
Databases 1

Relational Schema Design

Boyce-Codd Normal Form

 We say a relation R is in BCNF if whenever

X ->Y is a nontrivial FD that holds in R, X is

a superkey.

 Remember: nontrivial means Y is not

contained in X.

 Remember, a superkey is any superset of

a key (not necessarily a proper superset).

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 2

Example

Drinkers(name, addr, beersLiked, manf, favBeer)

FD’s: name->addr favBeer, beersLiked->manf

 Only key is {name, beersLiked}.

 In each FD, the left side is not a superkey.

 Any one of these FD’s shows Drinkers is

not in BCNF

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 3

Another Example

Beers(name, manf, manfAddr)

FD’s: name->manf, manf->manfAddr

 Only key is {name} .

 name->manf does not violate BCNF, but

manf->manfAddr does.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 4

Decomposition into BCNF

 Given: relation R with FD’s F.

 Look among the given FD’s for a BCNF

violation X ->Y.

 If any FD following from F violates BCNF,

then there will surely be an FD in F itself that

violates BCNF.

 Compute X +.

 Not all attributes, or else X is a superkey.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 5

Decompose R Using X -> Y

 Replace R by relations with schemas:

1. R1 = X +.

2. R2 = R – (X + – X).

 Project given FD’s F onto the two new

relations.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 6

Decomposition Picture

R-X + X X +-X

R2

R1

R

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 7

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)

F = name->addr, name -> favBeer,
 beersLiked->manf

 Pick BCNF violation name->addr.

 Close the left side: {name}+ = {name, addr,
favBeer}.

 Decomposed relations:

1. Drinkers1(name, addr, favBeer)

2. Drinkers2(name, beersLiked, manf)

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 8

Example --- Continued

 We are not done; we need to check Drinkers1
and Drinkers2 for BCNF.

 Projecting FD’s is easy here.

 For Drinkers1(name, addr, favBeer), relevant
FD’s are name->addr and name->favBeer.

 Thus, {name} is the only key and Drinkers1 is
in BCNF.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 9

Example --- Continued

 For Drinkers2(name, beersLiked, manf), the
only FD is beersLiked->manf, and the only
key is {name, beersLiked}.

 Violation of BCNF.

 beersLiked+ = {beersLiked, manf}, so we
decompose Drinkers2 into:

1. Drinkers3(beersLiked, manf)

2. Drinkers4(name, beersLiked)

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 10

Example --- Concluded

 The resulting decomposition of Drinkers :

1. Drinkers1(name, addr, favBeer)

2. Drinkers3(beersLiked, manf)

3. Drinkers4(name, beersLiked)

 Notice: Drinkers1 tells us about drinkers,

Drinkers3 tells us about beers, and Drinkers4

tells us the relationship between drinkers and

the beers they like.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 11

Testing for a Lossless Join

 If we project R onto R1, R2,…, Rk , can we

recover R by rejoining?

 Any tuple in R can be recovered from its

projected fragments.

 So the only question is: when we rejoin, do we

ever get back something we didn’t have

originally?

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 12

The Chase Test

 Suppose tuple t comes back in the join.

 Then t is the join of projections of some tuples of

R, one for each Ri of the decomposition.

 Can we use the given FD’s to show that one of

these tuples must be t ?

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 13

The Chase – (2)

 Start by assuming t = abc… .

 For each i, there is a tuple si of R that has a, b,

c,… in the attributes of Ri.

 si can have any values in other attributes.

 We’ll use the same letter as in t, but with a

subscript, for these components.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 14

Example: The Chase

 Let R = ABCD, and the decomposition be AB,

BC, and CD.

 Let the given FD’s be C->D and B ->A.

 Suppose the tuple t = abcd is the join of tuples

projected onto AB, BC, CD.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 15

The Tableau

 A B C D

 a b c1 d1

 a2 b c d2

 a3 b3 c d

d

Use C->D

a

Use B ->A

We’ve proved the

second tuple must be t.

The tuples

of R pro-

jected onto

AB, BC, CD.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 16

Summary of the Chase

1. If two rows agree in the left side of a FD, make

their right sides agree too.

