Databases 1

Functional Dependencies

Relational Schema Design

- Goal of relational schema design is to avoid anomalies and redundancy.
- Update anomaly : one occurrence of a fact is changed, but not all occurrences.
- Deletion anomaly : valid fact is lost when a tuple is deleted.

Example of Bad Design

Drinkers(name, addr, beersLiked, manf, favBeer)

name	addr	beersLiked	manf	favBeer
Janeway	Voyager	Bud	A.B. WickedAle	
Janeway	???	WickedAle	Pete's ???	
Spock	Enterprise	Bud	???	Bud

Data is redundant, because each of the ???'s can be figured out by using the FD's name -> addr favBeer and beersLiked -> manf.

This Bad Design Also Exhibits Anomalies

name	addr	beersLiked	manf	favBeer
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	Voyager	WickedAle	Pete's WickedAle	
Spock	Enterprise	Bud	A.B.	Bud

- Update anomaly: if Janeway is transferred to Intrepid, will we remember to change each of her tuples?
- Deletion anomaly: If nobody likes Bud, we lose track of the fact that Anheuser-Busch manufactures Bud.

Decomposition

- Definition

$$
d=\left\{R_{1}, \ldots, R_{k}\right\} \text { decomposition, if } R_{1} \cup \ldots \cup R_{k}=R .
$$

- Example: $R=A B C D E, d=\{A D, B C E, A B E\}$

$$
R_{1}=A D, R_{2}=B C E, R_{3}=A B E
$$

Functional Dependencies

- $X \rightarrow Y$ is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on all attributes in set Y.
- Say " X-> Y holds in R."
- Convention: ..., X, Y, Z represent sets of attributes; A, B, C, \ldots represent single attributes.
- Convention: no set formers in sets of attributes, just $A B C$, rather than $\{A, B, C\}$.

Splitting Right Sides of FD's

- $X->A_{1} A_{2} \ldots A_{n}$ holds for R exactly when each of $X \rightarrow>A_{1}, X->A_{2}, \ldots, X \rightarrow A_{n}$ hold for R.
- Example: $A->B C$ is equivalent to $A->B$ and $A->C$.
- There is no splitting rule for left sides.
- We'll generally express FD's with singleton right sides.

Example: FD's

Drinkers(name, addr, beersLiked, manf, favBeer)
Reasonable FD's to assert:

1. name -> addr favBeer

Note this FD is the same as name -> addr and name -> favBeer.
2. beersLiked -> manf

Example: Possible Data

name	addr	beersLiked	manf	favBeer
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	- Voyager	WickedAle	Pete's	WičkedAle
Spock	Enterprise	Bud	A.B.	Bud

Because beersLiked -> manf

Keys of Relations

K is a superkey for relation R if K functionally determines all of R.
K is a key for R if K is a superkey, but no proper subset of K is a superkey.

Example: Superkey

Drinkers(name, addr, beersLiked, manf, favBeer)

- \{name, beersLiked\} is a superkey because together these attributes determine all the other attributes.
- name -> addr favBeer
- beersLiked -> manf

Example: Key

- \{name, beersLiked\} is a key because neither \{name\} nor \{beersLiked\} is a superkey.
- name doesn't -> manf; beersLiked doesn't -> addr.
- There are no other keys, but lots of superkeys. - Any superset of \{name, beersLiked\}.

Where Do Keys Come From?

1. Just assert a key K.

- The only FD's are $K->A$ for all attributes A.

2. Assert FD's and deduce the keys by systematic exploration.

More FD's From "Physics"

- Example: "no two courses can meet in the same room at the same time" tells us: hour room -> course.
- $A B C$ relational schemas $A B->C$ and $C->B$
- $A=$ street, $B=$ city, $C=$ zip code.
- Keys: $\{A, B\}$ and $\{A, C\}$, too.

Inferring FD's

- We are given FD's
$X_{1} \rightarrow A_{1}, X_{2}->A_{2}, \ldots, X_{n} \rightarrow A_{n}$, and we want to know whether an FD Y-> B must hold in any relation that satisfies the given FD's.
- Example: If $A->B$ and $B->C$ hold, surely $A->C$ holds, even if we don't say so.
- Important for design of good relation schemas.

Armstrong axioms

Let $R(U)$ relation schema and $X, Y \subseteq U$, and denote $X Y$ is the union of attribute-sets X and Y Let F functional dependencies
Armstrong axioms:

- A1 (reflexivity or trivial fd): if $\mathrm{Y} \subseteq \mathrm{X}$ then $\mathrm{X} \rightarrow \mathrm{Y}$.
- A2 (augmentation): if $X \rightarrow Y$ then $X Z \rightarrow Y Z$.
- A3 (tranzitivity): if $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$ then $\mathrm{X} \rightarrow \mathrm{Z}$.

More rules about functional dependencies

4. Splitting (decomposition) rule $X \rightarrow Y$ and $Z \subseteq Y$ then $X \rightarrow Z$.
5. Combining (union) rule $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow Y Z$.
6. Pseudotranzitivity $X \rightarrow Y$ and $W Y \rightarrow Z$ then $X W \rightarrow Z$.
Proof (4): Reflexivity axiom $Y \rightarrow Z$, and tranzitivity axiom $X \rightarrow Z$.
Proof (5): Augmentation axioms $X X \rightarrow Y X$ and $Y X \rightarrow Y Z$,
$X X=X$, tranzitivity axioms $X \rightarrow Y Z$.
Proof (6): Augmentation axioms $\mathrm{XW} \rightarrow \mathrm{YW}$ and $\mathrm{YW}=\mathrm{WY}$, tranzitivity axiom $\mathrm{XW} \rightarrow \mathrm{Z}$.

