
Databases 1

Logical Query Language: Datalog

2

Datalog: Logic As a Query Language

 Abstract Query Languages:

 Relational Algebra (procedural  optimization)

 Logical QL: Datalog, Rel.Calculus (declarative)

 Datalog = ‘Data’- Database, ‘log’- logic,Prolog

 If-then logical rules have been used in many

systems.

 Nonrecursive rules are equivalent to the core

relational algebra.

 Recursive rules extend relational algebra and

appear in SQL-99.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

Intuitive introduction

 Example 1: Ancestors

 ParentOf(parent,child)

 Find all of Mary’s ancestors

 Example 2: Company hierarchy

 Employee(ID,salary)

 Manager(mID,eID)

 Project(name,mgrID)

 Find total salary cost of project ‘X’

 Example 3: Airline flights

 Flight(orig,dest,airline,cost)

 Find cheapest way to fly from ‘A’ to ‘B’

3 DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

4

A Logical Rule

 Our first example of a rule uses the relations

 Frequents(drinker, bar),

 Likes(drinker, beer),

 Sells(bar, beer, price).

 The rule is a query asking for “happy” drinkers

--- those that frequent a bar that serves a beer

that they like.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

5

Anatomy of a Rule

Happy(d) ← Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

Body = antecedent =

AND of subgoals.

Head = consequent,

a single subgoal

Read this

symbol “if”

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

6

Subgoals Are Atoms

 An atom is a predicate, or relation name with

variables or constants as arguments.

 The head is an atom; the body is the AND of one

or more atoms.

 Convention: Predicates begin with a capital,

variables begin with lower-case.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

7

Example: Atom

 (1) Sells(bar, beer, p)

 (2) Fruits(x, x, y, 5, ‘apple’)

The predicate

= name of a

relation

Arguments are

variables (or constants).

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

8

Interpreting Rules

 A variable appearing in the head is

distinguished ; otherwise it is nondistinguished.

 Rule meaning: The head is true for given values

of the distinguished variables if there exist

values of the nondistinguished variables that

make all subgoals of the body true.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

9

Example: Interpretation

Happy(d) ← Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

Distinguished

variable

Nondistinguished

variables

Interpretation: drinker d is happy if there exist a

bar, a beer, and a price p such that d frequents

the bar, likes the beer, and the bar sells the beer

at price p.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

10

Applying a Rule --- (1)

 Approach 1: consider all combinations of values

of the variables.

 If all subgoals are true, then evaluate the head.

 The resulting head is a tuple in the result.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

11

Example: Rule Evaluation

Happy(d) ← Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

FOR (each d, bar, beer, p)

 IF (Frequents(d,bar), Likes(d,beer), and

Sells(bar,beer,p) are all true)

 add Happy(d) to the result

 Note: set semantics so add only once.

 Set semantics vice versa bag semantics

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

12

Applying a Rule --- (2)

 Approach 2: For each subgoal, consider all
tuples that make the subgoal true.

 If a selection of tuples define a single value for
each variable, then add the head to the result.

 Happy(d) ← Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

 FOR (each f in Frequents, i in Likes,
 and s in Sells)

 IF (f[1]=i[1] and f[2]=s[1] and i[2]=s[2])

 add Happy(f[1]) to the result

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

13

A Glitch (Fixed Later)

 Relations are finite sets.

 We want rule evaluations to be finite and lead to

finite results.

 “Unsafe” rules like P(x) ← Q(y) have infinite

results, even if Q is finite.

 Even P(x) ← Q(x) requires examining an infinity

of x-values.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

14

Arithmetic Subgoals

 In addition to relations as predicates, a predicate

for a subgoal of the body can be an arithmetic

comparison.

 We write arithmetic subgoals in the usual way,

e.g., x < y.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

15

Example: Arithmetic

 A beer is “cheap” if there are at least two bars

that sell it for under $2.

 Cheap(beer) ← Sells(bar1,beer,p1) AND

 Sells(bar2,beer,p2) AND p1 < 2.00

 AND p2 < 2.00 AND bar1 <> bar2

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

16

Negated Subgoals

 NOT in front of a subgoal negates its
meaning.

 Example: Think of Arc(a,b) as arcs in a graph.

 S(x,y) says the graph is not transitive from x
to y ; i.e., there is a path of length 2 from x
to y, but no arc from x to y.

 S(x,y) ← Arc(x,z) AND Arc(z,y)

 AND NOT Arc(x,y)

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

17

Safe Rules

 A rule is safe if:

1. Each distinguished variable,

2. Each variable in an arithmetic subgoal, and

3. Each variable in a negated subgoal,

 also appears in a nonnegated,

 relational subgoal.

