
Databases 1 

Functional Dependencies 



Relational Schema Design 

 Goal of relational schema design is to avoid 

anomalies and redundancy. 

 Update anomaly : one occurrence of a fact is 

changed, but not all occurrences. 

 Deletion anomaly : valid fact is lost when a 

tuple is deleted. 
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Example of  Bad Design 

Drinkers(name, addr, beersLiked, manf, favBeer) 

 

name  addr  beersLiked manf favBeer 

Janeway Voyager Bud  A.B. WickedAle 

Janeway ???  WickedAle Pete’s ??? 

Spock  Enterprise Bud  ??? Bud 

Data is redundant, because each of the ???’s can be figured 

out by using the FD’s name -> addr favBeer and 

beersLiked -> manf.  
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This Bad Design Also Exhibits Anomalies 

name  addr  beersLiked manf favBeer 

Janeway Voyager Bud  A.B. WickedAle 

Janeway Voyager WickedAle Pete’s WickedAle 

Spock  Enterprise Bud  A.B. Bud 

• Update anomaly: if Janeway is transferred to Intrepid, 

  will we remember to change each of her tuples? 

• Deletion anomaly: If nobody likes Bud, we lose track 

  of the fact that Anheuser-Busch manufactures Bud. 
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Decomposition 

 Definition 

    d={R1,...,Rk} decomposition, if R1...Rk=R. 

 Example:  

   R=ABCDE, d={AD,BCE,ABE}  

                      R1=AD, R2=BCE, R3=ABE 
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Functional Dependencies 

 X ->Y  is an assertion about a relation R  that 

whenever two tuples of R  agree on all the 

attributes of X, then they must also agree on all 

attributes in set Y. 

 Say “X ->Y  holds in R.” 

 Convention: …, X, Y, Z  represent sets of attributes; A, 

B, C,… represent single attributes. 

 Convention: no set formers in sets of attributes, just 

ABC, rather than {A,B,C }. 
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Splitting Right Sides of  FD’s 

 X->A1A2…An  holds for R  exactly when each 

of X->A1, X->A2,…, X->An  hold for R. 

 Example: A->BC  is equivalent to A->B  and 

A->C. 

  There is no splitting rule for left sides. 

 We’ll generally express FD’s with singleton 

right sides. 
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Example: FD’s 

Drinkers(name, addr, beersLiked, manf, favBeer) 

 Reasonable FD’s to assert: 

1. name -> addr favBeer 

 Note this FD is the same as  

   name -> addr and  

   name -> favBeer. 

2. beersLiked -> manf 
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Example: Possible Data 

name  addr     beersLiked    manf favBeer 

Janeway Voyager    Bud     A.B.  WickedAle 

Janeway Voyager    WickedAle    Pete’s WickedAle 

Spock  Enterprise    Bud     A.B.  Bud 

Because name -> addr Because name -> favBeer 

Because beersLiked -> manf 

DB1Lect_08_FD’s (Hajas, ELTE)  --- based on Ullman's book and slides  9 



Keys of  Relations 

 K  is a superkey  for relation R  if              

K  functionally determines all of R. 

 K  is a key  for R  if K  is a superkey, but 

no proper subset of K  is a superkey. 
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Example: Superkey 

Drinkers(name, addr, beersLiked, manf, favBeer) 

  {name, beersLiked} is a superkey because 

together these attributes determine all the other 

attributes. 

 name -> addr favBeer 

 beersLiked -> manf 
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Example: Key 

 {name, beersLiked} is a key because neither 

{name} nor {beersLiked} is a superkey. 

 name doesn’t -> manf; beersLiked doesn’t -> 

addr. 

 There are no other keys, but lots of superkeys. 

 Any superset of {name, beersLiked}. 
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Where Do Keys Come From? 

1. Just assert a key K. 

 The only FD’s are K -> A  for all 

attributes A. 

2. Assert FD’s and deduce the keys by 

systematic exploration. 
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More FD’s From “Physics” 

 Example: “no two courses can meet in the 

same room at the same time” tells us:            

hour room -> course. 

 

 ABC relational schemas AB ->C and C ->B 

 A = street, B = city, C = zip code. 

 Keys: {A,B } and {A,C }, too. 
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Inferring FD’s 

 We are given FD’s                                            

X1 -> A1, X2 -> A2,…, Xn -> An ,                               

and we want to know whether an FD Y -> B  

must hold in any relation that satisfies the 

given FD’s. 

 Example: If A -> B  and B -> C  hold, surely   

A -> C  holds, even if we don’t say so. 

 Important for design of good relation schemas. 
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Armstrong axioms  

Let R(U) relation schema and X,Y  U, and denote 

XY is the union of attribute-sets X and Y 

Let F functional dependencies 

Armstrong axioms: 

 A1 (reflexivity or trivial fd): if YX then XY. 

 A2 (augmentation): if XY then XZYZ. 

