Databases 1

Exercises 2.4. Products Queries

Textbook

- A First Course in Database Systems (3rd ed.) by Jeff Ullman and Jennifer Widom
same material and sections as
- Database Systems: The Complete Book (2nd ed) by Garcia-Molina, Jeff Ullman and Jennifer Widom

Defining a Database Schema

- A database schema comprises declarations for the relations ("tables") of the database.
- Relation schema $=$ relation name + attributes, in order (+ types of attributes).
- Example: Beers(name, manf) or Beers(name: string, manf: string)
- Relation = set of tuples (n-values)
- Database = collection of relations.
- Database schema = set of all relation schemas in the database.

Core Relational Algebra

- Union, intersection, and difference.
- Usual set operations, but require both operands have the same relation schema.
- Selection: picking certain rows.
- Projection: picking certain columns.
- Products and joins: compositions of relations.
- Renaming of relations and attributes.

Set operations: Union, intersection, difference

- To apply these operators the relations must have the same attributes.
- Union (R1 \cup R2): all tuples from R1 or R2
- Intersection (R1 R2): common tuples from R1 and R2
- Difference (R1\R2): tuples occuring in R1 but not in R2

Projection and Selection

- R1 := $\pi_{L}($ R2)
- L is a list of attributes from the schema of $R 2$.
- R1 is constructed by looking at each tuple of R2, extracting the attributes on list L, in the order specified, and creating from those components a tuple for R1.
- Eliminate duplicate tuples, if any.
- R1 := $\sigma_{C}($ R2 $)$
- C is a condition (as in "if" statements) that refers to attributes of R2.
- R1 is all those tuples of R2 that satisfy C.

Product and Natural Join

- R3 := R1 x R2
- Pair each tuple t1 of R1 with each tuple t2 of R2.
- Concatenation t1t2 is a tuple of R3.
- Schema of R3 is the attributes of R1 and R2, in order.
- But beware attribute A of the same name in R1 and R2: use R1.A and R2.A.
- A frequent type of join connects two relations by:
- Equating attributes of the same name, and
- Projecting out one copy of each pair of equated attributes.
- Called natural join.
- Denoted R3 := R1 \bowtie R2.

Renaming

- The RENAME operator gives a new schema to a relation.
- $\mathrm{R} 1:=\rho_{1(\mathrm{~A} 1, \ldots, \mathrm{An})}(\mathrm{R} 2)$ makes R 1 be a relation with attributes $\mathrm{A} 1, \ldots, \mathrm{~A} n$ and the same tuples as R2.
- Simplified notation: R1(A1,...,An) := R2.

Building Complex Expressions

- Algebras allow us to express sequences of operations in a natural way
- Example: in arithmetic --- $(x+4)^{*}(y-3)$.
- Relational algebra allows the same.
- Three notations, just as in arithmetic:

1. Sequences of assignment statements.
2. Expressions with several operators.
3. Expression trees.

Expression Trees

- Precedence of relational operators:

1. Unary operators --- select, project, rename --have highest precedence, bind first.
2. Then come products and joins.
3. Then intersection.
4. Finally, union and set difference bind last.

- But you can always insert parentheses to force the order you desire.
- Leaves are operands --- either variables standing for relations or particular, constant relations.
- Interior nodes are operators, applied to their child or children.

Exercises 2.4.1.

- The database schema consists of four relations, whose schemas are:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

- create table: http://people.inf.elte.hu/sila/eduAB/create products.txt

(a.)

a.) What PC models have a speed of at least 3.00 GHz ?

Relational algebra:

$$
\Pi_{\mathrm{m}}\left(\sigma_{\mathrm{s} \geq 3.00}(\mathrm{PC})\right)
$$

SQL SELECT:

SELECT model FROM PC WHERE speed>=3.00;
b.) Which manufacturers make laptops with a hard disk (hd) of at least 100 GB?
$\Pi_{\text {maker }}\left(\sigma_{\text {hd } \geq 100}(P \bowtie L)\right)$ or ekv. $\Pi_{\text {maker }}\left(P \bowtie\left(\sigma_{\text {hd } \geq 100}(\mathrm{~L})\right)\right.$

SELECT maker
FROM Product P, Laptop L
WHERE P.model=L.model AND hd>=100;

(c.)

c.) Find the model number and price of products (of any type) made by manufacturer B .
$---B P:=\Pi_{m} \sigma_{g y=}{ }^{\prime},(P)---\gg \Pi_{m, \text { ár }}(B P \bowtie P C) \cup$ $\cup \Pi_{\mathrm{m}, \text { ár }}(\mathrm{BT} \bowtie$ Laptop $) \cup$
$\cup \Pi_{\mathrm{m}, \mathrm{ar}}(\mathrm{BT} \bowtie$ Printer $)$
with BP as
(select model from product where maker='B') select model, price from pc natural join BP union
select model, price from laptop natural join BP union
select model, price from printer natural join BP;

(d.)

