Databases 1

Extended Relational Algebra

Relational Algebra

- What is an "Algebra"?
- Mathematical system consisting of:
- Operands --- variables or values from which new values can be constructed.
- Operators --- symbols denoting procedures that construct new values from given values.

Core Relational Algebra

- Union, intersection, and difference.
- Usual set operations, but require both operands have the same relation schema.
- Selection: picking certain rows.
- Projection: picking certain columns.
- Products and joins: compositions of relations.
- Renaming of relations and attributes.

Relational Algebra on Bags

- A bag is like a set, but an element may appear more than once.
- Multiset is another name for "bag."
- Example: $\{1,2,1,3\}$ is a bag. $\{1,2,3\}$ is also a bag that happens to be a set.
- Bags also resemble lists, but order in a bag is unimportant.
- Example: $\{1,2,1\}=\{1,1,2\}$ as bags, but [1,2,1] != [1,1,2] as lists.

Why Bags?

- SQL, the most important query language for relational databases is actually a bag language. - SQL will eliminate duplicates, but usually only if you ask it to do so explicitly.
- Some operations, like projection, are much more efficient on bags than sets.

Operations on Bags

- Selection applies to each tuple, so its effect on bags is like its effect on sets.
- Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

Example: Bag Selection

	R
A	B
1	2
5	6
1	2

S	
B	C
3	4
7	8

$\operatorname{SELECT}_{A+B<5}(\mathrm{R})=\quad$| A | B |
| :---: | :---: |
| 1 | 2 |
| 1 | 2 |

Example: Bag Projection

R	
A	B
1	2
5	6
1	2

S	
B	C
3	4
7	8

[^0]
Example: Bag Product

$R * S=\quad$| A | R.B | S.B | C |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 7 | 8 |
| 5 | 6 | 3 | 4 |
| 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 7 | 8 |

Example: Bag Theta-Join

R	
A	B
1	2
5	6
1	2

S	
B	C
3	4
7	8

R JOIN $_{\text {R.B<S.B }} S=$

A	R.B	S.B	C
1	2	3	4
1	2	7	8
5	6	7	8
1	2	3	4
1	2	7	8

Bag Union

- Union, intersection, and difference need new definitions for bags.
- An element appears in the union of two bags the sum of the number of times it appears in each bag.
- Example: $\{1,2,1\}$ UNION $\{1,1,2,3,1\}=$ \{1,1,1,1,1,2,2,3\}

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- Example: $\{1,1,2,1\}$ INTER $\{1,1,2,3\}=\{1,1,2\}$.

Bag Difference

- An element appears in the difference $A-B$ of bags as many times as it appears in A, minus the number of times it appears in B.
- But never less than 0 times.
- Example: $\{1,2,1\}-\{1,2,3\}=\{1\}$.

Beware: Bag Laws $<>$ Set Laws

- Not all algebraic laws that hold for sets also hold for bags.
- For one example, the commutative law for union (R UNION $S=S$ UNION R) does hold for bags.
- Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

An Example of Inequivalence

- Set union is idempotent, meaning that S UNION $S=S$.
- However, for bags, if x appears n times in S, then it appears $2 n$ times in S UNION S.
- Thus S UNION S <> S in general.

The Extended Algebra

1. DELTA = eliminate duplicates from bags.
2. TAU = sort tuples.
3. Extended projection : arithmetic, duplication of columns.
4. GAMMA = grouping and aggregation.
5. OUTERJOIN: avoids "dangling tuples" = tuples that do not join with anything.

Duplicate Elimination

- R1 := DELTA(R2).
- R1 consists of one copy of each tuple that appears in R2 one or more times.

Example: Duplicate Elimination

Sorting

- R1 := TAU ${ }_{L}(\mathrm{R} 2)$.
- L is a list of some of the attributes of R2.
- R1 is the list of tuples of R2 sorted first on the value of the first attribute on L, then on the second attribute of L, and so on.
- Break ties arbitrarily.
- TAU is the only operator whose result is neither a set nor a bag.
- ORDER BY in SQL

Example: Sorting

$$
\begin{aligned}
& \mathrm{R}=\begin{array}{|l|r|}
\hline \mathrm{A} & \mathrm{~B} \\
\hline 1 & 2 \\
3 & 4 \\
5 & 2 \\
\hline \operatorname{TAU}_{B}(\mathrm{R})= & {[(5,2),(1,2),(3,4)]}
\end{array}
\end{aligned}
$$

Extended Projection

- Using the same PROJ_{L} operator, we allow the list L to contain arbitrary expressions involving attributes, for example:

1. Arithmetic on attributes, e.g., $A+B$.
2. Duplicate occurrences of the same attribute.

Example: Extended Projection

$R=$| A | B |
| :--- | :--- |
| 1 | 2 |
| 3 | 4 |

$\mathrm{PROJ}_{A+B, A, A}(\mathrm{R})=\quad$| $\mathrm{A}+\mathrm{B}$ | A 1 | A 2 |
| :--- | :--- | :--- |
| 3 | 1 | 1 |
| 7 | 3 | 3 |

Aggregation Operators

- Aggregation operators are not operators of relational algebra.
- Rather, they apply to entire columns of a table and produce a single result.
- The most important examples: SUM, AVG, COUNT, MIN, and MAX.

Example: Aggregation

$$
R=\begin{array}{|l|r|}
\hline A & B \\
\hline 1 & 3 \\
3 & 4 \\
3 & 2 \\
\hline
\end{array}
$$

Grouping Operator

- $R 1$:= GAMMA $_{L}(R 2) . L$ is a list of elements that are either:

1. Individual (grouping) attributes.
2. $A G G(A)$, where $A G G$ is one of the aggregation operators and A is an attribute.

Applying GAMMA $L_{L}(\mathrm{R})$

- Group R according to all the grouping attributes on list L.
- That is, form one group for each distinct list of values for those attributes in R.
- Within each group, compute AGG(A) for each aggregation on list L.
- Result has grouping attributes and aggregations as attributes. One tuple for each list of values for the grouping attributes and their group's aggregations.

Example: Grouping/Aggregation

$R=$| A | B | C |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 1 | 2 | 5 |

$\operatorname{GAMMA}_{A, B, \operatorname{AVG}(\Omega)}(\mathrm{R})=$??

First, group R :

A	B	C
1	2	3
1	2	5
4	5	6

Then, average C within groups:

A	B	AVG(C)
1	2	4
4	5	6

Outerjoin

- Suppose we join R JOIN $_{C} S$.
- A tuple of R that has no tuple of S with which it joins is said to be dangling.
- Similarly for a tuple of S.
- Outerjoin preserves dangling tuples by padding them with a special NULL symbol in the result.

Example: Outerjoin

$(1,2)$ joins with $(2,3)$, but the other two tuples are dangling.

R OUTERJOIN $S=$

A	B	C
1	2	3
4	5	NULL
NULL	6	7

[^0]: PROJECT $_{A}(\mathrm{R})=$

 | A |
 | :--- |
 | 1 |
 | |
 | 1 |

