
Functional Languages 5th practice

12. 03. 2019.

1. Calculate the average of a list of integers. Use fromIntegral.

avg [1,2,3,4,5,6] == 3.5
avg [5,10] == 7.5
avg [100] == 100
avg [] == 0

2. At an exchange office, the forint/euro rate is 363.82. Exchange euros to forints. Results should be integers.

exchange :: Int -> Int

exchange 0 == 0
exchange 1 == 363
exchange 100 == 36382
exchange 1000 == 363820
exchange 20 == 7276

3. Define a function isPrime which returns True only if its parameter is a prime number.

not (isPrime 0)
not (isPrime 1)
not (isPrime 6)
isPrime 2
isPrime 3
isPrime 7
isPrime 101

Challenge: try to give an efficient version that checks divisors up to the square root.

4. Define a constant primes which is an infinite list of primes.

take 5 primes == [2, 3, 5, 7, 11]

5. Construct a list of all dominoes:
[(0,0), (0,1), ..., (0,6), (1,1), ..., (6, 6)]

length dominoes == 28

6. *Enumerate all integer pairs: [(0,0),(0,1),(1,0),(0,2),(1,1),(2,0), ...]

7. Construct a numbering of the English alphabet.

take 5 alphabet == [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')]
length alphabet == 26

Hint: using zip here helps.

8. Pick every third letter from the English alphabet using a list comprehension.

everyThird == "cfilorux"

Hint: cycle could help as it can create a cylic list. Try take 6 (cycle [1, 2, 3])

1

http://lambda.inf.elte.hu/haskell/doc/libraries/base-4.9.0.0/Prelude.html#v:zip
http://lambda.inf.elte.hu/haskell/doc/libraries/base-4.9.0.0/Data-List.html#v:cycle

9. Check whether an integer is a square number.

square 4
square 16
square 0
square 1
square 25
not (square 5)
not (square 12)

10. In Neptun, courses are stored in a list. Each course has name and students:

courses =
[("Calculus", [("Simon", "Jones", "BDE91E"), ("Barack", "Obama", "DDA3KX")])
, ("Imperative Programming", [("Simon", "Marlow", "ALX1K0"), ("John", "Hughes", "BDE91E")])
, ("Functional Languages", [("Philip", "Wadler", "ABCDE6"), ("Simon", "Thompson", "CDE560")])
]

List all Functional Languages students using a single list comprehension. Avoid using indexing as we make no assumptions
about the place of the course in the list.

students == ["ABCDE6", "CDE560"]

Make students a general function that takes course name as parameter.

11. *Enumerate days in (day, month) form of a 365-day year in a list.

Hint: function elem :: a -> [a] -> Bool helps in deciding which months have 31 days and which have only 30.

elem (31, 1) calendar
not (elem (32, 1) calendar)
elem (28, 2) calendar
not (elem (29, 2) calendar)
elem (30, 4) calendar
not (elem (31, 4) calendar)
length calendar == 365

12. Take the string "aaaabccaadeeee". Compress it so that consecutive letters are packed into (length, letter) pairs:

[(4,'a'), (1,'b'), (2,'c'), (2,'a'), (1,'d'), (4,'e')]!

Hint: group forms groups of letters, which helps in getting started.

compress "aaaabccaadeeee" == [(4,'a'), (1,'b'), (2,'c'), (2,'a'), (1,'d'), (4,'e')]
compress "oh hello!!" == [(1,'o'),(1,'h'),(1,' '),(1,'h'),(1,'e'),(2,'l'),(1,'o'),(2,'!')]
compress "" == []

13. Define a function decompress which restores the original string from a compressed form. This is the inverse function of
compress.

Hint: take a look at functions concat :: [[a]] -> [a] and replicate :: Int -> a -> [a].

decompress [(4,'a'), (1,'b'), (2,'c'), (2,'a'), (1,'d'), (4,'e')] == "aaaabccaadeeee"
decompress [(1,'o'),(1,'h'),(1,' '),(1,'h'),(1,'e'),(2,'l'),(1,'o'),(2,'!')] == "oh hello!!"
decompress [] == ""

2

https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html#v:group
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html#v:replicate