2. Always replace a subscripted symbol by the

corresponding unsubscripted one, if possible.

3. If we ever get an unsubscripted row, we know

any tuple in the project-join is in the original (the

join is lossless).

4. Otherwise, the final tableau is a

counterexample.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 17

Example: Lossy Join

 Same relation R = ABCD and same

decomposition.

 But with only the FD C->D.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 18

The Tableau

 A B C D

 a b c1 d1

 a2 b c d2

 a3 b3 c d d

Use C->D
These three tuples are an example

R that shows the join lossy. abcd

is not in R, but we can project and

rejoin to get abcd.

These projections

rejoin to form

abcd.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 19

Third Normal Form -- Motivation

 There is one structure of FD’s that causes

trouble when we decompose.

 AB ->C and C ->B.

 Example: A = street address, B = city,

C = zip code.

 There are two keys, {A,B } and {A,C }.

 C ->B is a BCNF violation, so we must

decompose into AC, BC.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 20

We Cannot Enforce FD’s

 The problem is that if we use AC and BC as

our database schema, we cannot enforce the

FD AB ->C by checking FD’s in these

decomposed relations.

 Example with A = street, B = city, and C = zip

on the next slide.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 21

An Unenforceable FD

 street zip

545 Tech Sq. 02138

545 Tech Sq. 02139

 city zip

Cambridge 02138

Cambridge 02139

Join tuples with equal zip codes.

 street city zip

545 Tech Sq. Cambridge 02138

545 Tech Sq. Cambridge 02139

Although no FD’s were violated in the decomposed relations,

FD street city -> zip is violated by the database as a whole.
DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 22

3NF Let’s Us Avoid This Problem

 3rd Normal Form (3NF) modifies the BCNF

condition so we do not have to decompose in

this problem situation.

 An attribute is prime if it is a member of any

key.

 X ->A violates 3NF if and only if X is not a

superkey, and also A is not prime.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 23

Example: 3NF

 In our problem situation with FD’s

AB ->C and C ->B, we have keys

AB and AC.

 Thus A, B, and C are each prime.

 Although C ->B violates BCNF, it does

not violate 3NF.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 24

What 3NF and BCNF Give You

 There are two important properties of a

decomposition:

1. Lossless Join : it should be possible to

project the original relations onto the

decomposed schema, and then reconstruct

the original.

2. Dependency Preservation : it should be

possible to check in the projected relations

whether all the given FD’s are satisfied.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 25

3NF and BCNF -- Continued

 We can get (1) with a BCNF decomposition.

 We can get both (1) and (2) with a 3NF

decomposition.

 But we can’t always get (1) and (2) with a BCNF

decomposition.

 street-city-zip is an example.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 26

3NF Synthesis Algorithm

 We can always construct a decomposition into

3NF relations with a lossless join and

dependency preservation.

 Need minimal basis for the FD’s:

1. Right sides are single attributes.

2. No FD can be removed.

3. No attribute can be removed from a left side.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 27

Constructing a Minimal Basis

1. Split right sides.

2. Repeatedly try to remove an FD and see if the

remaining FD’s are equivalent to the original.

3. Repeatedly try to remove an attribute from a

left side and see if the resulting FD’s are

equivalent to the original.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 28

3NF Synthesis – (2)

 One relation for each FD in the minimal basis.

 Schema is the union of the left and right sides.

 If no key is contained in an FD, then add one

relation whose schema is some key.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 29

Example: 3NF Synthesis

 Relation R = ABCD.

 FD’s A->B and A->C.

 Decomposition: AB and AC from the FD’s, plus

AD for a key.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 30

Why It Works

 Preserves dependencies: each FD from a

minimal basis is contained in a relation, thus

preserved.

 Lossless Join: use the chase to show that the

row for the relation that contains a key can be

made all-unsubscripted variables.

 3NF: hard part – a property of minimal bases.

DB1Lect_09_NF’s (Hajas, ELTE) --- based on Ullman's book and slides 31

