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Rest of SQL

� Defining a Database Schema

� Primary Keys, Foreign Keys

� Local and Global Constraints

� Defining Views

� Triggers
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Defining a Database Schema

� A database schema comprises declarations for 
the relations (“tables”) of the database.

� Many other kinds of elements may also appear in 
the database schema, including views, 
constraints and triggers.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides 



5

Declaring a Relation

� Simplest form is:

� CREATE TABLE <name> (<list of elements>);

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL

);
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Elements of  Table Declarations

� The principal element is a pair consisting of 
an attribute and a type.

� The most common types are:

� INT or INTEGER (synonyms).

� REAL or FLOAT (synonyms).

� CHAR(n ) = fixed-length string of n
characters.

� VARCHAR(n ) = variable-length string of up 
to n characters.
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Dates and Times

� DATE and TIME are types in SQL.

� The form of a date value is:

DATE ‘yyyy-mm-dd’

� Example: DATE ‘2002-09-30’ for Sept. 30, 
2002.

� There are functions to convert DATE types 
(e.g. TODATE)
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Times as Values

� The form of a time value is:

TIME ‘hh:mm:ss’

with an optional decimal point and fractions of 
a second following.

� Example: TIME ’15:30:02.5’ = two and a half 
seconds after 3:30PM.
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Example: Create Table

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL

);
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Example: Create Table from existing table(s)

CREATE TABLE AVG_PRICES AS 

(SELECT beer, AVG(price)

FROM Sells

GROUP BY beer);
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Remove a relation from schema

� Remove a relation from the database schema 
by:

� DROP TABLE <name>;

� Example:

DROP TABLE Sells;
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Declaring Keys

� An attribute or list of attributes may be declared 
PRIMARY KEY or UNIQUE.

� These each say the attribute(s) so declared 
functionally determine all the attributes of the 
relation schema.

� There are a few distinctions to be mentioned 
later.
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Declaring Single-Attribute Keys

� Place PRIMARY KEY or UNIQUE after the type 
in the declaration of the attribute.

� Example:

CREATE TABLE Beers (

nameCHAR(20) UNIQUE,

manfCHAR(20)

);
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Declaring Multiattribute Keys

� A key declaration can also be another element in 
the list of elements of a CREATE TABLE 
statement.

� This form is essential if the key consists of more 
than one attribute.

� May be used even for one-attribute keys.
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Example: Multiattribute Key

� The bar and beer together are the key for Sells:

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

PRIMARY KEY (bar, beer)

);
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PRIMARY KEY Versus UNIQUE

� The SQL standard allows DBMS implementers to 
make their own distinctions between PRIMARY 
KEY and UNIQUE.

� Example: some DBMS might automatically 
create an index (data structure to speed 
search) in response to PRIMARY KEY, but not 
UNIQUE. 
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Required Distinctions

� However, standard SQL requires these 
distinctions:

1. There can be only one PRIMARY KEY for a 
relation, but several UNIQUE attributes.

2. No attribute of a PRIMARY KEY can ever be 
NULL in any tuple.  But attributes declared 
UNIQUE may have NULL’s, and there may 
be several tuples with NULL.
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Other Declarations for Attributes

� Two other declarations we can make for an 
attribute are:

1. NOT NULL means that the value for this 
attribute may never be NULL.

2. DEFAULT <value> says that if there is no 
specific value known for this attribute’s 
component in some tuple, use the stated 
<value>.
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Example: Default Values

CREATE TABLE Drinkers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT ‘123 Sesame St.’,

phone CHAR(16)

);
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Effect of  Defaults -- 1

� Suppose we insert the fact that Sally is a drinker, 
but we know neither her address nor her phone.

