Databases 1

Detining Tables, Constraints

Users: DBA Staff Casual Lsers Application Parametric Users

DBMS N\ S
____________________________ DDL Privileged Interactive Apphication
Statements Commands Cluary Programs

#

O | Host
ery | »| Language
Compiler | Precompiler S

' 1 R

Query DML Compiled
Optimizer Compiler Transactions

P4 v

7 DBA Commands,
Queries, and Transactions

Runtime Stored
»| Database |[= > Data
Catalog/ Pmc;ee.aor Concurrency Control/ Manages
Data P ey Backup/Recovery
Drictionary Y Subsystems
Stored Database Irmput/Output
Query and Transaction from Database
Execution
} 2 Figure 2.3

Component modules of a DBMS and their interactions.

Rest of SQL

» Defining a Database Schema
» Primary Keys, Foreign Keys
» Local and Global Constraints
» Defining Views

» Triggers

» 3 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Detining a Database Schema

» A database schema comprises declarations for
the relations (“tables”) of the database.

» Many other kinds of elements may also appear in
the database schema, including views,
constraints and triggers.

» 4 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Declaring a Relation

» Simplest form is:

» CREATE TABLE <name> (<list of elements>);

CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20),
price REAL

» 5 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Elements of Table Declarations

» The principal element is a pair consisting of
an attribute and a type.

» The most common types are:
» INT or INTEGER (synonyms).
» REAL or FLOAT (synonyms).

» CHAR(n) = fixed-length string of n
characters.

» VARCHAR(n) = variable-length string of up
to n characters.

» 6 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Dates and Times

» DATE and TIME are types in SQL.
» The form of a date value is:
DATE ‘yyyy-mm-dd’

» Example: DATE '2002-09-30° for Sept. 30,
2002.

» There are functions to convert DATE types
(e.g. TODATE)

> 7 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Times as Values

» The form of a time value is:
TIME ‘hh:mm:ss’

with an optional decimal point and fractions of
a second following.

» Example: TIME '15:30:02.5" = two and a half
seconds after 3:30PM.

» 8 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Example: Create Table

CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20),
price REAL

) ;

» 9 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Example: Create Table from existing table(s)

CREATE TABLE AVG PRICES AS
(SELECT beer, AVG(price)
FROM Sells

GROUP BY beer);

» 10 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Remove a relation from schema

» Remove a relation from the database schema
by:
» DROP TABLE <name>:

» Example:
DROP TABLE Sells;

> 1 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Declaring Keys

» An attribute or list of attributes may be declared
PRIMARY KEY or UNIQUE.

» These each say the attribute(s) so declared
functionally determine all the attributes of the
relation schema.

» There are a few distinctions to be mentioned
later.

p 12 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Declaring Single-Attribute Keys

» Place PRIMARY KEY or UNIQUE after the type
In the declaration of the attribute.

» Example:
CREATE TABLE Beers (
name CHAR (20) UNIQUE,
manf CHAR (20)

p 13 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Declaring Multiattribute Keys

» A key declaration can also be another element in
the list of elements of a CREATE TABLE
statement.

» This form is essential if the key consists of more
than one attribute.

» May be used even for one-attribute keys.

p 14 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Multiattribute Key

» The bar and beer together are the key for Sells:
CREATE TABLE Sells (

bar CHAR (20),

beer VARCHAR (20),
price REAL,

PRIMARY KEY (bar, beer)

» 15 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

PRIMARY KEY Versus UNIQUE

» The SQL standard allows DBMS implementers to
make their own distinctions between PRIMARY
KEY and UNIQUE.

» Example: some DBMS might automatically
create an index (data structure to speed
search) in response to PRIMARY KEY, but not
UNIQUE.

p 16 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Required Distinctions

» However, standard SQL requires these
distinctions:

1. There can be only one PRIMARY KEY for a
relation, but several UNIQUE attributes.

2. No attribute of a PRIMARY KEY can ever be
NULL in any tuple. But attributes declared
UNIQUE may have NULL's, and there may
be several tuples with NULL.

p 17 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Other Declarations for Attributes

» Two other declarations we can make for an
attribute are:

1. NOT NULL means that the value for this
attribute may never be NULL.

2. DEFAULT <value> says that if there is no
specific value known for this attribute’s
component in some tuple, use the stated
<value>.

p 18 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Detault Values

CREATE TABLE Drinkers (
name CHAR (30) PRIMARY KEY,
addr CHAR (50)
DEFAULT ‘123 Sesame St.’,
phone CHAR(16)

) ;

» 19 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Effect of Defaults -- 1

» Suppose we insert the fact that Sally is a drinker,
but we know neither her address nor her phone.

