
Databases 1

Functional Dependencies

Relational Schema Design

 Goal of relational schema design is to avoid

anomalies and redundancy.

 Update anomaly : one occurrence of a fact is

changed, but not all occurrences.

 Deletion anomaly : valid fact is lost when a

tuple is deleted.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 2

Example of Bad Design

Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer

Janeway Voyager Bud A.B. WickedAle

Janeway ??? WickedAle Pete’s ???

Spock Enterprise Bud ??? Bud

Data is redundant, because each of the ???’s can be figured

out by using the FD’s name -> addr favBeer and

beersLiked -> manf.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 3

This Bad Design Also Exhibits Anomalies

name addr beersLiked manf favBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete’s WickedAle

Spock Enterprise Bud A.B. Bud

• Update anomaly: if Janeway is transferred to Intrepid,

 will we remember to change each of her tuples?

• Deletion anomaly: If nobody likes Bud, we lose track

 of the fact that Anheuser-Busch manufactures Bud.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 4

Decomposition

 Definition

 d={R1,...,Rk} decomposition, if R1...Rk=R.

 Example:

 R=ABCDE, d={AD,BCE,ABE}

 R1=AD, R2=BCE, R3=ABE

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 5

Functional Dependencies

 X ->Y is an assertion about a relation R that

whenever two tuples of R agree on all the

attributes of X, then they must also agree on all

attributes in set Y.

 Say “X ->Y holds in R.”

 Convention: …, X, Y, Z represent sets of attributes; A,

B, C,… represent single attributes.

 Convention: no set formers in sets of attributes, just

ABC, rather than {A,B,C }.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 6

Splitting Right Sides of FD’s

 X->A1A2…An holds for R exactly when each

of X->A1, X->A2,…, X->An hold for R.

 Example: A->BC is equivalent to A->B and

A->C.

 There is no splitting rule for left sides.

 We’ll generally express FD’s with singleton

right sides.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 7

Example: FD’s

Drinkers(name, addr, beersLiked, manf, favBeer)

 Reasonable FD’s to assert:

1. name -> addr favBeer

 Note this FD is the same as

 name -> addr and

 name -> favBeer.

2. beersLiked -> manf

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 8

Example: Possible Data

name addr beersLiked manf favBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete’s WickedAle

Spock Enterprise Bud A.B. Bud

Because name -> addr Because name -> favBeer

Because beersLiked -> manf

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 9

Keys of Relations

 K is a superkey for relation R if

K functionally determines all of R.

 K is a key for R if K is a superkey, but

no proper subset of K is a superkey.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 10

Example: Superkey

Drinkers(name, addr, beersLiked, manf, favBeer)

 {name, beersLiked} is a superkey because

together these attributes determine all the other

attributes.

 name -> addr favBeer

 beersLiked -> manf

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 11

Example: Key

 {name, beersLiked} is a key because neither

{name} nor {beersLiked} is a superkey.

 name doesn’t -> manf; beersLiked doesn’t ->

addr.

 There are no other keys, but lots of superkeys.

 Any superset of {name, beersLiked}.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 12

Where Do Keys Come From?

1. Just assert a key K.

 The only FD’s are K -> A for all

attributes A.

2. Assert FD’s and deduce the keys by

systematic exploration.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 13

More FD’s From “Physics”

 Example: “no two courses can meet in the

same room at the same time” tells us:

hour room -> course.

 ABC relational schemas AB ->C and C ->B

 A = street, B = city, C = zip code.

 Keys: {A,B } and {A,C }, too.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 14

Inferring FD’s

 We are given FD’s

X1 -> A1, X2 -> A2,…, Xn -> An ,

and we want to know whether an FD Y -> B

must hold in any relation that satisfies the

given FD’s.

 Example: If A -> B and B -> C hold, surely

A -> C holds, even if we don’t say so.

 Important for design of good relation schemas.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 15

Armstrong axioms

Let R(U) relation schema and X,Y U, and denote

XY is the union of attribute-sets X and Y

Let F functional dependencies

Armstrong axioms:

 A1 (reflexivity or trivial fd): if YX then XY.

 A2 (augmentation): if XY then XZYZ.

 A3 (tranzitivity): if XY and YZ then XZ.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 16

More rules about functional dependencies

4. Splitting (decomposition) rule
 XY and Z Y then XZ.
5. Combining (union) rule
 XY and XZ then XYZ.
6. Pseudotranzitivity
 XY and WYZ then XWZ.

