
Functional Languages 4th practice

1. Redefine function head on list of integers.

headInt [5, 6, 7] == 5
headInt [10] == 10

2. Redefine function tail on list of integers.

tailInt [5, 6, 7] == [6, 7]
tailInt [10] == []

3. Redefine function null on list of integers.

nullInt []
not (nullInt [1, 2, 3])
not (nullInt [1..])

4. Define function isSingletonInt, which checks that a list
of integers has exactly one element.

not (isSingletonInt [])
isSingletonInt [5]
not (isSingletonInt [6, 8])
not (isSingletonInt [5..])

5. Define function toUpperFirst which converts the first
letter of a string into an upper case letter. It leaves the
empty string unchanged.

toUpperFirst "" == ""
toUpperFirst "finn the human" == "Finn the human"
toUpperFirst "jake" == "Jake"

Hint: you can use function toUpper from module
Data.Char.

6. Redefine function isLetter which recognises upper and
lower case letters of the English alphabet.

isLetter 'a'
isLetter 'A'
isLetter 'b'
isLetter 'X'
not (isLetter '?')

Hint: you can use function elem which searches for an
element in a list:

elem 5 [1,2,3,4,5]
not (elem 0 [1,2,3,4,5])

7. Redefine function isDigit which returns True for decimal
integers in form of characters.

isDigit '0'
isDigit '5'
isDigit '9'
not (isDigit 'a')
not (isDigit ' ')

8. Define a function that returns an increasing and decreasing
sequence of numbers.

mountain 3 == [1, 2, 3, 2, 1]
mountain 5 == [1, 2, 3, 4, 5, 4, 3, 2, 1]

9. Define a function that lists the divisors of an integer. All
positive integers are divisors of 0.

divisors 10 == [1, 2, 5, 10]
divisors 16 == [1, 2, 4, 8, 16]
divisors 3 == [1, 3]
take 5 (divisors 0) == [1, 2, 3, 4, 5]

10. Define a constant for list of powers of two.

take 5 powersOfTwo == [1, 2, 4, 8, 16]
take 10 powersOfTwo ==

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

11. *Define a constant for approximate value of π using Leibniz
formula:
π
4 = 1 − 1

3 + 1
5 − 1

7 + 1
9 . . .

Now we only approximate and four times sum of the first
thousand elements suffices.

Hint: first produce the infinite list [1, -3, 5, -7, 9,
-11, ... ] then take the reciprocal of the elements and
sum them up.

Hint: pi already exists in Haskell.

12. Produce a list which consists of all hour-minute pairs.

length time == 1440

1