� An INSERT with a partial list of attributes makes 
the insertion possible:

INSERT INTO Drinkers(name)

VALUES(‘Sally’);
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Effect of  Defaults -- 2

� But what tuple appears in Drinkers?

name addr phone

‘Sally’ ‘ 123 Sesame St’ NULL

� If we had declared phone NOT NULL, this 
insertion would have been rejected.
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Adding Attributes

� We may change a relation schema by adding a 
new attribute (“column”) by:

ALTER TABLE <name> ADD

<attribute declaration>;

� Example:

ALTER TABLE Bars ADD

phone CHAR(16)DEFAULT ‘unlisted’;
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Deleting/Renaming Attributes

� Remove an attribute from a relation schema by:

ALTER TABLE <name> DROP <attribute>;

� Example: we don’t really need the license attribute for 
bars:

ALTER TABLE Bars DROP license;

� Rename an attribute in a relation:

ALTER TABLE <name> RENAME COLUMN <attribute>

TO <attribute> ;

� Example: we would rename the license attribute 
bar_license

ALTER TABLE Bars RENAME COLUMN license

to bar_license;

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides 



24

Kinds of  Constraints

A constraint is a relationship among data 
elements that the DBMS is required to enforce.

� Key constraints, Foreign-key or referential-
integrity.

� Value-based constraints.

� Constrain values of a particular attribute.

� Tuple-based constraints.

� Relationship among components.

� Easier to implement than many constraints.
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Foreign Keys

� Consider Relation Sells(bar, beer, price).

� We might expect that a beer value is a real 
beer --- something appearing in Beers.name .

� A constraint that requires a beer in Sells to be 
a beer in Beers is called a foreign -key
constraint.
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Expressing Foreign Keys

� Use the keyword REFERENCES, either:

1. Within the declaration of an attribute, when only 
one attribute is involved.

2. As an element of the schema, as:

FOREIGN KEY ( <list of attributes> )

REFERENCES <relation> ( <attributes> )

� Referenced attributes must be declared 
PRIMARY KEY or UNIQUE.
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Example: With Attribute

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20) );

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20) REFERENCES Beers(name),

price REAL );
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Example: As Element

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20) );

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer) REFERENCES 
Beers(name));
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Enforcing Foreign-Key Constraints

� If there is a foreign-key constraint from attributes 
of relation R to the primary key of relation S, two 
violations are possible:

1. An insert or update to R introduces values not 
found in S.

2. A deletion or update to S causes some tuples of 
R to “dangle.”
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Actions Taken -- 1

� Suppose R = Sells, S = Beers.

� An insert or update to Sells that introduces a 
nonexistent beer must be rejected.

� A deletion or update to Beers that removes a 
beer value found in some tuples of Sells can be 
handled in three ways.
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Actions Taken -- 2

� The three possible ways to handle beers 
that suddenly cease to exist are:

1. Default : Reject the modification.

2. Cascade : Make the same changes in Sells.

� Deleted beer: delete Sells tuple.

� Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.
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Example: Cascade

� Suppose we delete the Bud tuple from Beers.

� Then delete all tuples from Sells that have 
beer = ’Bud’.

� Suppose we update the Bud tuple by 
changing ’Bud’ to ’Budweiser’.

� Then change all Sells tuples with beer = ’Bud’ 
so that beer = ’Budweiser’. 
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Example: Set NULL

� Suppose we delete the Bud tuple from Beers.

� Change all tuples of Sells that have beer = ’Bud’ to 
have beer = NULL.

� Suppose we update the Bud tuple by changing 
’Bud’ to ’Budweiser’.

� Same change.

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides 



34

Choosing a Policy

� When we declare a foreign key, we may choose 
policies SET NULL or CASCADE independently 
for deletions and updates.

� Follow the foreign-key declaration by:

ON [UPDATE, DELETE][SET NULL CASCADE]

� Two such clauses may be used.

� Otherwise, the default (reject) is used.
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Example

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer)

REFERENCES Beers(name)

ON DELETE SET NULL

ON UPDATE CASCADE );
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Attribute-Based Checks

� Put a constraint on the value of a particular 
attribute.

� CHECK( <condition> ) must be added to the 
declaration for the attribute.

