
Databases 1

Defining Tables, Constraints

DBMS

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides 2

Rest of SQL

� Defining a Database Schema

� Primary Keys, Foreign Keys

� Local and Global Constraints

� Defining Views

� Triggers

3 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

4

Defining a Database Schema

� A database schema comprises declarations for
the relations (“tables”) of the database.

� Many other kinds of elements may also appear in
the database schema, including views,
constraints and triggers.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

5

Declaring a Relation

� Simplest form is:

� CREATE TABLE <name> (<list of elements>);

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

6

Elements of Table Declarations

� The principal element is a pair consisting of
an attribute and a type.

� The most common types are:

� INT or INTEGER (synonyms).

� REAL or FLOAT (synonyms).

� CHAR(n) = fixed-length string of n
characters.

� VARCHAR(n) = variable-length string of up
to n characters.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

7

Dates and Times

� DATE and TIME are types in SQL.

� The form of a date value is:

DATE ‘yyyy-mm-dd’

� Example: DATE ‘2002-09-30’ for Sept. 30,
2002.

� There are functions to convert DATE types
(e.g. TODATE)

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

8

Times as Values

� The form of a time value is:

TIME ‘hh:mm:ss’

with an optional decimal point and fractions of
a second following.

� Example: TIME ’15:30:02.5’ = two and a half
seconds after 3:30PM.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

9

Example: Create Table

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

10

Example: Create Table from existing table(s)

CREATE TABLE AVG_PRICES AS

(SELECT beer, AVG(price)

FROM Sells

GROUP BY beer);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

Remove a relation from schema

� Remove a relation from the database schema
by:

� DROP TABLE <name>;

� Example:

DROP TABLE Sells;

11 DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

12

Declaring Keys

� An attribute or list of attributes may be declared
PRIMARY KEY or UNIQUE.

� These each say the attribute(s) so declared
functionally determine all the attributes of the
relation schema.

� There are a few distinctions to be mentioned
later.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

13

Declaring Single-Attribute Keys

� Place PRIMARY KEY or UNIQUE after the type
in the declaration of the attribute.

� Example:

CREATE TABLE Beers (

nameCHAR(20) UNIQUE,

manfCHAR(20)

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

14

Declaring Multiattribute Keys

� A key declaration can also be another element in
the list of elements of a CREATE TABLE
statement.

� This form is essential if the key consists of more
than one attribute.

� May be used even for one-attribute keys.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

15

Example: Multiattribute Key

� The bar and beer together are the key for Sells:

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

PRIMARY KEY (bar, beer)

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

16

PRIMARY KEY Versus UNIQUE

� The SQL standard allows DBMS implementers to
make their own distinctions between PRIMARY
KEY and UNIQUE.

� Example: some DBMS might automatically
create an index (data structure to speed
search) in response to PRIMARY KEY, but not
UNIQUE.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

17

Required Distinctions

� However, standard SQL requires these
distinctions:

1. There can be only one PRIMARY KEY for a
relation, but several UNIQUE attributes.

2. No attribute of a PRIMARY KEY can ever be
NULL in any tuple. But attributes declared
UNIQUE may have NULL’s, and there may
be several tuples with NULL.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

18

Other Declarations for Attributes

� Two other declarations we can make for an
attribute are:

1. NOT NULL means that the value for this
attribute may never be NULL.

2. DEFAULT <value> says that if there is no
specific value known for this attribute’s
component in some tuple, use the stated
<value>.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

19

Example: Default Values

CREATE TABLE Drinkers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT ‘123 Sesame St.’,

phone CHAR(16)

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

20

Effect of Defaults -- 1

� Suppose we insert the fact that Sally is a drinker,
but we know neither her address nor her phone.