d.) Find the model numbers of all color laser printers.
$\Pi_{\mathrm{m}}\left(\sigma_{\mathrm{sz}=\text { if }^{\mathrm{i}}}(\mathrm{Ny})\right) \cap \prod_{\mathrm{m}}\left(\sigma_{\mathrm{t}=\text { 'lézer' }}{ }^{\text {(}} \mathbf{N y}\right)$)
-- elvégezhető más módon is: $\Pi_{\mathrm{m}}\left(\sigma_{\mathrm{sz}=\mathrm{q}^{\prime}{ }^{\prime} \wedge \mathrm{t}={ }^{\prime} \text { ézer' }}(\mathrm{Ny})\right)$) $=\prod_{\mathrm{m}}\left(\sigma_{\mathrm{sz}=\mathrm{i}^{\prime}} \sigma_{\mathrm{t}=\text { 'lézer' }}(\mathrm{Ny})\right)=\prod_{\mathrm{m}}\left(\sigma_{\mathrm{t}=\text { 'lézer' }} \sigma_{\mathrm{sz}=\text { í }^{\prime}}(\mathrm{Ny})\right)$

(e.)

e) Find those manufacturers that sell Laptops, but not PC's (ha laptop gyártó több pc-t gyárt, akkor az eredménytábla csökken, nem monoton müvelet: R - S)

$$
\Pi_{\mathrm{gy}}(\mathrm{~T} \bowtie \mathrm{~L})-\Pi_{\mathrm{gy}}(\mathrm{~T} \bowtie \mathrm{PC})
$$

(f.)

! f) Find those hard-disk sizes that occur in two or more PC's. (táblát önmagával szorozzuk)
-- segédváltozót vezetek be, legyen $\mathrm{PC}_{1}:=\mathrm{PC}$
$\Pi_{\mathrm{PC} . \mathrm{ml}}\left(\sigma_{\mathrm{PC}_{1 . \mathrm{m} \neq \mathrm{PC} . \mathrm{m}} \wedge \mathrm{PC}_{1 . \mathrm{ml}}=\mathrm{PC} . \mathrm{ml}}\left(\mathrm{PC}_{1} \times \mathrm{PC}\right)\right)$
! g) Find those pairs of PC models that have both the same cpu speed and RAM, the size of memory. A pair should be listed only once, e.g., list (I, j) but not (j,i)

- !! h) Find those manufacturers of at least two different computers (PC's or laptops) with speeds of at least 2.80 GHz.
-- segédváltozó: Gyors $:=\Pi_{\mathrm{m}}\left(\sigma_{\mathrm{s} \geq 2.8}(\mathrm{PC})\right) \cup \Pi_{\mathrm{m}}\left(\sigma_{\mathrm{s} \geq 2.8}(\mathrm{~L})\right)$
-- és ezzel legyen: $\mathrm{T}_{1}:=\mathrm{T} \bowtie$ Gyors és $\mathrm{T}_{2}:=\mathrm{T} \bowtie$ Gyors
$\Pi_{\mathrm{T}_{1} . \mathrm{gy}}\left(\sigma_{\mathrm{T}_{1} . \mathrm{gy}=\mathrm{T} 2 . \mathrm{gy} \wedge \mathrm{T}_{1} . \mathrm{m} \neq \mathrm{T}_{2} . \mathrm{m}}\left(\mathrm{T}_{1} \times \mathrm{T}_{2}\right)\right)$
- !!i) Find the manufacturers of the computer (PC or laptop) with the highest available speed.

Kiválasztjuk azokat a PC-ket, amelyiknél van gyorsabb, ha ezt kivonjuk a PC-ékből megkapjuk a leggyorsabbat:
EnnélVanNagyobb $=\Pi_{\mathrm{PC} . \mathrm{m}}\left(\sigma_{\mathrm{PC} . \mathrm{s}<\mathrm{PC}}^{1 . \mathrm{s}}\right.$ ($\left.\left.\mathrm{PC} \times \mathrm{PC} 1\right)\right)$
Leggyorsabb: $\Pi_{m}(P C)$ - EnnélVanNagyobb
Ehhez rajzoljuk fel a kiértékelő fát is: (folyt.: PC helyett

MAX with relational algebra

- $R(A, B)$. Feladat: Adjuk meg MAX(A) értékét! (Ez majd átvezet az új témára, aggregáló függvényekre, illetve csoportosításra).
- $\pi_{A}(R)-\pi_{R 1 . A}\left(\sigma_{R 1 . A<R . A}\left(\rho_{R 1}(R) \times R\right)\right)$
- tree:

From relational algebra to SQL

- Kiértékelő fa szerinti átírás SQL-be:
(SELECT A FROM R) EXCEPT
(SELECT R1.AAS A
FROM R R1, R R2
WHERE R1.A<R2.A);
- Nézzük meg korrelált (függö) alkérdéssel is:

SELECT A FROM R MAXA WHERE NOT EXISTS
(SELECT A FROM R WHERE A > MAXA.A);

Példák rel.algebrai kif. átírása (j.)

!! j) Find the manufacturers of PC's with at least three different cpu speeds.
mint a legalább kettő, csak ott $2 x$, itt $3 x$ kell a táblát önmagával szorozni. Legyenek $\mathbf{S}, \mathbf{S}_{1}, \mathbf{S}_{2}:=\mathrm{T} \bowtie \Pi_{\mathrm{m}, \mathrm{s}}(\mathrm{PC})$

!! k) Find the manufacturers who sell exactly three different models of PC. legalább 3-ból - legalább 4-t kivonni

