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In this note we will derive the update equations for the stz describing the minimum point g?{ (Sec-
tion 2). During the derivation we will need an auxiliary lermamoncerning the behavior of certain matrix series.
We will introduce this lemma in Section 1. The pseudocodeuwf@SDL method is provided in Section 3.

1 Theforgetting factor in matrix recursions

LetN, € RE+*E2 (t = 1,2,...) be a given matrix series, and lgt= (1 — 1)”, p > 0. Define the following
matrix series with the help of these quantities:

M, = M, +N,eR*E2 (t=12 ), (1)
t
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Lemmal. If p =0, thenM, = M, + M, (Vt > 1). Whenp > 0, thenM, = M} (V¢ > 1).
Proof.

1. Casep = 0: Sincey; = 1 (V¢ > 1), thusM; = M, + Y./, N,. We also have tha(t};)0 =1(Vi > 1),
and thereford/; = 2221 N;, which completes the proof.

2. Casep > 0: The proof proceeds by induction.

e ¢t = 1: In this casey; = 0, M; = 0 x My + N; = N; andM} = Ny, which proves that
M, = Mj.

e ¢ > 1: Using the definitions oM, and M, and exploiting the fact tha¥l, _; = M, _, by induc-
tion, after some calculation we have that:
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2 Online update equations for the minimum point of f,

Our goals are (i) to find the minimum of
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in d; while the other column vectors & (d; (¢ # ])) are being fixed, and (ii) to derive online update rules for

the statistics off, describing this minimum pointf, is quadratic ind;, hence in order to find its minimum, we
simply have to solve the following equation:
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whereu; denotes the optimal solution. We can treattheand thew terms in (5) as constants, since

they do not depend od;. Let D_; denote the slightly modified version of matdi; its jth column is set to
zero. Similarly, leto; —; denote the vectat; where itsj** coordinate is set to zero. Now, we have that

8ft 0 ! (Z)p 2
0= =—— - [[Ai(x: — Day)|| (7
od;  0d; [z_; t 2
0 [ /i)’ )
=3 > 7 ) 1Al = Dojei ;) — djaigll; (8)
7 Li=1
0 [ /i)’ )
= 5 7)) Qiaig)d; — Ai(x; — D—ja ;)5 (9)
J =1
t i P
=2 <g> Ao (A j)d; — Ai(x; —D_je, )] (10)
i=1
t Z P ) t Z P
= 22 (g) Aial"jdj — 22 (g) AiOéi7j(X1' — D_jai7_j), (11)
=1 =1
where we used the facts that
X0; — Doiai = Ai(xi — Dai), (12)
2
a”Ay_bHQ :2AT(Ay—b), (13)
y
A; = AT = (A) (14)

After rearranging the terms in (11), we have that
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We note that (16) is a system of linear equations, and itdisalu; does not depend aty;. We have introduced
the ‘d;o;; — djoy;’ term only for one purpose; it can help us with deriving theursive updates fon; in a
simple form. Define the following quantities
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Here (i) C; s are diagonal matrices and (ii) the update rul@Bgfcontains the quantit;x;, which isxo,
extended by zeros at the non-observable (. ., d, } \ O;) coordinates. By using these notations and (18), we
obtain thatu; satisfies the following equation:

Cj,tuj = bjﬂg — €5t + Cjﬂgdj. (22)

Now, according to Lemma 1, we can see that (i) whea 0 andC;, = 0, By = 0, or (ii) p > 0 andC; o, By
are arbitrary, then th€; , andB, quantities can be updated online with the following reaursi

Cjt=%Cji1+ AtOétQ,j, (23)
B = %Bi1 + Axeaf, (24)

wherey, = (1 — 1)”. We use the following online approximation fey,;:
e+ = 1ej i1+ A¢Dagoy 5, (25)

with initializatione; o = 0 (Vj), andD is theactual estimation for the dictionary. This choice seems to be
efficient according to our numerical experiences.