 A3 (tranzitivity): if XY and YZ then XZ. 
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More rules about functional dependencies 

4.  Splitting (decomposition) rule 
     XY and Z Y then XZ. 
5.  Combining (union) rule 
     XY and XZ then XYZ.  
6.  Pseudotranzitivity  
     XY and WYZ then XWZ. 

Proof (4): Reflexivity axiom YZ, and  

                tranzitivity axiom XZ. 

Proof (5): Augmentation axioms XXYX and YXYZ,   

                XX=X, tranzitivity axioms XYZ. 

Proof (6): Augmentation axioms XWYW and YW=WY,                  

                tranzitivity axiom XWZ. 

DB1Lect_08_FD’s (Hajas, ELTE)  --- based on Ullman's book and slides  17 



Closure of  set of  attributes 

 Definition: X+(F):={A |  F|XA}  

 The closure of X under the FD’s in S is the set of 

attributes A such that every relation that satisfies 

all the FD’s in set S also satisfies XA,  that is 

XA follows from the FD’s of S. 

 Lemma: F|XY  Y X+. 

   Proof: () if AY reflexivity and transitivity rule 

F|XA, so Y X+.  

   () if AY X+ then  F|XA, union rule 

F|XY. 
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Closure Test for Y+ 

 Input: Y set of attributes, F funct.dependencies 

 Output: Y+   

 Algorithm Y+ : 

      loop  

  Y(0):=Y 

  Y(n+1):= Y(n)  {A| XZF, AZ, XY(n)} 

  if Y(v+1)=Y(v), then leave the loop   

      end of the loop 

      Output: Y(v)=Y+.  
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Closure Test 

 An easier way to test is to compute the closure  

of Y, denoted Y +. 

 Basis: Y + = Y. 

 Induction: Look for an FD’s left side X that is a 

subset of the current Y +.  If the FD is X -> A, add 

A to Y +. 

X A 

Y+ 

new Y+ 
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Example: Closure Test 

R=ABCDEFG, {ABC, BG, CDEG, BG E} 

X=ABF, X+=? 

  X(0):=ABF 

  X(1):=ABF{C,G}=ABCFG 

  X(2):=ABCFG {C,G,E}=ABCEFG 

  X(3):=ABCEFG 

  X+= ABCEFG 
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Exercises (Book 3.5.2.) 

Consider the relation Courses(C ,T ,H ,R ,S ,G ),  

F= {CT, HRC, HTR, HSR, CSG} 

whose attributes may be thought of informally as 
course, teacher, hour, room, student, and grade.  

Let the set of FD’s for Courses be C  T, HR   C,            
HT   R, HS   R, and CS   G.  

Intuitively, the first says that a course has a unique 
teacher, and the second says that only one course can 
meet in a given room at a given hour. The third says 
that a teacher can be in only one room at a given hour, 
and the fourth says the same about students. The last 
says that students get only one grade in a course. 

What are all the keys for Courses? 
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Finding All Implied FD’s - Projecting FD’s 

 Motivation: “normalization,” the process where 

we break a relation schema into two or more 

schemas. 

 Example: ABCD  with FD’s AB ->C, C ->D, and 

D ->A. 

 Decompose into ABC, AD.  What FD’s hold in 

ABC ? 

 Not only AB ->C, but also C ->A ! 
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Why? 

a1b1c ABC 

ABCD 

a2b2c 

Thus, tuples in the projection 

with equal C’s have equal A’s; 

C -> A. 

a1b1cd1 a2b2cd2 

comes 

from 

d1=d2 because 

C -> D 

a1=a2 because 

D -> A 
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Basic Idea 

1. Start with given FD’s and find all nontrivial  

FD’s that follow from the given FD’s. 

 Nontrivial = right side not contained in the 

left. 

2. Restrict to those FD’s that involve only 

attributes of the projected schema. 
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Simple, Exponential Algorithm 

1. For each set of attributes X, compute X +. 

2. Add X ->A  for all A in X + - X. 

3. However, drop XY ->A  whenever we discover  

X ->A. 

 Because XY ->A  follows from X ->A  in any 

projection. 

4. Finally, use only FD’s involving projected 

attributes. 
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A Few Tricks 

 No need to compute the closure of the empty set 

or of the set of all attributes. 

 If we find X + = all attributes, so is the closure of 

any superset of X. 
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Example: Projecting FD’s 

 ABC  with FD’s A ->B  and B ->C.  Project 

onto AC. 

 A +=ABC ; yields A ->B, A ->C. 

 We do not need to compute AB + or AC +. 

 B +=BC ; yields B ->C. 

 C +=C ; yields nothing. 

 BC +=BC ; yields nothing. 

 Resulting FD’s: A ->B, A ->C, and  B ->C. 

 Projection onto AC : A ->C. 

 Only FD that involves a subset of {A,C }. 
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