 Safe rules prevent infinite results.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

18

Example: Unsafe Rules

 Each of the following is unsafe and not

allowed:

1. S(x) ← R(y)

2. S(x) ← R(y) AND x < y

3. S(x) ← R(y) AND NOT R(x)

 In each case, an infinity of x ’s can satisfy

the rule, even if R is a finite relation.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

19

An Advantage of Safe Rules

 We can use “approach 2” to evaluation, where

we select tuples from only the nonnegated,

relational subgoals.

 The head, negated relational subgoals, and

arithmetic subgoals thus have all their variables

defined and can be evaluated.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

20

Datalog Programs

 Datalog program = collection of rules.

 In a program, predicates can be either

1. EDB = Extensional Database = stored

table.

2. IDB = Intensional Database = relation

defined by rules.

 Never both! No EDB in heads.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

21

Evaluating Datalog Programs

 As long as there is no recursion, we can pick

an order to evaluate the IDB predicates, so

that all the predicates in the body of its rules

have already been evaluated.

 If an IDB predicate has more than one rule,

each rule contributes tuples to its relation.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

22

Example: Datalog Program

 Using EDB Sells(bar, beer, price) and

Beers(name, manf), find the manufacturers of

beers Joe doesn’t sell.

 JoeSells(b) ← Sells(’Joe’’s Bar’, b, p)

 Answer(m) ← Beers(b,m)

 AND NOT JoeSells(b)

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

23

Example: Evaluation

 Step 1: Examine all Sells tuples with first

component ’Joe’’s Bar’.

 Add the second component to JoeSells.

 Step 2: Examine all Beers tuples (b,m).

 If b is not in JoeSells, add m to Answer.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

24

Expressive Power of Datalog

 Without recursion, Datalog can express all

and only the queries of core relational

algebra.

 The same as SQL select-from-where,

without aggregation and grouping.

 But with recursion, Datalog can express more

than these languages.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

Expressive Power of Datalog

Adatbázisok-1 (Hajas Csilla, ELTE IK) 8-9.előadás: Datalog és Rekurzió 25

 Relational algebra: List(Cond(R ⋈ S ⋈ …)

 SQL : SELECT list

 FROM join of tables

 WHERE cond

 A Datalog rule

 Set operators:

Relációs algebra és Datalog ---1

R(x1,...,xn), S(x1,...,xn)

predikátumokhoz tartozó reláció R(A1,...,An), S(A1,...,An)

 RS metszetnek megfelelő szabály:

 Q(x1,...,xn)R(x1,...,xn) AND S(x1,...,xn)

 Who likes apple and pear?

 Q(N) ← Likes(N,’apple’) AND Likes(N,’pear’)

Adatbázisok-1 (Hajas Csilla, ELTE IK) 8-9.előadás: Datalog és Rekurzió 26

Relációs algebra és Datalog ---1

 RS Datalog Rule :

 Q(x1,...,xn)R(x1,...,xn) AND S(x1,...,xn)

 R-S Datalog Rule :

 Q(x1,...,xn)R(x1,...,xn) AND NOT S(x1,...,xn)

 RS Datalog Program :

 Q(x1,...,xn)R(x1,...,xn)

 Q(x1,...,xn)S(x1,...,xn)

Adatbázisok-1 (Hajas Csilla, ELTE IK) 8-9.előadás: Datalog és Rekurzió 27

Relációs algebra és Datalog ---2
Kiválasztás:

 xi xj
(R) kifejezésnek megfelelő szabály :

 Válasz(x1,...,xn)R(x1,...,xn) AND xixj

 xi  c
(E1) kifejezésnek megfelelő szabály:

Válasz(x1,...,xn)R(x1,...,xn) AND xic

Vetítés:

 Ai1,...,Aik
(R) kifejezésnek megfelelő szabály:

 Válasz(xi1
,...,xik

)R(x1,...,xn)

Megjegyzés: név nélküli anonymus változók, amelyek
csak egyszer szerepelnek és mindegy a nevük azt
aláhúzás helyettesítheti. Például:

HosszúFilm(c,é) ← Film(c,é,h,_,_,_) AND h ≥ 100

Adatbázisok-1 (Hajas Csilla, ELTE IK) 8-9.előadás: Datalog és Rekurzió 28

Relációs algebra és Datalog ---3

Természetes összekapcsolás: Tegyük fel, hogy
R(A1,...,An, C1, …, Ck) és S(B1,...,Bm, C1, …, Ck)

 R ⋈ S kifejezésnek megfelelő szabály:

 Válasz(x1,...,xn,y1,...,ym, z1,…, zk) 

  R(x1,...,xn, z1, …, zk) AND S(y1,...,ym, z1, …, zk)

 Who likes apple and pear?

