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In this note we will derive the update equations for the statistics describing the minimum point of̂ft (Sec-
tion 2). During the derivation we will need an auxiliary lemma concerning the behavior of certain matrix series.
We will introduce this lemma in Section 1. The pseudocode of our OSDL method is provided in Section 3.

1 The forgetting factor in matrix recursions

Let Nt ∈ R
L1×L2 (t = 1, 2, . . .) be a given matrix series, and letγt =

(

1 − 1
t

)ρ
, ρ ≥ 0. Define the following

matrix series with the help of these quantities:

Mt = γtMt−1 + Nt ∈ R
L1×L2 (t = 1, 2, . . .), (1)

M′

t =

t
∑

i=1

(

i

t

)ρ

Ni ∈ R
L1×L2 (t = 1, 2, . . .). (2)

Lemma 1. If ρ = 0, thenMt = M0 + M′

t (∀t ≥ 1). Whenρ > 0, thenMt = M′

t (∀t ≥ 1).

Proof.

1. Caseρ = 0: Sinceγt = 1 (∀t ≥ 1), thusMt = M0 +
∑t

i=1 Ni. We also have that
(

i
t

)0
= 1 (∀i ≥ 1),

and thereforeM′

t =
∑t

i=1 Ni, which completes the proof.

2. Caseρ > 0: The proof proceeds by induction.

• t = 1: In this caseγ1 = 0, M1 = 0 × M0 + N1 = N1 andM′

1 = N1, which proves that
M1 = M′

1.

• t > 1: Using the definitions ofMt andM
′

t, and exploiting the fact thatMt−1 = M
′

t−1 by induc-
tion, after some calculation we have that:

Mt = γtMt−1 + Nt =

(

1 −
1

t

)ρ
[

t−1
∑

i=1

(

i

t − 1

)ρ

Ni

]

+ Nt (3)

=

(

t − 1

t

)ρ
[

t−1
∑

i=1

(

i

t − 1

)ρ

Ni

]

+

(

t

t

)ρ

Nt =

t
∑

i=1

(

i

t

)ρ

Ni = M′

t. (4)
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2 Online update equations for the minimum point of f̂t

Our goals are (i) to find the minimum of

f̂t(D) =
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ [
1

2
‖xOi

− DOi
αi‖

2
2 + κΩ(αi)

]

(5)

in dj while the other column vectors ofD (di (i 6= j)) are being fixed, and (ii) to derive online update rules for
the statistics of̂ft describing this minimum point.̂ft is quadratic indj , hence in order to find its minimum, we
simply have to solve the following equation:

∂f̂t

∂dj
(uj) = 0, (6)

whereuj denotes the optimal solution. We can treat theΩ, and the 1
P

t
j=1

(j/t)ρ terms in (5) as constants, since

they do not depend ondj . Let D−j denote the slightly modified version of matrixD; its jth column is set to
zero. Similarly, letαi,−j denote the vectorαi where itsjth coordinate is set to zero. Now, we have that

0 =
∂f̂t

∂dj
=

∂

∂dj

[

t
∑

i=1

(

i

t

)ρ

‖∆i(xi − Dαi)‖
2
2

]

(7)

=
∂

∂dj

[

t
∑

i=1

(

i

t

)ρ

‖∆i[(xi − D−jαi,−j) − djαi,j ]‖
2
2

]

(8)

=
∂

∂dj

[

t
∑

i=1

(

i

t

)ρ

‖(∆iαi,j)dj − ∆i(xi − D−jαi,−j)‖
2
2

]

(9)

= 2

t
∑

i=1

(

i

t

)ρ

∆iαi,j [(∆iαi,j)dj − ∆i(xi − D−jαi,−j)] (10)

= 2

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,jdj − 2

t
∑

i=1

(

i

t

)ρ

∆iαi,j(xi − D−jαi,−j), (11)

where we used the facts that

xOi
− DOi

αi = ∆i(xi − Dαi), (12)

∂ ‖Ay − b‖
2
2

∂y
= 2AT (Ay − b), (13)

∆i = ∆T
i = (∆i)

2. (14)

After rearranging the terms in (11), we have that
(

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j

)

uj =

t
∑

i=1

(

i

t

)ρ

∆iαi,j(xi − D−jαi,−j) (15)