Proof (4): Reflexivity axiom YZ, and

 tranzitivity axiom XZ.

Proof (5): Augmentation axioms XXYX and YXYZ,

 XX=X, tranzitivity axioms XYZ.

Proof (6): Augmentation axioms XWYW and YW=WY,

 tranzitivity axiom XWZ.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 17

Closure of set of attributes

 Definition: X+(F):={A | F|XA}

 The closure of X under the FD’s in S is the set of

attributes A such that every relation that satisfies

all the FD’s in set S also satisfies XA, that is

XA follows from the FD’s of S.

 Lemma: F|XY Y X+.

 Proof: () if AY reflexivity and transitivity rule

F|XA, so Y X+.

 () if AY X+ then F|XA, union rule

F|XY.

 DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 18

Closure Test for Y+

 Input: Y set of attributes, F funct.dependencies

 Output: Y+

 Algorithm Y+ :

 loop

 Y(0):=Y

 Y(n+1):= Y(n) {A| XZF, AZ, XY(n)}

 if Y(v+1)=Y(v), then leave the loop

 end of the loop

 Output: Y(v)=Y+.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 19

Closure Test

 An easier way to test is to compute the closure

of Y, denoted Y +.

 Basis: Y + = Y.

 Induction: Look for an FD’s left side X that is a

subset of the current Y +. If the FD is X -> A, add

A to Y +.

X A

Y+

new Y+

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 20

Example: Closure Test

R=ABCDEFG, {ABC, BG, CDEG, BG E}

X=ABF, X+=?

 X(0):=ABF

 X(1):=ABF{C,G}=ABCFG

 X(2):=ABCFG {C,G,E}=ABCEFG

 X(3):=ABCEFG

 X+= ABCEFG

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 21

Exercises (Book 3.5.2.)

Consider the relation Courses(C ,T ,H ,R ,S ,G),

F= {CT, HRC, HTR, HSR, CSG}

whose attributes may be thought of informally as
course, teacher, hour, room, student, and grade.

Let the set of FD’s for Courses be C T, HR C,
HT R, HS R, and CS G.

Intuitively, the first says that a course has a unique
teacher, and the second says that only one course can
meet in a given room at a given hour. The third says
that a teacher can be in only one room at a given hour,
and the fourth says the same about students. The last
says that students get only one grade in a course.

What are all the keys for Courses?

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 22

Finding All Implied FD’s - Projecting FD’s

 Motivation: “normalization,” the process where

we break a relation schema into two or more

schemas.

 Example: ABCD with FD’s AB ->C, C ->D, and

D ->A.

 Decompose into ABC, AD. What FD’s hold in

ABC ?

 Not only AB ->C, but also C ->A !

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 23

Why?

a1b1c ABC

ABCD

a2b2c

Thus, tuples in the projection

with equal C’s have equal A’s;

C -> A.

a1b1cd1 a2b2cd2

comes

from

d1=d2 because

C -> D

a1=a2 because

D -> A

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 24

Basic Idea

1. Start with given FD’s and find all nontrivial

FD’s that follow from the given FD’s.

 Nontrivial = right side not contained in the

left.

2. Restrict to those FD’s that involve only

attributes of the projected schema.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 25

Simple, Exponential Algorithm

1. For each set of attributes X, compute X +.

2. Add X ->A for all A in X + - X.

3. However, drop XY ->A whenever we discover

X ->A.

 Because XY ->A follows from X ->A in any

projection.

4. Finally, use only FD’s involving projected

attributes.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 26

A Few Tricks

 No need to compute the closure of the empty set

or of the set of all attributes.

 If we find X + = all attributes, so is the closure of

any superset of X.

DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 27

Example: Projecting FD’s

 ABC with FD’s A ->B and B ->C. Project

onto AC.

 A +=ABC ; yields A ->B, A ->C.

 We do not need to compute AB + or AC +.

 B +=BC ; yields B ->C.

 C +=C ; yields nothing.

 BC +=BC ; yields nothing.

 Resulting FD’s: A ->B, A ->C, and B ->C.

 Projection onto AC : A ->C.

 Only FD that involves a subset of {A,C }.

 DB1Lect_08_FD’s (Hajas, ELTE) --- based on Ullman's book and slides 28

