
Functional Languages 6th practice

1. Define the factorial function recursively.

fact 0 == 1
fact 1 == 1
fact 3 == 6
fact 6 == 720

2. Determine the nth Fibonacci number!

fib 0 == 0
fib 1 == 1
fib 2 == 1
fib 4 == 3
fib 5 == 5

3. *Function fib is very slow even for small numbers. This is caused by the fact fib computes a Fibonacci number multiple
times. Can you find a faster solution to fib?

4. Define the power function. In Haskell, this is operator ˆ, now lets call our function pow. Define recursively, do not use ˆ.

pow 0 2 == 0
pow 0 0 == 1
pow 2 0 == 1
pow 2 1 == 2
pow 3 2 == 9

5. Define a function range, which lists all integers between two integers recursively. Do not use expression like [..]. We
assume the second parameter is not smaller than the first.

range 5 9 == [5, 6, 7, 8, 9]
range 5 5 == [5]
range 0 3 == [0, 1, 2, 3]

6. Change function range so that it can also produce a decreasing sequence when the second parameter is smaller that the
first.

range 6 8 == [6, 7, 8]
range 6 6 == [6]
range 4 1 == [4, 3, 2, 1]

7. Redefine function length, which counts the length of a list.

length' [] == 0
length' [5] == 1
length' [8,0,3] == 3

8. Redefine function minimum, which recursively searches for the least element in a list.

minimum' [0] == 0
minimum' [9, 3, 4, 1, 10] == 1

1

9. Define a function which recursively collects every second element in a list.

everySecond "Haskell" == "akl"
everySecond "H" == ""
everySecond "java" == "aa"
everySecond "" == ""

10. Redefine function elem, which recursively checks whether an element is in a list.

elem' 'l' "Haskell"
not (elem' 'v' "Lujzi")
not (elem' 'x' "")

11. Define a function which returns the corresponding value of a key in a key-value list. When the key is not found, raise an
error using the function error.

value 5 [(0,"c++"),(5,"python"),(4,"rust")] == "python"
value 4 [(0,"c++"),(5,"python"),(4,"rust")] == "rust"
value 4 [(0,"c++"),(5,"python"),(4,"go")] == "go"

12. Modify function value so that it takes one more parameter. When value does not found the key, return the extra parameter.

value 5 "scala" [(0, "c++"), (5, "python")] == "python"
value 3 "scala" [(0, "c++"), (1, "java"), (5, "python"), (4, "rust")] == "scala"

2