� An INSERT with a partial list of attributes makes
the insertion possible:

INSERT INTO Drinkers(name)

VALUES(‘Sally’);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

21

Effect of Defaults -- 2

� But what tuple appears in Drinkers?

name addr phone

‘Sally’ ‘ 123 Sesame St’ NULL

� If we had declared phone NOT NULL, this
insertion would have been rejected.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

22

Adding Attributes

� We may change a relation schema by adding a
new attribute (“column”) by:

ALTER TABLE <name> ADD

<attribute declaration>;

� Example:

ALTER TABLE Bars ADD

phone CHAR(16)DEFAULT ‘unlisted’;

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

23

Deleting/Renaming Attributes

� Remove an attribute from a relation schema by:

ALTER TABLE <name> DROP <attribute>;

� Example: we don’t really need the license attribute for
bars:

ALTER TABLE Bars DROP license;

� Rename an attribute in a relation:

ALTER TABLE <name> RENAME COLUMN <attribute>

TO <attribute> ;

� Example: we would rename the license attribute
bar_license

ALTER TABLE Bars RENAME COLUMN license

to bar_license;

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

24

Kinds of Constraints

A constraint is a relationship among data
elements that the DBMS is required to enforce.

� Key constraints, Foreign-key or referential-
integrity.

� Value-based constraints.

� Constrain values of a particular attribute.

� Tuple-based constraints.

� Relationship among components.

� Easier to implement than many constraints.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

25

Foreign Keys

� Consider Relation Sells(bar, beer, price).

� We might expect that a beer value is a real
beer --- something appearing in Beers.name .

� A constraint that requires a beer in Sells to be
a beer in Beers is called a foreign -key
constraint.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

26

Expressing Foreign Keys

� Use the keyword REFERENCES, either:

1. Within the declaration of an attribute, when only
one attribute is involved.

2. As an element of the schema, as:

FOREIGN KEY (<list of attributes>)

REFERENCES <relation> (<attributes>)

� Referenced attributes must be declared
PRIMARY KEY or UNIQUE.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

27

Example: With Attribute

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20) REFERENCES Beers(name),

price REAL);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

28

Example: As Element

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer) REFERENCES
Beers(name));

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

29

Enforcing Foreign-Key Constraints

� If there is a foreign-key constraint from attributes
of relation R to the primary key of relation S, two
violations are possible:

1. An insert or update to R introduces values not
found in S.

2. A deletion or update to S causes some tuples of
R to “dangle.”

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

30

Actions Taken -- 1

� Suppose R = Sells, S = Beers.

� An insert or update to Sells that introduces a
nonexistent beer must be rejected.

� A deletion or update to Beers that removes a
beer value found in some tuples of Sells can be
handled in three ways.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

31

Actions Taken -- 2

� The three possible ways to handle beers
that suddenly cease to exist are:

1. Default : Reject the modification.

2. Cascade : Make the same changes in Sells.

� Deleted beer: delete Sells tuple.

� Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

32

Example: Cascade

� Suppose we delete the Bud tuple from Beers.

� Then delete all tuples from Sells that have
beer = ’Bud’.

� Suppose we update the Bud tuple by
changing ’Bud’ to ’Budweiser’.

� Then change all Sells tuples with beer = ’Bud’
so that beer = ’Budweiser’.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

33

Example: Set NULL

� Suppose we delete the Bud tuple from Beers.

� Change all tuples of Sells that have beer = ’Bud’ to
have beer = NULL.

� Suppose we update the Bud tuple by changing
’Bud’ to ’Budweiser’.

� Same change.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

34

Choosing a Policy

� When we declare a foreign key, we may choose
policies SET NULL or CASCADE independently
for deletions and updates.

� Follow the foreign-key declaration by:

ON [UPDATE, DELETE][SET NULL CASCADE]

� Two such clauses may be used.

� Otherwise, the default (reject) is used.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

35

Example

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer)

REFERENCES Beers(name)

ON DELETE SET NULL

ON UPDATE CASCADE);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

36

Attribute-Based Checks

� Put a constraint on the value of a particular
attribute.

� CHECK(<condition>) must be added to the
declaration for the attribute.

