
Databases 1

Queries in SQL: SELECT

SQL

� SQL: Structured Query Language

� SQL is a very-high-level language, the main parts:

DDL data-definition language (create, drop, alter)

DML data-manipulation language (insert, delete,

update and select). Queries: SELECT statement

� What makes SQL viable is that its queries are

“optimized” quite well, yielding efficient query

executions.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 2

Basic statement

� The principal form of a query is:

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of the tables

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 3

Our Running Example

� All our SQL queries will be based on the
following database schema.

� Underline indicates key attributes.

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 4

Example

� Using Beers(name, manf), what beers are made

by Anheuser-Busch?

SELECT name

FROM Beers

WHERE manf = ‘Anheuser-Busch’;

� Relational algebraic expression:

())(Busch’-‘Anheuser manf Beers
name =σπ

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 5

Result of Query

The answer is a relation with a single attribute,

name, and tuples with the name of each beer

by Anheuser-Busch, such as Bud.

name

Bud

Bud Lite

Michelob

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 6

Meaning of Single-Relation Query

� Begin with the relation in the FROM clause.

� Apply the selection indicated by the WHERE

clause.

� Apply the extended projection indicated by the

SELECT clause.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 7

Operational Semantics

Check if

Anheuser-Busch

name manf

Bud Anheuser-Busch Include t.name

in the result, if so

Tuple-variable t

loops over all

tuples

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 8

Operational Semantics --- General

� Think of a tuple variable visiting each tuple of

the relation mentioned in FROM.

� Check if the “current” tuple satisfies the

WHERE clause.

� If so, compute the attributes or expressions of

the SELECT clause using the components of

this tuple.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 9

(star) * in SELECT clauses

� When there is one relation in the FROM clause,

* in the SELECT clause stands for “all attributes

of this relation.”

� Example using Beers(name, manf):

SELECT *

FROM Beers

WHERE manf = ‘Anheuser-Busch’;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 10

Result of Query:

Now, the result has each of the attributes

of Beers.

name manf

Bud Anheuser-Busch

Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 11

Expressions in SELECT Clauses

� Any expression that makes sense can appear as

an element of a SELECT clause.

� If you want the result to have different attribute

names, use “AS <new name>” to rename an

attribute.

� Example: from Sells(bar, beer, price):

SELECT bar, beer, price * 120 AS priceInYen

FROM Sells;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 12

Result of Query

Bar Beer PriceinYen

Joe’s Bud 300

Joe’s Miller 330

Sue’s Bud 300

Sue’s Miller 360

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 13

Complex Conditions in WHERE Clause

� From Sells(bar, beer, price), find the price

Joe’s Bar charges for Bud:

SELECT price

FROM Sells

WHERE bar = ‘Joe’’s Bar’

AND beer = ‘Bud’;

� Result of the Query:

price

2.50

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 14

Important Points

� Two single quotes inside a string represent the

single-quote (apostrophe).

� Conditions in the WHERE clause can use

AND, OR, NOT, and parentheses in the usual

way boolean conditions are built.

� SQL is case-insensitive. In general, upper and

lower case characters are the same, except

inside quoted strings.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 15

Patterns

� WHERE clauses can have conditions in which

a string is compared with a pattern, to see if it

matches.

� General form:

� <Attribute> LIKE <pattern>

� <Attribute> NOT LIKE <pattern>

� Pattern is a quoted string

� with % = “any string”

� with _ = “any character.”

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 16

Example

� From Drinkers(name, addr, phone) find the

drinkers with exchange 555:

SELECT name

FROM Drinkers

WHERE phone LIKE ‘%555-_ _ _ _’;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 17

NULL Values

� Tuples in SQL relations can have NULL as a

value for one or more components.

� Meaning depends on context. Two common

cases:

� Missing value : e.g., we know Joe’s Bar has

some address, but we don’t know what it is.

� Inapplicable : e.g., the value of attribute

spouse for an unmarried person.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 18

Comparing NULL’s to Values

� The logic of conditions in SQL is really 3-valued

logic: TRUE, FALSE, UNKNOWN.