» An INSERT with a partial list of attributes makes
the insertion possible:

INSERT INTO Drinkers (name)
VALUES (YSally’);

» 20 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Effect of Defaults -- 2

» But what tuple appears in Drinkers?

name addr phone
‘Sally’ ‘ 123 Sesame St° NULL

» If we had declared phone NOT NULL, this
iInsertion would have been rejected.

p 21 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Adding Attributes

» We may change a relation schema by adding a
new attribute (“column”) by:

ALTER TABLE <name> ADD
<attribute declaration>;
» Example:
ALTER TABLE Bars ADD
phone CHAR(16) DEFAULT ‘unlisted’;

p 22 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Deleting/Renaming Attributes

» Remove an attribute from a relation schema by:
ALTER TABLE <name> DROP <attribute>;

» Example: we don't really need the license attribute for
bars:

ALTER TABLE Bars DROP license;

» Rename an attribute in a relation:

ALTER TABLE <name> RENAME COLUMN <attribute>
TO <attribute> ;

» Example: we would rename the license attribute
bar_license

ALTER TABLE Bars RENAME COLUMN license
to bar license;

» 23 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Kinds of Constraints

A constraint is a relationship among data
elements that the DBMS is required to enforce.

» Key constraints, Foreign-key or referential-
integrity.
» Value-based constraints.
» Constrain values of a particular attribute.
» Tuple-based constraints.
» Relationship among components.
» Easier to implement than many constraints.

p 24 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Foreign Keys

» Consider Relation Sells(bar, beer, price).

» We might expect that a beer value is a real
beer --- something appearing in Beers.name .

» A constraint that requires a beer in Sells to be
a beer in Beers is called a foreign -key
constraint.

p 25 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Expressing Foreign Keys

» Use the keyword REFERENCES, either:

1. Within the declaration of an attribute, when only
one attribute Is involved.

2. As an element of the schema, as:
FOREIGN KEY (<list of attributes>)

REFERENCES <relation> (<attributes>)

» Referenced attributes must be declared
PRIMARY KEY or UNIQUE.

» 26 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: With Attribute

CREATE TABLE Beers (
name CHAR (20) PRIMARY KEY,
mant CHAR (20)) ;
CREATE TABLE Sells (
barCHAR (20),
beer CHAR (20) REFERENCES Beers (name),
price REAL);

» 27 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: As Element

CREATE TABLE Beers (
name CHAR (20) PRIMARY KEY,
mantf CHAR (20)) ;
CREATE TABLE Sells (
barCHAR (20),
beer CHAR (20),
price REAL,

FOREIGN KEY (beer) REFERENCES
Beers (name)) ;

» 28 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Enforcing Foreign-Key Constraints

» If there is a foreign-key constraint from attributes
of relation R to the primary key of relation S, two
violations are possible:

1. Aninsert or update to R introduces values not
found in S.

2. Adeletion or update to S causes some tuples of
R to “dangle.”

» 29 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

Actions Taken -- 1

» Suppose R = Sells, S = Beers.

» An insert or update to Sells that introduces a
nonexistent beer must be rejected.

» A deletion or update to Beers that removes a
beer value found in some tuples of Sells can be
handled in three ways.

p 30 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Actions Taken -- 2

» The three possible ways to handle beers
that suddenly cease to exist are:

1. Default . Reject the modification.

2. Cascade : Make the same changes in Sells.
Deleted beer: delete Sells tuple.
Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.

p 31 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Cascade

» Suppose we delete the Bud tuple from Beers.
» Then delete all tuples from Sells that have
beer = 'Bud'.
» Suppose we update the Bud tuple by
changing '‘Bud’ to '‘Budweiser".
» Then change all Sells tuples with beer = 'Bud’
so that beer = '‘Budweiser’.

p 32 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Set NULL

» Suppose we delete the Bud tuple from Beers.

» Change all tuples of Sells that have beer = 'Bud’ to
have beer = NULL.

» Suppose we update the Bud tuple by changing
'‘Bud’ to '‘Budweiser’.

» Same change.

» 33 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Choosing a Policy

» When we declare a foreign key, we may choose
policies SET NULL or CASCADE independently
for deletions and updates.

» Follow the foreign-key declaration by:

ON [UPDATE, DELETE][SET NULL CASCADE]
» Two such clauses may be used.

» Otherwise, the default (reject) is used.

p 34 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example

CREATE TABLE Sells (

barCHAR (20),

beer CHAR (20),

price REAL,

FOREIGN KEY (beer)
REFERENCES BReers (name)
ON DELETE SET NULL
ON UPDATE CASCADE) ;

» 35 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Attribute-Based Checks

» Put a constraint on the value of a particular
attribute.

» CHECK(<condition>) must be added to the
declaration for the attribute.

» The condition may use the name of the attribute,
but any other relation or attribute name must be
In a subquery.

» 36 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

CREATE TABLE Sells (
barCHAR (20),
beer CHAR (20) CHECK (beer IN
(SELECT name FROM Beers)),
price REAL CHECK (price <= 5.00)

) ;

p 37 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Timing ot Checks

» An attribute-based check is checked only

when a value for that attribute is inserted or
updated.

» Example: CHECK (price <= 5.00) checks

every new price and rejects it if it is more
than $5.

» Example: CHECK (beer IN (SELECT name
FROM Beers)) not checked if a beer is
deleted from Beers (unlike foreign-keys).

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Tuple-Based Checks

» CHECK (<condition>) may be added as
another element of a schema definition.

» The condition may refer to any attribute of the
relation, but any other attributes or relations
require a subquery.

» Checked on insert or update only.

» 39 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Tuple-Based Check

» Only Joe’s Bar can sell beer for more than $5:
CREATE TABLE Sells (
bar CHAR (20),
beer CHAR (20),
price REAL,
CHECK (bar = ’"Joe’’"s Bar’ OR
price <= 5.00)

p 40 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Assertions

» These are database-schema elements, like
relations or views.

» Defined by:
CREATE ASSERTION <name>
CHECK (<condition>);

» Condition may refer to any relation or attribute in
the database schema.

> 41 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Assertion
» In Sells(bar, beer, price), no bar may charge an
average of more than $5.

CREATE ASSERTION NoRipoffBars CHECK g
N Bars with an

average price
above $5

p 42 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Assertion

» In Drinkers(name, addr, phone) and Bars(name,
addr, license), there cannot be more bars than
drinkers.

CREATE ASSERTION FewBar CHECK (
(SELECT COUNT (*) FROM Bars) <=
(SELECT COUNT (*) FROM Drinkers)

p 43 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Timing of Assertion Checks

» In principle, we must check every assertion after
every modification to any relation of the
database.

» A clever system can observe that only certain
changes could cause a given assertion to be
violated.

» Example: No change to Beers can affect FewBar.
Neither can an insertion to Drinkers.

p 44 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Triggers: Motivation

» Attribute- and tuple-based checks have limited
capabillities.
» Assertions are sufficiently general for most

constraint applications, but they are hard to
implement efficiently.

» The DBMS must have real intelligence to avoid

checking assertions that couldn’t possibly have
been violated.

p 45 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

» Aview is a “virtual table,” a relation that is
defined in terms of the contents of other
tables and views.

» Declare by:

CREATE VIEW <name> AS <query>;

» In contrast, a relation whose value is really
stored Iin the database is called a base table.

p 46 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: View Detinition

» CanDrink(drinker, beer) is a view “containing” the
drinker-beer pairs such that the drinker frequents
at least one bar that serves the beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

p 47 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Accessing a View

» You may query a view as if it were a base
table.

» There is a limited ability to modify views if
the modification makes sense as a
modification of the underlying base table.

» Example:
SELECT beer FROM CanDrink
WHERE drinker = ‘Sally’;

p 48 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

What Happens When a View Is Used?

» The DBMS starts by interpreting the query as if
the view were a base table.

» Typical DBMS turns the query into something
like relational algebra.

» The queries defining any views used by the
query are also replaced by their algebraic
equivalents, and “spliced into” the expression
tree for the query.

p 49 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Constraints and Triggers

» A constraint is a relationship among data

elements that the DBMS is required to
enforce.

» Example: key constraints.

» Triggers are only executed when a specified
condition occurs, e.g., insertion of a tuple.

» Easier to implement than many constraints.

» 50 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Triggers: Motivation

» Attribute- and tuple-based checks have limited
capabillities.

» Assertions are sufficiently general for most
constraint applications, but they are hard to
implement efficiently.

» The DBMS must have real intelligence to avoid

checking assertions that couldn’t possibly have
been violated.

p 51 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Triggers: Solution

» Atrigger allows the user to specify when the
check occurs.

