction that has not committed (and
may never).

Example: If Sally runs under READ
UNCOMMITTED, she could see a price
3.50 even if Joe later aborts.

Oracle Transactions

A database transaction consists of
one of the following:

DML statements that constitute one
consistent change to the data

One DDL statement

One data control language (DCL)
statement

Database Transactions

Begin when the first DML SQL statement
is executed.

End with one of the following events:
• A COMMIT or ROLLBACK statement is

issued.

• A DDL or DCL statement executes
(automatic commit).

• The user exits SqlDeveloper.

• The system crashes.

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK

statements, you can:

Ensure data consistency

Preview data changes before making
changes permanent

Group logically related operations

Controlling Transactions

SAVEPOINT

B

SAVEPOINT

A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK

to SAVEPOINT B

ROLLBACK

to SAVEPOINT A

ROLLBACK

UPDATE...

SAVEPOINT update_done;

Savepoint created.

INSERT...

ROLLBACK TO update_done;

Rollback complete.

Rolling Back Changes to a
Marker

Create a marker in a current transaction by
using the SAVEPOINT statement.

Roll back to that marker by using the
ROLLBACK TO SAVEPOINT statement.

Implicit Transaction Processing

An automatic commit occurs under the
following circumstances:
• DDL statement is issued

• DCL statement is issued

• Normal exit from SqlDeveloper, without
explicitly issuing COMMIT or ROLLBACK
statements

An automatic rollback occurs under an
abnormal termination of SqlDeveloper or
a system failure.

State of the Data
Before COMMIT or ROLLBACK

The previous state of the data can be
recovered.

The current user can review the results of the
DML operations by using the SELECT
statement.

Other users cannot view the results of the DML
statements by the current user.

The affected rows are locked; other users
cannot change the data in the affected rows.

State of the Data After COMMIT

Data changes are made permanent in the
database.
The previous state of the data is
permanently lost.
All users can view the results.
Locks on the affected rows are released;
those rows are available for other users to
manipulate.
All savepoints are erased.

COMMIT;

Commit complete.

Committing Data
Make the changes:

Commit the changes:

DELETE FROM employees

WHERE employee_id = 99999;

1 row deleted.

INSERT INTO departments

VALUES (290, 'Corporate Tax', NULL, 1700);

1 row created.

DELETE FROM copy_emp;

22 rows deleted.

ROLLBACK ;

Rollback complete.

State of the Data After
ROLLBACK

Discard all pending changes by using the
ROLLBACK statement:

Data changes are undone.
Previous state of the data is restored.
Locks on the affected rows are released.

State of the Data After
ROLLBACK

DELETE FROM test; -- ups!, it’s a mistake

25,000 rows deleted.

ROLLBACK; -- correct the mistake

Rollback complete.

DELETE FROM test WHERE id = 100; -- it’s ok

1 row deleted.

SELECT * FROM test WHERE id = 100;

No rows selected.

COMMIT; -- make it permanent

Commit complete.

Statement-Level Rollback

If a single DML statement fails during
execution, only that statement is rolled
back.

The Oracle server implements an implicit
savepoint.

All other changes are retained.

The user should terminate transactions
explicitly by executing a COMMIT or
ROLLBACK statement.

Read Consistency

Read consistency guarantees a consistent
view of the data at all times.

Changes made by one user do not conflict
with changes made by another user.

Read consistency ensures that on the same
data:

• Readers do not wait for writers

• Writers do not wait for readers

Implementation of Read
Consistency

SELECT *

FROM userA.employees;

UPDATE employees

SET salary = 7000

WHERE last_name = 'Grant';

Data
blocks

Undo
segments

Changed
and unchanged
data

Before
change
(“old” data)

User A

User B

Read-
consistent
image