=
t
∑

i=1

(

i

t

)ρ

∆ixiαi,j −
t
∑

i=1

(

i

t

)ρ

∆iD−jαi,−jαi,j (16)

=

t
∑

i=1

(

i

t

)ρ

∆ixiαi,j −

t
∑

i=1

(

i

t

)ρ

∆i(D−jαi,−j + djαi,j − djαi,j)αi,j (17)

=

t
∑

i=1

(

i

t

)ρ

∆ixiαi,j −

t
∑

i=1

(

i

t

)ρ

∆iDαiαi,j +

(

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j

)

dj . (18)
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We note that (16) is a system of linear equations, and its solutionuj does not depend ondj . We have introduced
the ‘djαij − djαij ’ term only for one purpose; it can help us with deriving the recursive updates foruj in a
simple form. Define the following quantities

Cj,t =
t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j ∈ R

dx×dx (j = 1, . . . , dα), (19)

Bt =

t
∑

i=1

(

i

t

)ρ

∆ixiα
T
i = [b1,t, . . . ,bdα,t] ∈ R

dx×dα , (20)

ej,t =

t
∑

i=1

(

i

t

)ρ

∆iDαiαi,j ∈ R
dx (j = 1, . . . , dα). (21)

Here (i)Cj,ts are diagonal matrices and (ii) the update rule ofBt contains the quantity∆ixi, which isxOi

extended by zeros at the non-observable ({1, . . . , dx} \ Oi) coordinates. By using these notations and (18), we
obtain thatuj satisfies the following equation:

Cj,tuj = bj,t − ej,t + Cj,tdj . (22)

Now, according to Lemma 1, we can see that (i) whenρ = 0 andCj,0 = 0, B0 = 0, or (ii) ρ > 0 andCj,0, B0

are arbitrary, then theCj,t andBt quantities can be updated online with the following recursions:

Cj,t = γtCj,t−1 + ∆tα
2
t,j , (23)

Bt = γtBt−1 + ∆txtα
T
t , (24)

whereγt =
(

1 − 1
t

)ρ
. We use the following online approximation forej,t:

ej,t = γtej,t−1 + ∆tDαtαt,j , (25)

with initialization ej,0 = 0 (∀j), andD is theactualestimation for the dictionary. This choice seems to be
efficient according to our numerical experiences.

Note. In the fully observable special case (i.e., when∆i = I, ∀i) the (19)-(21) equations have the following
simpler form:

Cj,t = I

t
∑

i=1

(

i

t

)ρ

α2
i,j , (26)

Bt =

t
∑

i=1

(

i

t

)ρ

xiα
T
i , (27)

ej,t =

t
∑

i=1

(

i

t

)ρ

Dαiαi,j = D

t
∑

i=1

(

i

t

)ρ

αiαi,j . (28)

Define the following term:

At =
t
∑

i=1

(

i

t

)ρ

αiα
T
i ∈ R

dα×dα , (29)

and letaj,t denote thejth column ofAt. Now,(28)can be rewritten as

ej,t = Daj,t, (30)

and thus(22)has the following simpler form:

(At)j,juj = bj,t − Daj,t + (At)j,jdj . (31)

3



Algorithm (Online Group-Structured Dictionary Learning)
Input of the algorithm

xt,r ∼ p(x), (observation:xOt,r
, observed positions:Ot,r), D0 (initial dictionary),

T (number of mini-batches),R (size of the mini-batches),G (group structure),
ρ (≥ 0 forgetting factor),κ (> 0 tradeoff-),η (∈ (0, 1] regularization constant),
{dG}G∈G (≥ 0, weights),A (constraint set forα), D = ×dα

i=1Di (constraint set forD),
inner loop constants:ǫ (smoothing),Tα, TD (number of iterations).

Initialization
Cj,0 = 0 ∈ R

dx (j = 1, . . . , dα), B0 = 0 ∈ R
dx×dα , ej,0 = 0 ∈ R

dx (j = 1, . . . , dα).
Optimization

for t = 1 : T
Draw samples for mini-batch fromp(x): {xOt,1

, . . . ,xOt,R
}.