� When any value is compared with NULL, the

truth value is UNKNOWN.

� But a query only produces a tuple in the answer

if its truth value for the WHERE clause is TRUE

(not FALSE or UNKNOWN).

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 19

Three-Valued Logic

� To understand how AND, OR, and NOT work in

3-valued logic, think of TRUE = 1, FALSE = 0,

and UNKNOWN = ½.

� AND = MIN; OR = MAX, NOT(x) = 1-x.

� Example:

TRUE AND (FALSE OR NOT(UNKNOWN)) =

MIN(1, MAX(0, (1 - ½))) =

MIN(1, MAX(0, ½)) = MIN(1, ½) = ½.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 20

Surprising Example

� From the following Sells relation:

bar beer price

Joe’s Bar Bud NULL

SELECT bar

FROM Sells

WHERE price < 2.00 OR price >= 2.00;

UNKNOWN UNKNOWN

UNKNOWN

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 21

Multirelation Queries

� Interesting queries often combine data from

more than one relation.

� We can address several relations in one query

by listing them all in the FROM clause.

� Distinguish attributes of the same name by

“<relation>.<attribute>”

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 22

Example

� Using relations Likes(drinker, beer) and

Frequents(drinker, bar), find the beers liked by at

least one person who frequents Joe’s Bar.

SELECT beer

FROM Likes, Frequents

WHERE bar = ‘Joe’’s Bar’ AND

Frequents.drinker = Likes.drinker;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 23

Formal Semantics

� Almost the same as for single-relation queries:

1. Start with the product of all the relations in

the FROM clause.

2. Apply the selection condition from the

WHERE clause.

3. Project onto the list of attributes and

expressions in the SELECT clause.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 24

Operational Semantics

� Imagine one tuple-variable for each relation in

the FROM clause.

� These tuple-variables visit each combination of

tuples, one from each relation.

� If the tuple-variables are pointing to tuples that

satisfy the WHERE clause, send these tuples to

the SELECT clause.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 25

Example

drinker bar

Sally Joe’s

drinker beer

Sally Bud

check these

are equal

check for

Joe’s output

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 26

Explicit Tuple-Variables

� Sometimes, a query needs to use two copies

of the same relation.

� Distinguish copies by following the relation

name by the name of a tuple-variable, in the

FROM clause.

� It’s always an option to rename relations this

way, even when not essential.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 27

Example: Self-Join

� From Beers(name, manf), find all pairs of beers
by the same manufacturer.

Do not produce pairs like (Bud, Bud).

Produce pairs in alphabetic order, e.g. (Bud, Miller),
not (Miller, Bud).

SELECT b1.name, b2.name

FROM Beers b1, Beers b2

WHERE b1.manf = b2.manf

AND b1.name < b2.name;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 28

Union, Intersection, and Difference

� Union, intersection, and difference of relations

are expressed by the following forms, each

involving subqueries:

� (subquery) UNION (subquery)

� (subquery) INTERSECT (subquery)

� (subquery) [EXCEPT | MINUS](subquery)

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 29

Example

� From relations Likes(drinker, beer), Sells(bar,

beer, price) and Frequents(drinker, bar), find

the drinkers and beers such that:

1. The drinker likes the beer, and

2. The drinker frequents at least one bar that

sells the beer.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 30

The drinker frequents

a bar that sells the

beer.

Notice trick:

subquery is

really a stored

table.

Solution

(SELECT * FROM Likes)

INTERSECT

(SELECT drinker, beer

FROM Sells, Frequents

WHERE Frequents.bar = Sells.bar

);

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 31

Bag (multiset) Semantics

� Although the SELECT-FROM-WHERE statement

uses bag semantics, the default for union,

intersection, and difference is set semantics.

� That is, duplicates are eliminated as the

operation is applied.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 32

Motivation: Efficiency

� When doing projection in relational algebra, it
is easier to avoid eliminating duplicates.

� Just work tuple-at-a-time.

� When doing intersection or difference, it is
most efficient to sort the relations first.