� The condition may use the name of the attribute, 
but any other relation or attribute name must be 
in a subquery.
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Example

CREATE TABLE Sells (

barCHAR(20),

beer CHAR(20) CHECK ( beer IN

(SELECT name FROM Beers)),

price REAL CHECK ( price <= 5.00 )

);
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Timing of  Checks

� An attribute-based check is checked only 
when a value for that attribute is inserted or 
updated.

� Example: CHECK (price <= 5.00) checks 
every new price and rejects it if it is more 
than $5.

� Example: CHECK (beer IN (SELECT name 
FROM Beers)) not checked if a beer is 
deleted from Beers (unlike foreign-keys).
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Tuple-Based Checks

� CHECK ( <condition> ) may be added as 
another element of a schema definition.

� The condition may refer to any attribute of the 
relation, but any other attributes or relations 
require a subquery.

� Checked on insert or update only.
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Example: Tuple-Based Check

� Only Joe’s Bar can sell beer for more than $5:

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

CHECK (bar = ’Joe’’s Bar’ OR

price <= 5.00)

);
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Assertions

� These are database-schema elements, like 
relations or views.

� Defined by:

CREATE ASSERTION <name>

CHECK ( <condition> );

� Condition may refer to any relation or attribute in 
the database schema.
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Example: Assertion

� In Sells(bar, beer, price), no bar may charge an 
average of more than $5.

CREATE ASSERTION NoRipoffBars CHECK (

NOT EXISTS (

SELECT bar FROM Sells

GROUP BY bar

HAVING 5.00 < AVG(price)

));

Bars with an
average price
above $5
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Example: Assertion

� In Drinkers(name, addr, phone) and Bars(name, 
addr, license), there cannot be more bars than 
drinkers.

CREATE ASSERTION FewBar CHECK (

(SELECT COUNT(*) FROM Bars) <=

(SELECT COUNT(*) FROM Drinkers)

);
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Timing of  Assertion Checks

� In principle, we must check every assertion after 
every modification to any relation of the 
database.

� A clever system can observe that only certain 
changes could cause a given assertion to be 
violated.

� Example: No change to Beers can affect FewBar.  
Neither can an insertion to Drinkers.
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Triggers: Motivation

� Attribute- and tuple-based checks have limited 
capabilities.

� Assertions are sufficiently general for most 
constraint applications, but they are hard to 
implement efficiently.

� The DBMS must have real intelligence to avoid 
checking assertions that couldn’t possibly have 
been violated.
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Views

� A view is a “virtual table,” a relation that is 
defined in terms of the contents of other 
tables and views.

� Declare by:

CREATE VIEW <name> AS <query>;

� In contrast, a relation whose value is really 
stored in the database is called a base table.
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Example: View Definition

� CanDrink(drinker, beer) is a view “containing” the 
drinker-beer pairs such that the drinker frequents 
at least one bar that serves the beer:

CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;
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Example: Accessing a View

� You may query a view as if it were a base 
table.

� There is a limited ability to modify views if 
the modification makes sense as a 
modification of the underlying base table.

� Example:

SELECT beer FROM CanDrink

WHERE drinker = ‘Sally’;
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What Happens When a View Is Used?

� The DBMS starts by interpreting the query as if 
the view were a base table.

� Typical DBMS turns the query into something 
like relational algebra.

� The queries defining any views used by the 
query are also replaced by their algebraic 
equivalents, and “spliced into” the expression 
tree for the query.
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Constraints and Triggers

� A constraint is a relationship among data 
elements that the DBMS is required to 
enforce.

� Example: key constraints.

� Triggers are only executed when a specified 
condition occurs, e.g., insertion of a tuple.

� Easier to implement than many constraints.
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Triggers: Motivation

� Attribute- and tuple-based checks have limited 
capabilities.

� Assertions are sufficiently general for most 
constraint applications, but they are hard to 
implement efficiently.

� The DBMS must have real intelligence to avoid 
checking assertions that couldn’t possibly have 
been violated.
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Triggers: Solution

� A trigger allows the user to specify when the 
check occurs.

