
Functional Languages 10th practice

1. Define a function dropSpaces which removes spaces from
the beginning of a string. Use a higher order function.

dropSpaces " hi h i " == "hi h i "
dropSpaces "apple tree " == "apple tree "
dropSpaces "" == ""

2. Define a function trim which removes spaces from both
ends of a string.

trim " hello! " == "hello!"
trim "Haskell" == "Haskell"
trim "" == ""

3. Define a function monogram. Use word and higher order
functions.

monogram "Jim Carrey" == "J. C."
monogram "Carl Edward Sagan" == "C. E. S."
monogram "Paul McCartney" == "P. M."

4. Define a function uniq :: Ord a => [a] -> [a] which
removes duplicates. sort combined with group can do a
lot.

uniq "Mississippi" == "Mips"
uniq "parrot" == "aoprt"
uniq "" == ""

5. Define a function repeated which keeps repeated elements
only. This is similar to uniq except it needs filtering.

repeated "Mississippi" == "ips"
repeated [1,2,3,4,2,5,6,7,1] == [1,2]
repeated "" == ""

6. Redefine function zipWith, which is similar to zip except
it does not only creates pairs but applies a function on
the elements of the list.

zipWith' min [1,9,2,5] [5,0,3,8] == [1,0,2,5]
zipWith' min [1,0,3] [5,2,10,1] == [1,0,3]
zipWith' (*) [2,0,6] [1,5,4,9] == [2,0,24]

7. Define the scalar product of two vectors, which is the sum
of elementwise product of the vectors. Use zipWith

dotProduct [1, 2] [3, 4] == 11
dotProduct [2, 2, 2] [5, 4, 3] == 24
dotProduct [3] [2] == 6
dotProduct [1..10] [1..10] == 385

8. Define a function isPrime which checks whether a natural
number is prime. Use a higher order function.

not (isPrime 0)
not (isPrime 1)
isPrime 2
isPrime 3
not (isPrime 4)

9. Define a list primes using a higher order function.

take 5 primes == [2,3,5,7,11]

10. *Redefine iterate :: (a -> a) -> a -> [a] which
constructs an infinite list with successive applications of a
function.

take 5 (iterate' (\n -> n * 2) 1) == [1,2,4,8,16]

11. *Define infinite list fibonacci using iterate above.

take 5 fibonacci == [0,1,1,2,3]

1