� At that point you may as well eliminate the
duplicates anyway.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 33

Controlling Duplicate Elimination

� Force the result to be a set by

SELECT DISTINCT . . .

� Force the result to be a bag (i.e., don’t

eliminate duplicates) by ALL, as in .

. . UNION ALL . . .

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 34

Example: DISTINCT

� From Sells(bar, beer, price), find all the different

prices charged for beers:

SELECT DISTINCT price

FROM Sells;

� Notice that without DISTINCT, each price would

be listed as many times as there were bar/beer

pairs at that price.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 35

Example: ALL

� Using relations Frequents(drinker, bar) and

Likes(drinker, beer):

(SELECT drinker FROM Frequents)

EXCEPT ALL

(SELECT drinker FROM Likes);

� Lists drinkers who frequent more bars than

they like beers, and does so as many times as

the difference of those counts.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 36

Join Expressions

� SQL provides a number of expression forms that

act like varieties of join in relational algebra.

� But using bag semantics, not set semantics.

� These expressions can be stand-alone queries

or used in place of relations in a FROM clause.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 37

Products and Natural Joins

� Natural join:

R NATURAL JOIN S;

� Product:

R CROSS JOIN S;

� Example:

Likes NATURAL JOIN Sells;

� Relations can be parenthesized subqueries, as

well.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 38

Theta Join

� R JOIN S ON <condition>

� Example: using Drinkers(name, addr) and

Frequents(drinker, bar):

Drinkers JOIN Frequents ON

name = drinker;

gives us all (d, a, d, b) quadruples such that

drinker d lives at address a and frequents bar b.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 39

Subqueries

� A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a value in
a number of places, including FROM and
WHERE clauses.

� Example: in place of a relation in the FROM
clause, we can place another query, and then
query its result.

� Better use a tuple-variable to name tuples of
the result.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 40

Subqueries That Return One Tuple

� If a subquery is guaranteed to produce one

tuple, then the subquery can be used as a

value.

� Usually, the tuple has one component.

� Also typically, a single tuple is guaranteed

by keyness of attributes.

� A run-time error occurs if there is no tuple or

more than one tuple.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 41

Example: Single-Tuple Subquery

� From Sells(bar, beer, price), find the bars that

serve Miller for the same price Joe charges

for Bud.

� Two queries would surely work:

1. Find the price Joe charges for Bud.

2. Find the bars that serve Miller at that price.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 42

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE beer = ‘Miller’ AND

price = (SELECT price

FROM Sells

WHERE bar = ‘Joe’’s Bar’

AND beer = ‘Bud’);

The price at
which Joe
sells Bud

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 43

The IN Operator

� <tuple> IN <relation> is true if and only if the
tuple is a member of the relation.

� <tuple> NOT IN <relation> means the opposite.

� IN-expressions can appear in WHERE clauses.

� The <relation> is often a subquery.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 44

Example: IN

� From Beers(name, manf) and Likes(drinker,

beer), find the name and manufacturer of each

beer that Fred likes.

SELECT *

FROM Beers

WHERE name IN (SELECT beer

FROM Likes

WHERE drinker = ‘Fred’);

The set of
beers Fred
likes

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 45

The Exists Operator

� EXISTS(<relation>) is true if and only if the

<relation> is not empty.

� Being a boolean-valued operator, EXISTS can

appear in WHERE clauses.

� Example: From Beers(name, manf), find those

beers that are the unique beer by their

manufacturer.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 46

Example Query with EXISTS

SELECT name

FROM Beers b1

WHERE NOT EXISTS(

SELECT *

FROM Beers

WHERE manf = b1.manf AND

name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.

Notice the
SQL “not
equals”
operator

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 47

The Operator ANY

� x = ANY(<relation>) is a boolean condition

meaning that x equals at least one tuple in the

relation.

� Similarly, = can be replaced by any of the

comparison operators.

� Example: x >= ANY(<relation>) means x is not

smaller than all tuples in the relation.

� Note tuples must have one component only.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 48

The Operator ALL

� Similarly, x <> ALL(<relation>) is true if and
only if for every tuple t in the relation, x is not
equal to t.

