
Copyright © 2004, Oracle. All rights reserved.

Displaying Data

from Multiple Tables

5-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do

the following:

• Write SELECT statements to access data from

more than one table using equijoins and non-

equijoins

• Join a table to itself by using a self-join

• Generate a Cartesian product of all rows from two

or more tables

• View data that generally does not meet a join

condition by using outer joins

5-3 Copyright © 2004, Oracle. All rights reserved.

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

&

&

5-4 Copyright © 2004, Oracle. All rights reserved.

Types of Joins

Joins that are compliant with the SQL:1999 standard

include the following:

• Cross joins

• Natural joins

• USING clause

• Full (or two-sided) outer joins

• Arbitrary join conditions for outer joins

5-5 Copyright © 2004, Oracle. All rights reserved.

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT table1.column, table2.column

FROM table1

[NATURAL JOIN table2] |

[JOIN table2 USING (column_name)] |

[JOIN table2

ON (table1.column_name = table2.column_name)]|

[LEFT|RIGHT|FULL OUTER JOIN table2

ON (table1.column_name = table2.column_name)]|

[CROSS JOIN table2];

5-6 Copyright © 2004, Oracle. All rights reserved.

Creating Natural Joins

• The NATURAL JOIN clause is based on all columns

in the two tables that have the same name.

• It selects rows from the two tables that have equal

values in all matched columns.

• If the columns having the same names have

different data types, an error is returned.

5-7 Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, department_name,

location_id, city

FROM departments

NATURAL JOIN locations ;

Retrieving Records with Natural Joins

5-8 Copyright © 2004, Oracle. All rights reserved.

Creating Joins with the USING Clause

• If several columns have the same names but the
data types do not match, the NATURAL JOIN clause

can be modified with the USING clause to specify

the columns that should be used for an equijoin.

• Use the USING clause to match only one column

when more than one column matches.

• Do not use a table name or alias in the referenced

columns.

• The NATURAL JOIN and USING clauses are

mutually exclusive.

5-9 Copyright © 2004, Oracle. All rights reserved.

Joining Column Names

EMPLOYEES DEPARTMENTS

Foreign key Primary key

& &

5-10 Copyright © 2004, Oracle. All rights reserved.

SELECT employees.employee_id, employees.last_name,

departments.location_id, department_id

FROM employees JOIN departments

USING (department_id) ;

Retrieving Records with the USING Clause

&

5-11 Copyright © 2004, Oracle. All rights reserved.

Qualifying Ambiguous

Column Names

• Use table prefixes to qualify column names that

are in multiple tables.

• Use table prefixes to improve performance.

• Use column aliases to distinguish columns that

have identical names but reside in different tables.

• Do not use aliases on columns that are identified
in the USING clause and listed elsewhere in the

SQL statement.

5-12 Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name,

d.location_id, department_id

FROM employees e JOIN departments d

USING (department_id) ;

Using Table Aliases

• Use table aliases to simplify queries.

• Use table aliases to improve performance.

5-13 Copyright © 2004, Oracle. All rights reserved.

Creating Joins with the ON Clause

• The join condition for the natural join is basically

an equijoin of all columns with the same name.

• Use the ON clause to specify arbitrary conditions

or specify columns to join.

• The join condition is separated from other search

conditions.

• The ON clause makes code easy to understand.

5-14 Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,

d.department_id, d.location_id

FROM employees e JOIN departments d

ON (e.department_id = d.department_id);

Retrieving Records with the ON Clause

&

5-15 Copyright © 2004, Oracle. All rights reserved.

Self-Joins Using the ON Clause

MANAGER_ID in the WORKER table is equal to

EMPLOYEE_ID in the MANAGER table.

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

& &

5-16 Copyright © 2004, Oracle. All rights reserved.

Self-Joins Using the ON Clause

SELECT e.last_name emp, m.last_name mgr

FROM employees e JOIN employees m

ON (e.manager_id = m.employee_id);

&

5-17 Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, city, department_name

FROM employees e

JOIN departments d

ON d.department_id = e.department_id

JOIN locations l

ON d.location_id = l.location_id;

Creating Three-Way Joins with the
ON Clause

&

5-18 Copyright © 2004, Oracle. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:

– A join condition is omitted

– A join condition is invalid

– All rows in the first table are joined to all rows in the

second table

• To avoid a Cartesian product, always include a

valid join condition.

5-19 Copyright © 2004, Oracle. All rights reserved.

Generating a Cartesian Product

Cartesian product:

20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

&

&

5-20 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, department_name

FROM employees

CROSS JOIN departments ;

Creating Cross Joins

• The CROSS JOIN clause produces the cross-

product of two tables.

• This is also called a Cartesian product between

the two tables.

&

5-21 Copyright © 2004, Oracle. All rights reserved.

Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees in

department 190.

&

5-22 Copyright © 2004, Oracle. All rights reserved.

INNER Versus OUTER Joins

• In SQL:1999, the join of two tables returning only

matched rows is called an inner join.

• A join between two tables that returns the results

of the inner join as well as the unmatched rows

from the left (or right) tables is called a left (or

right) outer join.

• A join between two tables that returns the results

of an inner join as well as the results of a left and

right join is a full outer join.

5-23 Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name

FROM employees e LEFT OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

LEFT OUTER JOIN

&

5-24 Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name

FROM employees e RIGHT OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

RIGHT OUTER JOIN

&

5-25 Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, d.department_id, d.department_name

FROM employees e FULL OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

FULL OUTER JOIN

&

5-26 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use

joins to display data from multiple tables by using:

• Equijoins

• Non-equijoins

• Self-joins

• Cross joins

• Natural joins

• Outer joins