Compute the{αt,1 . . . , αt,R} representations:
αt,r=Representation(xOt,r

, (Dt−1)Ot,r
, G, {dG}G∈G, κ, η, A, ǫ, Tα), r = 1, . . . , R.

Update the statistics of the cost function:
γt =

(

1 − 1
t

)ρ
,

Cj,t = γtCj,t−1 + 1
R

∑R
r=1 ∆t,rα

2
t,r,j, j = 1, . . . , dα,

Bt = γtBt−1 + 1
R

∑R
r=1 ∆t,rxt,rα

T
t,r,

ej,t = γtej,t−1, j = 1, . . . , dα. %(part-1)
ComputeDt using BCD:

Dt=Dictionary({Cj,t}
dα

j=1,Bt, {ej,t}
dα

j=1, D, TD, {Ot,r}
R
r=1, {αt,r}

R
r=1).

Finish the update of{ej,t}
dα

j=1-s: %(part-2)

ej,t = ej,t + 1
R

∑R
r=1 ∆t,rDtαt,rαt,r,j , j = 1, . . . , dα.

end
Output of the algorithm

DT (learned dictionary).

Table 1: Pseudocode: Online Group-Structured Dictionary Learning.

Here(·)j,j stands for the(j, j)th entry of its argument. By applying again Lemma 1 for(29), we have that when
(i) ρ = 0 andA0 = 0, or (ii) ρ > 0 andA0 is arbitrary, thenAt can be updated online with the following
recursion:

At = γtAt−1 + αtα
T
t . (32)

We also note that in the fully observable case(24) reduces to

Bt = γtBt−1 + xtα
T
t , (33)

and thus [1] is indeed a special case of our model:

• We calculateuj by (31).

• To optimizef̂t, it is enough to keep track ofAt andBt instead of{Cj,t}
dα

j=1,Bt, {ej,t}
dα

j=1.

• The quantitiesAt andBt can be updated online by(32)and(33).

3 Pseudocode

The pseudocode of the OSDL method with mini-batches is presented in Table 1-3. Table 2 calculates the
representation for a fixed dictionary, and Table 3 learns thedictionary using fixed representations. Table 1
invokes both of these subroutines.
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Algorithm (Representation)

Input of the algorithm
x (observation),D = [d1, . . . ,ddα

] (dictionary),
G (group structure),{dG}G∈G (weights),κ (tradeoff-),η (regularization constant),
A (constraint set forα), ǫ (smoothing),Tα (number of iterations).

Initialization
α ∈ R

dα .
Optimization

for t = 1 : Tα

Computez: zG = max

(

∥

∥dG ◦ α
∥

∥

2−η

2

∥

∥

∥

(
∥

∥dG ◦ α
∥

∥

2

)

G∈G

∥

∥

∥

η−1

η
, ǫ

)

, G ∈ G.

Computeα:

computeζ: ζj =
∑

G∈G,G∋j

(dG
j )

2

zG , j = 1, . . . , dα,

α = argmin
α∈A

[

‖x − Dα‖
2
2 + καT diag(ζ)α

]

.

end
Output of the algorithm

α (estimated representation).

Table 2: Pseudocode forrepresentationestimation using fixed dictionary.

Algorithm (Dictionary)

Input of the algorithm
{Cj}

dα

j=1,B = [b1, . . . ,bdα
], {ej}

dα

j=1 (statistics of the cost function),
D = ×dα

i=1Di (constraint set forD), TD (number ofD iterations),
{Or}

R
r=1(equivalent to{∆r}

R
r=1), {αr}

R
r=1 (observed positions, estimated representations).

Initialization
D = [d1, . . . ,ddα

].
Optimization

for t = 1 : TD

for j = 1 : dα %update thejth column ofD
Compute ‘{ej}

dα

j=1’-s:

e
temp
j = ej + 1

R

∑R
r=1 ∆rDαrαr,j .

Computeuj solving the linear equation system:
Cjuj = bj − e

temp
j + Cjdj .

Projectuj to the constraint set:
dj = ΠDj

(uj).
end

end
Output of the algorithm

D (estimated dictionary).

Table 3: Pseudocode fordictionaryestimation using fixed representations.
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