� The condition may use the name of the attribute,
but any other relation or attribute name must be
in a subquery.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

37

Example

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),

price REAL CHECK (price <= 5.00)

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

38

Timing of Checks

� An attribute-based check is checked only
when a value for that attribute is inserted or
updated.

� Example: CHECK (price <= 5.00) checks
every new price and rejects it if it is more
than $5.

� Example: CHECK (beer IN (SELECT name
FROM Beers)) not checked if a beer is
deleted from Beers (unlike foreign-keys).

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

39

Tuple-Based Checks

� CHECK (<condition>) may be added as
another element of a schema definition.

� The condition may refer to any attribute of the
relation, but any other attributes or relations
require a subquery.

� Checked on insert or update only.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

40

Example: Tuple-Based Check

� Only Joe’s Bar can sell beer for more than $5:

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

CHECK (bar = ’Joe’’s Bar’ OR

price <= 5.00)

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

41

Assertions

� These are database-schema elements, like
relations or views.

� Defined by:

CREATE ASSERTION <name>

CHECK (<condition>);

� Condition may refer to any relation or attribute in
the database schema.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

42

Example: Assertion

� In Sells(bar, beer, price), no bar may charge an
average of more than $5.

CREATE ASSERTION NoRipoffBars CHECK (

NOT EXISTS (

SELECT bar FROM Sells

GROUP BY bar

HAVING 5.00 < AVG(price)

));

Bars with an
average price
above $5

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

43

Example: Assertion

� In Drinkers(name, addr, phone) and Bars(name,
addr, license), there cannot be more bars than
drinkers.

CREATE ASSERTION FewBar CHECK (

(SELECT COUNT(*) FROM Bars) <=

(SELECT COUNT(*) FROM Drinkers)

);

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

44

Timing of Assertion Checks

� In principle, we must check every assertion after
every modification to any relation of the
database.

� A clever system can observe that only certain
changes could cause a given assertion to be
violated.

� Example: No change to Beers can affect FewBar.
Neither can an insertion to Drinkers.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

45

Triggers: Motivation

� Attribute- and tuple-based checks have limited
capabilities.

� Assertions are sufficiently general for most
constraint applications, but they are hard to
implement efficiently.

� The DBMS must have real intelligence to avoid
checking assertions that couldn’t possibly have
been violated.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

46

Views

� A view is a “virtual table,” a relation that is
defined in terms of the contents of other
tables and views.

� Declare by:

CREATE VIEW <name> AS <query>;

� In contrast, a relation whose value is really
stored in the database is called a base table.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

47

Example: View Definition

� CanDrink(drinker, beer) is a view “containing” the
drinker-beer pairs such that the drinker frequents
at least one bar that serves the beer:

CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

48

Example: Accessing a View

� You may query a view as if it were a base
table.

� There is a limited ability to modify views if
the modification makes sense as a
modification of the underlying base table.

� Example:

SELECT beer FROM CanDrink

WHERE drinker = ‘Sally’;

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

49

What Happens When a View Is Used?

� The DBMS starts by interpreting the query as if
the view were a base table.

� Typical DBMS turns the query into something
like relational algebra.

� The queries defining any views used by the
query are also replaced by their algebraic
equivalents, and “spliced into” the expression
tree for the query.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

50

Constraints and Triggers

� A constraint is a relationship among data
elements that the DBMS is required to
enforce.

� Example: key constraints.

� Triggers are only executed when a specified
condition occurs, e.g., insertion of a tuple.

� Easier to implement than many constraints.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

51

Triggers: Motivation

� Attribute- and tuple-based checks have limited
capabilities.

� Assertions are sufficiently general for most
constraint applications, but they are hard to
implement efficiently.

� The DBMS must have real intelligence to avoid
checking assertions that couldn’t possibly have
been violated.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

52

Triggers: Solution

� A trigger allows the user to specify when the
check occurs.