» Like an assertion, a trigger has a general-
purpose condition and also can perform any
sequence of SQL database modifications.

p 52 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Event-Condition-Action Rules

» Another name for “trigger” is ECA rule, or
event-condition-action rule.

» Event . typically a type of database
modification, e.g., “insert on Sells.”

» Condition : Any SQL boolean-valued
expression.

» Action : Any SQL statements.

» 53 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: A Trigger

» There are many details to learn about triggers.
» Here is an example to set the stage.

» Instead of using a foreign-key constraint and
rejecting insertions into Sells(bar, beer, price)
with unknown beers, a trigger can add that
beer to Beers, with a NULL manufacturer.

p 54 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: Trigger Detinition

CREATE TRIGGER BeerTrig - Theevent

REFERENCING NEW ROW AS NewTuple
FOR EACH ROW
WHEN (NewTuple.beer NOTIN |
r] F|))
INSERT INTO Beers(name)
LUES(NewTuple beer)

The condition

" The action

» 55 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Options: CREATE TRIGGER

» CREATE TRIGGER <name>
» Option:
CREATE OR REPLACE TRIGGER <name>

» Useful if there is a trigger with that name and
you want to modify the trigger.

» 56 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Options: The Condition
» AFTER can be BEFORE.

» Also, INSTEAD OF, if the relation is a view.

A great way to execute view modifications: have
triggers translate them to appropriate modifications
on the base tables.

» INSERT can be DELETE or UPDATE.

» And UPDATE can be UPDATE ... ON a
particular attribute.

p 57 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

Options: FOR EACH ROW

» Triggers are either row-level or statement-
level.

» FOR EACH ROW indicates row-level: its
absence indicates statement-level.

» Row level triggers are executed once for each
modified tuple.

» Statement-level triggers execute once for an
SQL statement, regardless of how many
tuples are modified.

p 58 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Options: REFERENCING

» INSERT statements imply a new tuple (for row-
evel) or new set of tuples (for statement-level).

» DELETE implies an old tuple or table.
» UPDATE implies both.

» Refer to these by

INEW OLD][TUPLE TABLE] AS <name>

» 59 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Options: The Condition

» Any boolean-valued condition is appropriate.

» It is evaluated before or after the triggering
event, depending on whether BEFORE or
AFTER is used in the event.

» Access the new/old tuple or set of tuples
through the names declared in the
REFERENCING clause.

p 60 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Options: The Action

» There can be more than one SQL statement in
the action.

» Surround by BEGIN . . . END if there is more
than one.

» But queries make no sense in an action, so we
are really limited to modifications.

p 61 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Another Example

» Using Sells(bar, beer, price) and a unary relation
RipoffBars(bar) created for the purpose, maintain
a list of bars that raise the price of any beer by
more than $1.

p 62 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

The Trigger

CREATE TRIGGER PriceTri

LEOR

V — Y

\A/‘ 1. 2%

The event —
only changes
to prices

Is

REFERENCING Updates let us
«— talk about old Condition:
OLD ROW as old and new tuples a raise in
N We need to consider price > $1

each price change

HE

(

\

\-

TNJINJ

Wher the price change

\ "I |
INSERT INTO RipoffBar$—— is great enough, add

the bar to RipoffBars

VI \L.\UJ LU\I IS VV. U ,,

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Uliman‘s book and slides

Triggers on Views

» Generally, it is impossible to modify a view,
because it doesn’t exist.

» But an INSTEAD OF trigger lets us interpret
view modifications in a way that makes sense.

» Example: We'll design a view Synergy that
has (drinker, beer, bar) triples such that the
bar serves the beer, the drinker frequents the
bar and likes the beer.

p 64 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Example: The View

Pick one copy of

/ each attribute
CREATE VIEW Synergy AS

SELEC T Likes drinker, Likes beer_Sells be

/'
Natural join of Likes,
Sells, and Frequents

p 65 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

Interpreting a View Insertion

» We cannot insert into Synergy --- it is a view.

» But we can use an INSTEAD OF trigger to turn a
(drinker, beer, bar) triple into three insertions of
projected pairs, one for each of Likes, Sells, and
Frequents.

» The Sells.price will have to be NULL.

p 66 DB1Lect 07 _SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

The Trigger

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

REFERENCING NEW ROW AS n

FOR EACH ROW

BEGIN
INSERT INTO LIKES VALUES(n.drinker, n.beer);
INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);
INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;

p 67 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman's book and slides