� Like an assertion, a trigger has a general-
purpose condition and also can perform any 
sequence of SQL database modifications.
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Event-Condition-Action Rules

� Another name for “trigger” is ECA rule, or 
event-condition-action rule.

� Event :  typically a type of database 
modification, e.g., “insert on Sells.”

� Condition : Any SQL boolean-valued 
expression.

� Action : Any SQL statements.
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Example: A Trigger

� There are many details to learn about triggers.

� Here is an example to set the stage.

� Instead of using a foreign-key constraint and 
rejecting insertions into Sells(bar, beer, price) 
with unknown beers, a trigger can add that 
beer to Beers, with a NULL manufacturer.
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Example: Trigger Definition

CREATE TRIGGER BeerTrig

AFTER INSERT ON Sells

REFERENCING NEW ROW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.beer NOT IN

(SELECT name FROM Beers))

INSERT INTO Beers(name)

VALUES(NewTuple.beer);

The event

The condition

The action

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides 



56

Options: CREATE TRIGGER

� CREATE TRIGGER <name>

� Option:

CREATE OR REPLACE TRIGGER <name>

� Useful if there is a trigger with that name and 
you want to modify the trigger.
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Options: The Condition

� AFTER can be BEFORE.

� Also, INSTEAD OF, if the relation is a view.

� A great way to execute view modifications: have 
triggers translate them to appropriate modifications 
on the base tables.

� INSERT can be DELETE or UPDATE.

� And UPDATE can be UPDATE . . . ON a 
particular attribute.
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Options: FOR EACH ROW

� Triggers are either row-level or statement-
level.

� FOR EACH ROW indicates row-level; its 
absence indicates statement-level.

� Row level triggers are executed once for each 
modified tuple.

� Statement-level triggers execute once for an 
SQL statement, regardless of how many 
tuples are modified.
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Options: REFERENCING

� INSERT statements imply a new tuple (for row-
level) or new set of tuples (for statement-level).

� DELETE implies an old tuple or table.

� UPDATE implies both.

� Refer to these by

[NEW OLD][TUPLE TABLE] AS <name>
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Options: The Condition

� Any boolean-valued condition is appropriate.

� It is evaluated before or after the triggering 
event, depending on whether BEFORE or 
AFTER is used in the event.

� Access the new/old tuple or set of tuples 
through the names declared in the 
REFERENCING clause.
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Options: The Action

� There can be more than one SQL statement in 
the action.

� Surround by BEGIN . . . END if there is more 
than one.

� But queries make no sense in an action, so we 
are really limited to modifications.
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Another Example

� Using Sells(bar, beer, price) and a unary relation 
RipoffBars(bar) created for the purpose, maintain 
a list of bars that raise the price of any beer by 
more than $1.
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The Trigger

CREATE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

REFERENCING

OLD ROW as old

NEW ROW as new

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

INSERT INTO RipoffBars

VALUES(new.bar);

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars
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Triggers on Views

� Generally, it is impossible to modify a view, 
because it doesn’t exist.

� But an INSTEAD OF trigger lets us interpret 
view modifications in a way that makes sense.

� Example: We’ll design a view Synergy that 
has (drinker, beer, bar) triples such that the 
bar serves the beer, the drinker frequents the 
bar and likes the beer.
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Example: The View

CREATE VIEW Synergy AS

SELECT Likes.drinker, Likes.beer, Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker = Frequents.drinker

AND Likes.beer = Sells.beer

AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

DB1Lect_07_SQL_DDL (Hajas, ELTE) --- based on Ullman‘s book and slides 



66

Interpreting a View Insertion

� We cannot insert into Synergy --- it is a view.

� But we can use an INSTEAD OF trigger to turn a 
(drinker, beer, bar) triple into three insertions of 
projected pairs, one for each of Likes, Sells, and 
Frequents.

� The Sells.price will have to be NULL.
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The Trigger

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

REFERENCING NEW ROW AS n

FOR EACH ROW

BEGIN

INSERT INTO LIKES VALUES(n.drinker, n.beer);

INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);

INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;
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