� That is, x is not a member of the relation.

� The <> can be replaced by any comparison
operator.

� Example: x >= ALL(<relation>) means there
is no tuple larger than x in the relation.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 49

Example: ALL

� From Sells(bar, beer, price), find the beer(s) sold

for the highest price.

SELECT beer

FROM Sells

WHERE price >= ALL(

SELECT price

FROM Sells);

price from the outer
Sells must not be
less than any price.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 50

Aggregation Operators

� Aggregation operators are not operators of

relational algebra.

� Rather, they apply to entire columns of a table

and produce a single result.

� The most important examples: SUM, AVG,

COUNT, MIN, and MAX.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 51

Aggregations

� SUM, AVG, COUNT, MIN, and MAX can be

applied to a column in a SELECT clause to

produce that aggregation on the column.

� Also, COUNT(*) counts the number of tuples.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 52

Example: Aggregation

� From Sells(bar, beer, price), find the average

price of Bud:

SELECT AVG(price)

FROM Sells

WHERE beer = ‘Bud’;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 53

Eliminating Duplicates in an

Aggregation

� DISTINCT inside an aggregation causes

duplicates to be eliminated before the

aggregation.

� Example: find the number of different prices

charged for Bud:

SELECT COUNT(DISTINCT price)

FROM Sells

WHERE beer = ‘Bud’;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 54

NULL’s Ignored in Aggregation

� NULL never contributes to a sum, average, or

count, and can never be the minimum or

maximum of a column.

� But if there are no non-NULL values in a column,

then the result of the aggregation is NULL.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 55

Example: Effect of NULL’s

SELECT count(*)

FROM Sells

WHERE beer = ‘Bud’;

SELECT count(price)

FROM Sells

WHERE beer = ‘Bud’;

The number of bars
that sell Bud.

The number of bars
that sell Bud at a
known price.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 56

Grouping

� We may follow a SELECT-FROM-WHERE

expression by GROUP BY and a list of attributes.

� The relation that results from the SELECT-

FROM-WHERE is grouped according to the

values of all those attributes, and any

aggregation is applied only within each group.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 57

Example: Grouping

� From Sells(bar, beer, price), find the average

price for each beer:

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer;

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 58

Example: Grouping

� From Sells(bar, beer, price) and

Frequents(drinker, bar), find for each drinker

the average price of Bud at the bars they

frequent:

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = ‘Bud’ AND

Frequents.bar = Sells.bar

GROUP BY drinker;

Compute
drinker-bar-
price of Bud
tuples first,
then group
by drinker.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 59

Restriction on SELECT Lists With

Aggregation

� If any aggregation is used, then each element

of the SELECT list must be either:

1. Aggregated, or

2. An attribute on the GROUP BY list.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 60

Illegal Query Example

� You might think you could find the bar that

sells Bud the cheapest by:

SELECT bar, MIN(price)

FROM Sells

WHERE beer = ‘Bud’;

� But this query is illegal in SQL.

� Why? Note bar is neither aggregated nor on the

GROUP BY list.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 61

HAVING Clauses

� HAVING <condition> may follow a GROUP BY

clause.

� If so, the condition applies to each group, and

groups not satisfying the condition are

eliminated.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 62

Requirements on HAVING Conditions

� These conditions may refer to any relation or

tuple-variable in the FROM clause.

� They may refer to attributes of those relations,

as long as the attribute makes sense within a

group; i.e., it is either:

1. A grouping attribute, or

2. Aggregated.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 63

Example: HAVING

� From Sells(bar, beer, price) and Beers(name,

manf), find the average price of those beers that

are either served in at least three bars or are

manufactured by Pete’s.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 64

Solution

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer

HAVING COUNT(bar) >= 3 OR

beer IN (SELECT name

FROM Beers

WHERE manf = ‘Pete’’s’);

Beers manu-
factured by
Pete’s.

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Pete’s.

DB1Lect_02_SQL_select (Hajas, ELTE) --- based on Ullman‘s book and slides 65