Note. In the fully observable special casee(, whenA; = I, Vi) the (19)(21) equations have the following

simpler form:
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Define the following term: .
i\"
A, = ; <g> aia;fp € Raxda, (29)
and leta; ; denote the'** column ofA,. Now,(28) can be rewritten as
e;+ = Daj, (30)
and thug(22) has the following simpler form:
(A¢)j u; = bje — Daj; + (Ay);5d;. (31)



| Algorithm (Online Group-Structured Dictionary L earning)

Input of the algorithm
x¢,r ~ p(x), (Observationxop, ., observed positiong); ,.), Dy (initial dictionary),
T (number of mini-batches}; (size of the mini-batchesy, (group structure),
p (> 0 forgetting factor)« (> 0 tradeoff-),n (€ (0, 1] regularization constant),
{d%}ceg (> 0, weights),A (constraint set forx), D = x = D, (constraint set foD),
inner loop constants: (smoothing) 1., o (number of iterations).

Initialization
Cjo=0€eR% (j=1,...,dy),Bp=0€ R%* e, =0 R (j=1,....dy).
Optimization
fort=1:T
Draw samples for mini-batch from(x): {xo0, ,,-.,X0, r }-

Compute thqlov 1 . . ., oy g} representations:
o, ,=Representation(, ., (Di-1)o,.,, 9. {d%}ces, k,n, A e, Tn), r =1,...,R.
Update the statistics of the cost function:
1\~
T = (1 - ;) )
Cj7t = 'Yth,t—l + % Ele At,ra%mj; ] = 1, ey da,
B =vB:_1 + % Ele At,rxt,ragjra
€t = ’ytej7t_1,j =1,..., dy. %(part-l)
ComputeD; using BCD:
D,=Dictionary((C; ;}92,, By, {e;:}2,, D, Tp, {0, iy, {0, }L)).
Finish the update ofe; ;}=,-s: %(part-2)
em = em + % Zle At7TDtat77-Oét77>7j, ] = 1, ey do,
end
Output of the algorithm
D7 (learned dictionary).

Table 1: Pseudocode: Online Group-Structured Dictionagrhing.

Here(-); ; stands for thej, j)*" entry of its argument. By applying again Lemma 1(®8), we have that when
(i) p=0and Ay = 0, or (i) p > 0 and Ay is arbitrary, thenA, can be updated online with the following
recursion:

A; =vAi g+ aal. (32)

We also note that in the fully observable c&24)reduces to
B = %Bi1 +x0 (33)
and thus [1] is indeed a special case of our model:
e We calculateu; by (31).
e To optimizef,, it is enough to keep track @, andB; instead of{Cja}ie1, By, {102

e The quantitiesA; andB; can be updated online KB2) and (33).

3 Pseudocode

The pseudocode of the OSDL method with mini-batches is ptedein Table 1-3. Table 2 calculates the
representation for a fixed dictionary, and Table 3 learnsdibonary using fixed representations. Table 1
invokes both of these subroutines.



| Algorithm (Representation) |
Input of the algorithm
x (observation)D = [dy, ..., dg,] (dictionary),
§ (group structure){d“} e (weights),x (tradeoff-),n (regularization constant)
A (constraint set forx), e (smoothing).T;, (number of iterations).

Initialization
a € Rda_
Optimization
fort=1:T,
_ n—1
computes; =6 = mas (a9 o a7 [(a% o el )| ) G e
n
Computex:
O
computel: (; = > o J=1,...,da,
Ge§,G3j
« = argmin [Hx - Da||g + /{aTdiag(C)a} .
acA

end
Output of thealgorithm
« (estimated representation).

Table 2: Pseudocode fogpresentatiorestimation using fixed dictionary.

| Algorithm (Dictionary)

Input of the algorithm
{Cj}i=,, B =[by,...,bg,], {e;}}, (statistics of the cost function),
D= X?;Di (constraint set foD), Tp (humber ofD iterations),
{0, }2 | (equivalentto{ A, } ), {a, }E_, (observed positions, estimated representatio
Initialization
D =[dy,...,dq.].
Optimization
fort=1:Tp
for j = 1: d, %update thg*" column of D
Compute {e;}7=, s
e?emp =ej+ % Zf‘:l A, Do,y ;.
Computeu; solving the linear equation system:
lelj = bj — e;emp + dej.
Projectu; to the constraint set:
d;j = Ilp, (u;).
end
end
Output of thealgorithm
D (estimated dictionary).

Table 3: Pseudocode fdictionaryestimation using fixed representations.
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