Closure of set of attributes

- Definition: $X^{+(F)}:=\{A|F|-X \rightarrow A\}$
- The closure of X under the FD's in S is the set of attributes A such that every relation that satisfies all the FD's in set S also satisfies $X \rightarrow A$, that is $X \rightarrow$ A follows from the FD's of S.
- Lemma: $F \mid X \rightarrow Y \Leftrightarrow Y \subseteq X^{+}$.

Proof: (\Rightarrow) if $\forall A \in Y$ reflexivity and transitivity rule $F \mid X \rightarrow A$, so $Y \subseteq X^{+}$.
(\Leftarrow) if $\forall A \in Y \subseteq X^{+}$then $F _X \rightarrow A$, union rule $F-X \rightarrow Y$.

Closure Test for Y^{+}

- Input: Y set of attributes, F funct.dependencies
- Output: Y+
- Algorithm Y^{+}:
loop

$$
\begin{aligned}
& Y(0):=Y \\
& Y(n+1):=Y(n) \cup\{A \mid X \rightarrow Z \in F, A \in Z, X \subseteq Y(n)\} \\
& \text { if } Y(v+1)=Y(v) \text {, then leave the loop }
\end{aligned}
$$

end of the loop
Output: $\mathrm{Y}(\mathrm{v})=\mathrm{Y}^{+}$.

Closure Test

- An easier way to test is to compute the closure of Y, denoted Y^{+}.
- Basis: $Y^{+}=Y$.
- Induction: Look for an FD's left side X that is a subset of the current Y^{+}. If the FD is $X->A$, add A to Y^{+}.

Example: Closure Test

$\mathrm{R}=\mathrm{ABCDEFG},\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{B} \rightarrow \mathrm{G}, \mathrm{CD} \rightarrow \mathrm{EG}, \mathrm{BG} \rightarrow \mathrm{E}\}$
$X=A B F, X^{+}=$?
$X(0):=A B F$
$X(1):=A B F \cup\{C, G\}=A B C F G$
$X(2):=A B C F G \cup\{C, G, E\}=A B C E F G$
$X(3):=A B C E F G$
$X^{+}=A B C E F G$

Exercises (Book 3.5.2.)

Consider the relation Courses (C, T, H, R, S, G), $\mathrm{F}=\{\mathrm{C} \rightarrow \mathrm{T}, \mathrm{HR} \rightarrow \mathrm{C}, \mathrm{HT} \rightarrow \mathrm{R}, \mathrm{HS} \rightarrow \mathrm{R}, \mathrm{CS} \rightarrow \mathrm{G}\}$
whose attributes may be thought of informally as course, teacher, hour, room, student, and grade.
Let the set of FD's for Courses be $\mathrm{C} \rightarrow T, H R \rightarrow C$, $H T \rightarrow R, H S \rightarrow R$, and $C S \rightarrow G$.
Intuitively, the first says that a course has a unique teacher, and the second says that only one course can meet in a given room at a given hour. The third says that a teacher can be in only one room at a given hour, and the fourth says the same about students. The last says that students get only one grade in a course. What are all the keys for Courses?

Finding All Implied FD's - Projecting FD's

- Motivation: "normalization," the process where we break a relation schema into two or more schemas.
- Example: $A B C D$ with FD's $A B->C, C->D$, and $D->A$.
- Decompose into $A B C, A D$. What FD's hold in $A B C$?
- Not only $A B->C$, but also C->A !

Why?

ABCD

$d_{1}=d_{2}$ because C -> D $a_{1}=a_{2}$ because D -> A
ABC

$a_{1} b_{1} c$

$a_{2} b_{2} c$
Thus, tuples in the projection with equal C's have equal A's;
$C \rightarrow A$.

Basic Idea

1. Start with given FD's and find all nontrivial FD's that follow from the given FD's.

- Nontrivial = right side not contained in the left.

2. Restrict to those FD's that involve only attributes of the projected schema.

Simple, Exponential Algorithm

1. For each set of attributes X, compute X^{+}.
2. Add $X->A$ for all A in $X^{+}-X$.
3. However, drop $X Y$->A whenever we discover $X->A$.

Because $X Y$->A follows from $X->A$ in any projection.
4. Finally, use only FD's involving projected attributes.

A Few Tricks

- No need to compute the closure of the empty set or of the set of all attributes.
- If we find $X^{+}=$all attributes, so is the closure of any superset of X.

Example: Projecting FD's

- ABC with FD's A->B and B->C. Project onto $A C$.
- $A^{+}=A B C$; yields $A->B, A->C$.
- We do not need to compute $A B+$ or $A C+$.
- $B^{+}=B C$; yields $B->C$.
- $C^{+}=C$; yields nothing.
- $B C^{+}=B C$; yields nothing.
- Resulting FD's: $A->B, A->C$, and $B->C$.
- Projection onto $A C$: $A->C$.
- Only FD that involves a subset of $\{A, C\}$.