 Q(N) ← Likes(N,’apple’) AND Likes(N,’pear’)

Adatbázisok-1 (Hajas Csilla, ELTE IK) 8-9.előadás: Datalog és Rekurzió 29

Databases 1

Recursion

Intuitive introduction

 Example 1: Ancestors

 ParentOf(parent,child)

 Find all of Mary’s ancestors

 Example 2: Company hierarchy

 Employee(ID,salary)

 Manager(mID,eID)

 Project(name,mgrID)

 Find total salary cost of project ‘X’

 Example 3: Airline flights

 Flight(orig,dest,airline,cost)

 Find cheapest way to fly from ‘A’ to ‘B’

31 DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

32

Another Recursive Example

 EDB: Par(c,p) = p is a parent of c.

 Generalized cousins: people with common

ancestors one or more generations back:

Sib(x,y) ← Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) ← Sib(x,y)

Cousin(x,y) ← Par(x,xp) AND Par(y,yp)

 AND Cousin(xp,yp)

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

33

Definition of Recursion

 Form a dependency graph whose

 Nodes = IDB predicates.

 Arc X ->Y if and only if there is a rule with X in

the head and Y in the body.

 Cycle = recursion; no cycle = no recursion.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

34

Example: Dependency Graphs

Cousin

Sib

Answer

JoeSells

Recursive Nonrecursive

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

35

Evaluating Recursive Rules

 The following works when there is no negation:

1. Start by assuming all IDB relations are empty.

2. Repeatedly evaluate the rules using the EDB

and the previous IDB, to get a new IDB.

3. End when no change to IDB.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

36

The “Naïve” Evaluation Algorithm

Start:

IDB = 0

Apply rules

to IDB, EDB

Change

to IDB?

no

yes

done

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

37

SQL-99 Recursion

 Datalog recursion has inspired the addition of

recursion to the SQL-99 standard.

 Tricky, because SQL allows negation grouping-

and-aggregation, which interact with recursion

in strange ways.

 Define only the “monotone” recursions.

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

38

Form of SQL Recursive Queries

WITH

 <stuff that looks like Datalog rules>

<a SQL query about EDB, IDB>

“Datalog rule” =

 [RECURSIVE] <name>(<arguments>)

 AS <query>

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

39

Example: SQL Recursion ---(1)

 Find Sally’s cousins, using SQL like the recursive

Datalog example.

 Par(child,parent) is the EDB.

 WITH

 Sib(x,y) AS

 SELECT p1.child, p2.child

 FROM Par p1, Par p2

 WHERE p1.parent = p2.parent AND

 p1.child <> p2.child;

Like Sib(x,y) ←

 Par(x,p) AND

 Par(y,p) AND

 x <> y

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

40

Example: SQL Recursion --- (2)

RECURSIVE Cousin(x,y) AS

 (SELECT * FROM Sib)

 UNION

 (SELECT p1.child, p2.child

 FROM Par p1, Par p2, Cousin

 WHERE p1.parent = Cousin.x AND

 p2.parent = Cousin.y);

Reflects Cousin(x,y) ←

 Sib(x,y)

Reflects

Cousin(x,y) ←

Par(x,xp) AND

Par(y,yp) AND

Cousin(xp,yp)

Required – Cousin is recursive

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

41

Example: SQL Recursion --- (3)

 With those definitions, we can add the query,

which is about the virtual view Cousin(x,y):

 SELECT y

 FROM Cousin

 WHERE x = ’Sally’;

DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

Book example (Chapter 10.2 Recursion)

 Flights(airline, fromcity, tocity, departs, arrives)

 For what pairs of cities(x, y) is it possible to get

from city x to city y by taking one or more flights?

 Reaches(x, y) <- Flights (_, x, y, _, _, _)

Reaches (x, y) <- Reaches (x, z) AND Flights (_, z, y, _, _)

 WITH RECURSIVE Reaches AS

 (SELECT fromcity, tocity FROM Flights

 UNION

 (SELECT Reaches. fromcity, Flights.tocity

 FROM Reaches, Flights

 WHERE Reaches.tocity = Flights.fromcity)

 SELECT * FROM Reaches;

42 DB1Lect_05_Datalog (Hajas, ELTE) --- based on Ullman's book and slides