� Like an assertion, a trigger has a general-
purpose condition and also can perform any
sequence of SQL database modifications.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

53

Event-Condition-Action Rules

� Another name for “trigger” is ECA rule, or
event-condition-action rule.

� Event : typically a type of database
modification, e.g., “insert on Sells.”

� Condition : Any SQL boolean-valued
expression.

� Action : Any SQL statements.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

54

Example: A Trigger

� There are many details to learn about triggers.

� Here is an example to set the stage.

� Instead of using a foreign-key constraint and
rejecting insertions into Sells(bar, beer, price)
with unknown beers, a trigger can add that
beer to Beers, with a NULL manufacturer.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

55

Example: Trigger Definition

CREATE TRIGGER BeerTrig

AFTER INSERT ON Sells

REFERENCING NEW ROW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.beer NOT IN

(SELECT name FROM Beers))

INSERT INTO Beers(name)

VALUES(NewTuple.beer);

The event

The condition

The action

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

56

Options: CREATE TRIGGER

� CREATE TRIGGER <name>

� Option:

CREATE OR REPLACE TRIGGER <name>

� Useful if there is a trigger with that name and
you want to modify the trigger.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

57

Options: The Condition

� AFTER can be BEFORE.

� Also, INSTEAD OF, if the relation is a view.

� A great way to execute view modifications: have
triggers translate them to appropriate modifications
on the base tables.

� INSERT can be DELETE or UPDATE.

� And UPDATE can be UPDATE . . . ON a
particular attribute.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

58

Options: FOR EACH ROW

� Triggers are either row-level or statement-
level.

� FOR EACH ROW indicates row-level; its
absence indicates statement-level.

� Row level triggers are executed once for each
modified tuple.

� Statement-level triggers execute once for an
SQL statement, regardless of how many
tuples are modified.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

59

Options: REFERENCING

� INSERT statements imply a new tuple (for row-
level) or new set of tuples (for statement-level).

� DELETE implies an old tuple or table.

� UPDATE implies both.

� Refer to these by

[NEW OLD][TUPLE TABLE] AS <name>

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

60

Options: The Condition

� Any boolean-valued condition is appropriate.

� It is evaluated before or after the triggering
event, depending on whether BEFORE or
AFTER is used in the event.

� Access the new/old tuple or set of tuples
through the names declared in the
REFERENCING clause.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

61

Options: The Action

� There can be more than one SQL statement in
the action.

� Surround by BEGIN . . . END if there is more
than one.

� But queries make no sense in an action, so we
are really limited to modifications.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

62

Another Example

� Using Sells(bar, beer, price) and a unary relation
RipoffBars(bar) created for the purpose, maintain
a list of bars that raise the price of any beer by
more than $1.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

63

The Trigger

CREATE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

REFERENCING

OLD ROW as old

NEW ROW as new

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

INSERT INTO RipoffBars

VALUES(new.bar);

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

64

Triggers on Views

� Generally, it is impossible to modify a view,
because it doesn’t exist.

� But an INSTEAD OF trigger lets us interpret
view modifications in a way that makes sense.

� Example: We’ll design a view Synergy that
has (drinker, beer, bar) triples such that the
bar serves the beer, the drinker frequents the
bar and likes the beer.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

65

Example: The View

CREATE VIEW Synergy AS

SELECT Likes.drinker, Likes.beer, Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker = Frequents.drinker

AND Likes.beer = Sells.beer

AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

66

Interpreting a View Insertion

� We cannot insert into Synergy --- it is a view.

� But we can use an INSTEAD OF trigger to turn a
(drinker, beer, bar) triple into three insertions of
projected pairs, one for each of Likes, Sells, and
Frequents.

� The Sells.price will have to be NULL.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

67

The Trigger

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

REFERENCING NEW ROW AS n

FOR EACH ROW

BEGIN

INSERT INTO LIKES VALUES(n.drinker, n.beer);

INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);

INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides

